File: analyticpartialtimebarrieroptionengine.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (373 lines) | stat: -rw-r--r-- 15,811 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2014 Master IMAFA - Polytech'Nice Sophia - Université de Nice Sophia Antipolis

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/exercise.hpp>
#include <ql/pricingengines/barrier/analyticpartialtimebarrieroptionengine.hpp>
#include <ql/math/distributions/bivariatenormaldistribution.hpp>
#include <ql/pricingengines/vanilla/analyticeuropeanengine.hpp>
#include <utility>

namespace QuantLib {

    AnalyticPartialTimeBarrierOptionEngine::AnalyticPartialTimeBarrierOptionEngine(
        ext::shared_ptr<GeneralizedBlackScholesProcess> process)
    : process_(std::move(process)) {
        registerWith(process_);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::calculate(PartialTimeBarrierOption::arguments& arguments,
                                                          const ext::shared_ptr<PlainVanillaPayoff>& payoff,
                                                          const ext::shared_ptr<GeneralizedBlackScholesProcess>& process) const {
        Barrier::Type barrierType = arguments.barrierType;
        PartialBarrier::Range barrierRange = arguments.barrierRange;
        Rate r = process->riskFreeRate()->zeroRate(residualTime(), Continuous,
                                                  NoFrequency);
        Rate q = process->dividendYield()->zeroRate(residualTime(), Continuous,
                                                  NoFrequency);
        Real barrier = arguments.barrier;
        Real strike = payoff->strike();
        
        switch (barrierType) {
          case Barrier::DownOut:
            switch (barrierRange) {
              case PartialBarrier::Start:
                return CA(1, barrier, strike, r, q);
              case PartialBarrier::EndB1:
                return CoB1(barrier, strike, r, q);
              case PartialBarrier::EndB2:
                return CoB2(Barrier::DownOut, barrier, strike, r, q);
              default:
                QL_FAIL("invalid barrier range");
            }
            break;

          case Barrier::DownIn:
            switch (barrierRange) {
              case PartialBarrier::Start:
                return CIA(1, barrier, strike, r, q);
              case PartialBarrier::EndB1:
              case PartialBarrier::EndB2:
                QL_FAIL("Down-and-in partial-time end barrier is not implemented");
              default:
                QL_FAIL("invalid barrier range");
            }
            break;

          case Barrier::UpOut:
            switch (barrierRange) {
              case PartialBarrier::Start:
                return CA(-1, barrier, strike, r, q);
              case PartialBarrier::EndB1:
                return CoB1(barrier, strike, r, q);
              case PartialBarrier::EndB2:
                return CoB2(Barrier::UpOut, barrier, strike, r, q);
              default:
                QL_FAIL("invalid barrier range");
            }
            break;

            case Barrier::UpIn:
              switch (barrierRange) {
                case PartialBarrier::Start:
                  return CIA(-1, barrier, strike, r, q);
                case PartialBarrier::EndB1:
                case PartialBarrier::EndB2:
                  QL_FAIL("Up-and-in partial-time end barrier is not implemented");
                default:
                  QL_FAIL("invalid barrier range");
              }
              break;
            default:
              QL_FAIL("unknown barrier type");
          }
    }

    void AnalyticPartialTimeBarrierOptionEngine::calculate() const {
        ext::shared_ptr<PlainVanillaPayoff> payoff =
            ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
        QL_REQUIRE(payoff, "non-plain payoff given");
        QL_REQUIRE(payoff->strike()>0.0,
                   "strike must be positive");

        Real spot = process_->x0();
        QL_REQUIRE(spot > 0.0, "negative or null underlying given");

        auto getSymmetricBarrierType = [](Barrier::Type barrierType) -> Barrier::Type {
          if (barrierType == Barrier::UpIn) return Barrier::DownIn;
          if (barrierType == Barrier::DownIn) return Barrier::UpIn;
          if (barrierType == Barrier::UpOut) return Barrier::DownOut;
          return Barrier::UpOut;
        };

        auto tmp_arguments_ = arguments_;
        if (payoff->optionType() == Option::Put)
        {
          Real spotSq = spot * spot;
          Real callStrike = spotSq / payoff->strike();
          ext::shared_ptr<PlainVanillaPayoff> callPayoff =
            ext::make_shared<PlainVanillaPayoff>(Option::Call, callStrike);
          tmp_arguments_.barrierType = getSymmetricBarrierType(arguments_.barrierType);
          tmp_arguments_.barrier = spotSq / arguments_.barrier;
          tmp_arguments_.payoff = callPayoff;
          auto callProcess = ext::make_shared<GeneralizedBlackScholesProcess>(
              process_->stateVariable(),
              process_->riskFreeRate(),
              process_->dividendYield(),
              process_->blackVolatility()
            );

