1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2007 Ferdinando Ametrano
Copyright (C) 2007 Mark Joshi
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/models/marketmodels/driftcomputation/smmdriftcalculator.hpp>
#include <ql/models/marketmodels/curvestates/coterminalswapcurvestate.hpp>
namespace QuantLib {
SMMDriftCalculator::SMMDriftCalculator(
const Matrix& pseudo,
const std::vector<Spread>& displacements,
const std::vector<Time>& taus,
Size numeraire,
Size alive)
: numberOfRates_(taus.size()), numberOfFactors_(pseudo.columns()),
numeraire_(numeraire), alive_(alive),
displacements_(displacements), oneOverTaus_(taus.size()),
pseudo_(pseudo),
tmp_(taus.size(), 0.0),
// zero initialization required for (used by) the last element
wkaj_(pseudo_.columns(), pseudo_.rows(), 0.0),
wkpj_(pseudo_.columns(), pseudo_.rows()+1, 0.0),
wkajshifted_(pseudo_.columns(), pseudo_.rows(), 0.0)
/*,
downs_(taus.size()), ups_(taus.size())*/ {
// Check requirements
QL_REQUIRE(numberOfRates_>0, "Dim out of range");
QL_REQUIRE(displacements.size() == numberOfRates_,
"Displacements out of range");
QL_REQUIRE(pseudo.rows()==numberOfRates_,
"pseudo.rows() not consistent with dim");
QL_REQUIRE(pseudo.columns()>0 && pseudo.columns()<=numberOfRates_,
"pseudo.rows() not consistent with pseudo.columns()");
QL_REQUIRE(alive<numberOfRates_, "Alive out of bounds");
QL_REQUIRE(numeraire_<=numberOfRates_, "Numeraire larger than dim");
QL_REQUIRE(numeraire_>=alive, "Numeraire smaller than alive");
// Precompute 1/taus
for (Size i=0; i<taus.size(); ++i)
oneOverTaus_[i] = 1.0/taus[i];
// Compute covariance matrix from pseudoroot
Matrix pT = transpose(pseudo_);
C_ = pseudo_*pT;
// Compute lower and upper extrema for (non reduced) drift calculation
//for (Size i=alive_; i<numberOfRates_; ++i) {
// downs_[i] = std::min(i+1, numeraire_);
// ups_[i] = std::max(i+1, numeraire_);
//}
}
void SMMDriftCalculator::compute(const CoterminalSwapCurveState& cs,
std::vector<Real>& drifts) const {
#if defined(QL_EXTRA_SAFETY_CHECKS)
QL_REQUIRE(drifts.size()==cs.numberOfRates(),
"drifts.size() <> numberOfRates");
#endif
// Compute drifts with factor reduction,
// using the pseudo square root of the covariance matrix.
const std::vector<Rate>& SR=cs.coterminalSwapRates();
// calculates and stores wkaj_, wkpj1_
// assuming terminal bond measure
// eq 5.4-5.7
const std::vector<Time>& taus=cs.rateTaus();
std::vector<Real> annuities(numberOfRates_);
for (Size j=0; j<numberOfRates_; ++j) {
annuities[j] = cs.coterminalSwapAnnuity(numberOfRates_, j);
}
for (Size k=0; k<numberOfFactors_; ++k) {
// taken care in the constructor
// wkpj1_[k][numberOfRates_-1]= 0.0;
// wkaj_[k][numberOfRates_-1] = 0.0;
for (Integer j=numberOfRates_-2; j>=static_cast<Integer>(alive_)-1; --j) {
// < W(k) | P(j+1)/P(n) > =
// = SR(j+1) a(j+1,k) A(j+1) / P(n) + SR(j+1) < W(k) | A(j+1)/P(n) >
Real annuity = annuities[j+1];
wkpj_[k][j+1]= SR[j+1] *
( pseudo_[j+1][k] * annuity + wkaj_[k][j+1] )+
pseudo_[j+1][k]*displacements_[j+1]* annuity;
if (j >=static_cast<Integer>(alive_))
wkaj_[k][j] = wkpj_[k][j+1]*taus[j ]+wkaj_[k][j+1];
}
}
Real numeraireRatio = cs.discountRatio(numberOfRates_, numeraire_);
// change to work for general numeraire
for (Size k=0; k<numberOfFactors_; ++k) {
// compute < Wk, PN/pn>
for (Size j=alive_; j<numberOfRates_; ++j)
{
wkajshifted_[k][j] = -wkaj_[k][j]/annuities[j]
+ wkpj_[k][numeraire_]
*numeraireRatio;
}
}
// eq 5.3 (in log coordinates)
for (Size j=alive_; j<numberOfRates_; ++j) {
drifts[j] = 0.0;
for (Size k=0; k<numberOfFactors_; ++k) {
drifts[j] += wkajshifted_[k][j]*pseudo_[j][k];
}
}
}
}
|