          results_.value = payoff->strike() / spot * calculate(tmp_arguments_, callPayoff, callProcess);
        } else
          results_.value = calculate(tmp_arguments_, payoff, process_);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::CoB2(
                                      Barrier::Type barrierType, 
                                      Real barrier, Real strike, Rate r, Rate q) const {
        Real result = 0.0;
        Real b = r - q;
        Real T = residualTime();
        Real S = underlying();
        Real mu_ = mu(strike, b);
        Real g1_ = g1(barrier, strike, b);
        Real g2_ = g2(barrier, strike, b);
        Real g3_ = g3(barrier, strike, b);
        Real g4_ = g4(barrier, strike, b);
        Real e1_ = e1(barrier, strike, b);
        Real e2_ = e2(barrier, strike, b);
        Real e3_ = e3(barrier, strike, b);
        Real e4_ = e4(barrier, strike, b);
        Real rho_ = rho();
        Real HSMu = HS(S, barrier, 2 * mu_);
        Real HSMu1 = HS(S, barrier, 2 * (mu_ + 1));
        Real X1 = strike * std::exp(-r * T);

        if (strike < barrier){
            switch (barrierType) {
              case Barrier::DownOut:
                result = S * std::exp((b - r) * T);
                result *= (M(g1_, e1_, rho_) - HSMu1 * M(g3_, -e3_, -rho_));
                result -= X1 * (M(g2_, e2_, rho_)-HSMu*M(g4_, -e4_, -rho_));
                return result;

              case Barrier::UpOut:
                result = S * std::exp((b - r) * T);
                result *= (M(-g1_, -e1_, rho_) - HSMu1 * M(-g3_, e3_, -rho_));
                result -= X1 * (M(-g2_, -e2_, rho_) - HSMu * M(-g4_, e4_, -rho_));
                result -= S * std::exp((b - r) * T) * 
                          (M(-d1(strike, b), -e1_, rho_) - HSMu1 * 
                          M(e3_, -f1(barrier, strike, b),-rho_));
                result += X1 * (M(-d2(strike, b), -e2_, rho_) - HSMu * 
                          M(e4_, -f2(barrier, strike, b), -rho_));
                return result;

              default:
                QL_FAIL("invalid barrier type");
            }
        } else {
            QL_FAIL("case of strike>barrier is not implemented for OutEnd B2 type");
        }
    }

    Real AnalyticPartialTimeBarrierOptionEngine::CoB1(Real barrier, Real strike, Rate r, Rate q) const {
        Real result = 0.0;
        Rate b = r - q;
        Real T = residualTime();
        Real S = underlying();
        Real mu_ = mu(strike, b);
        Real g1_ = g1(barrier, strike, b);
        Real g2_ = g2(barrier, strike, b);
        Real g3_ = g3(barrier, strike, b);
        Real g4_ = g4(barrier, strike, b);
        Real e1_ = e1(barrier, strike, b);
        Real e2_ = e2(barrier, strike, b);
        Real e3_ = e3(barrier, strike, b);
        Real e4_ = e4(barrier, strike, b);
        Real rho_ = rho();
        Real HSMu = HS(S, barrier, 2 * mu_);
        Real HSMu1 = HS(S, barrier, 2 * (mu_ + 1));
        Real X1 = strike * std::exp(-r * T);

        if (strike > barrier) {
            result = S * std::exp((b - r) * T);
            result *= (M(d1(strike, b), e1_, rho_) - HSMu1 * M(f1(barrier, strike, b), -e3_, -rho_));
            result -= X1 * (M(d2(strike, b), e2_, rho_) - HSMu * M(f2(barrier, strike, b), -e4_, -rho_));
            return result;
        } else {
            Real S1 = S * std::exp((b - r) * T);
            result = S1;
            result *= (M(-g1_, -e1_, rho_) - HSMu1 * M(-g3_,e3_,-rho_));
            result -= X1 * (M(-g2_, -e2_, rho_) - HSMu * M(-g4_, e4_, -rho_));
            result -= S1 * (M(-d1(strike, b), -e1_, rho_) - HSMu1 * M(-f1(barrier, strike, b), e3_, -rho_));
            result += X1 * (M(-d2(strike, b), -e2_, rho_) - HSMu * M(-f2(barrier, strike, b), e4_, -rho_));
            result += S1 * (M(g1_, e1_, rho_) - HSMu1 * M(g3_, -e3_, -rho_));
            result -= X1 * (M(g2_, e2_, rho_) - HSMu * M(g4_, -e4_, -rho_));
            return result;
        }
    }

    // eta = -1: Up-and-In Call
    // eta =  1: Down-and-In Call
    Real AnalyticPartialTimeBarrierOptionEngine::CIA(Integer eta, Real barrier, Real strike, Rate r, Rate q) const {
        ext::shared_ptr<EuropeanExercise> exercise =
            ext::dynamic_pointer_cast<EuropeanExercise>(arguments_.exercise);

        ext::shared_ptr<PlainVanillaPayoff> payoff =
            ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);

        VanillaOption europeanOption(payoff, exercise);

        europeanOption.setPricingEngine(
                        ext::make_shared<AnalyticEuropeanEngine>(process_));

        return europeanOption.NPV() - CA(eta, barrier, strike, r, q);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::CA(Integer eta, Real barrier, Real strike, Rate r, Rate q) const {
        //Partial-Time-Start- OUT  Call Option calculation
        Real b = r - q;
        Real rho_ = rho();
        Real T = residualTime();
        Real S = underlying();
        Real mu_ = mu(strike, b);
        Real e1_ = e1(barrier, strike, b);
        Real e2_ = e2(barrier, strike, b);
        Real e3_ = e3(barrier, strike, b);
        Real e4_ = e4(barrier, strike, b);
        Real HSMu = HS(S, barrier,2 * mu_);
        Real HSMu1 = HS(S, barrier, 2 * (mu_ + 1));

        Real result;
        result = S * std::exp((b - r) * T);
        result *= (M(d1(strike, b), eta * e1_, eta * rho_)-HSMu1 * 
                  M(f1(barrier, strike, b), eta * e3_, eta * rho_));
        result -= (strike * std::exp(-r * T) * 
                  (M(d2(strike, b),eta * e2_, eta * rho_) - HSMu *
                  M(f2(barrier, strike, b), eta * e4_, eta * rho_)));
        return result;
    }

    Real AnalyticPartialTimeBarrierOptionEngine::underlying() const {
        return process_->x0();
    }

    Time AnalyticPartialTimeBarrierOptionEngine::residualTime() const {
        return process_->time(arguments_.exercise->lastDate());
    }

    Time AnalyticPartialTimeBarrierOptionEngine::coverEventTime() const {
        return process_->time(arguments_.coverEventDate);
    }

    Volatility AnalyticPartialTimeBarrierOptionEngine::volatility(Time t, Real strike) const {
        return process_->blackVolatility()->blackVol(t, strike);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::f1(Real barrier, Real strike, Rate b) const {
        Real S = underlying();
        Real T = residualTime();
        Real sigma = volatility(T, strike);
        return (std::log(S / strike) + 2 * std::log(barrier / S) + 
              (b + (std::pow(sigma, 2) / 2))*T) / (sigma*std::sqrt(T));
    }

    Real AnalyticPartialTimeBarrierOptionEngine::f2(Real barrier, Real strike, Rate b) const {
        Time T = residualTime();
        return f1(barrier, strike, b) - volatility(T, strike) * std::sqrt(T);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::M(Real a, Real b, Real rho) const {
        BivariateCumulativeNormalDistributionDr78 CmlNormDist(rho);
        return CmlNormDist(a,b);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::rho() const {
        return std::sqrt(coverEventTime() / residualTime());
    }

    Rate AnalyticPartialTimeBarrierOptionEngine::mu(Real strike, Rate b) const {
        Volatility vol = volatility(coverEventTime(), strike);
        return (b - (vol * vol) / 2) / (vol * vol);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::d1(Real strike, Rate b) const {
        Time T2 = residualTime();
        Volatility vol = volatility(T2, strike);
        return (std::log(underlying() / strike) + (b + vol * vol / 2) * T2) / (std::sqrt(T2) * vol);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::d2(Real strike, Rate b) const {
        Time T2 = residualTime();
        Volatility vol = volatility(T2, strike);
        return d1(strike, b) - vol * std::sqrt(T2);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::e1(Real barrier, Real strike, Rate b) const {
        Time T1 = coverEventTime();
        Volatility vol = volatility(T1, strike);
        return (std::log(underlying() / barrier) + (b + vol * vol / 2) * T1) / (std::sqrt(T1) * vol);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::e2(Real barrier, Real strike, Rate b) const {
        Time T1 = coverEventTime();
        Volatility vol = volatility(T1, strike);
        return e1(barrier, strike, b) - vol * std::sqrt(T1);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::e3(Real barrier, Real strike, Rate b) const {
        Time T1 = coverEventTime();
        Real vol = volatility(T1, strike);
        return e1(barrier, strike, b) + (2 * std::log(barrier / underlying()) / (vol * std::sqrt(T1)));
    }

    Real AnalyticPartialTimeBarrierOptionEngine::e4(Real barrier, Real strike, Rate b) const {
        Time t = coverEventTime();
        return e3(barrier, strike, b) - volatility(t, strike) * std::sqrt(t);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::g1(Real barrier, Real strike, Rate b) const {
        Time T2 = residualTime();
        Volatility vol = volatility(T2, strike);
        return (std::log(underlying() / barrier) + (b + vol * vol / 2) * T2) / (std::sqrt(T2) * vol);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::g2(Real barrier, Real strike, Rate b) const {
        Time T2 = residualTime();
        Volatility vol = volatility(T2, strike);
        return g1(barrier, strike, b) - vol * std::sqrt(T2);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::g3(Real barrier, Real strike, Rate b) const {
        Time T2 = residualTime();
        Real vol = volatility(T2, strike);
        return g1(barrier, strike, b) + (2 * std::log(barrier / underlying()) /(vol * std::sqrt(T2)));
    }

    Real AnalyticPartialTimeBarrierOptionEngine::g4(Real barrier, Real strike, Rate b) const {
        Time T2 = residualTime();
        Real vol = volatility(T2, strike);
        return g3(barrier, strike, b) - vol * std::sqrt(T2);
    }

    Real AnalyticPartialTimeBarrierOptionEngine::HS(Real S, Real H, Real power) const {
        return std::pow((H / S), power);
    }

}