1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2008 Andreas Gaida
Copyright (C) 2008, 2009 Ralph Schreyer
Copyright (C) 2008, 2009 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/methods/finitedifferences/meshers/fdmblackscholesmesher.hpp>
#include <ql/methods/finitedifferences/meshers/fdmhestonvariancemesher.hpp>
#include <ql/methods/finitedifferences/meshers/fdmmeshercomposite.hpp>
#include <ql/methods/finitedifferences/operators/fdmlinearoplayout.hpp>
#include <ql/methods/finitedifferences/solvers/fdmbackwardsolver.hpp>
#include <ql/methods/finitedifferences/stepconditions/fdmstepconditioncomposite.hpp>
#include <ql/methods/finitedifferences/utilities/fdmdirichletboundary.hpp>
#include <ql/methods/finitedifferences/utilities/fdminnervaluecalculator.hpp>
#include <ql/pricingengines/barrier/fdhestonrebateengine.hpp>
#include <utility>
namespace QuantLib {
QL_DEPRECATED_DISABLE_WARNING
FdHestonRebateEngine::FdHestonRebateEngine(const ext::shared_ptr<HestonModel>& model,
Size tGrid,
Size xGrid,
Size vGrid,
Size dampingSteps,
const FdmSchemeDesc& schemeDesc,
ext::shared_ptr<LocalVolTermStructure> leverageFct,
const Real mixingFactor)
: GenericModelEngine<HestonModel,
BarrierOption::arguments,
BarrierOption::results>(model),
tGrid_(tGrid), xGrid_(xGrid), vGrid_(vGrid), dampingSteps_(dampingSteps),
schemeDesc_(schemeDesc), leverageFct_(std::move(leverageFct)), mixingFactor_(mixingFactor) {}
FdHestonRebateEngine::FdHestonRebateEngine(const ext::shared_ptr<HestonModel>& model,
DividendSchedule dividends,
Size tGrid,
Size xGrid,
Size vGrid,
Size dampingSteps,
const FdmSchemeDesc& schemeDesc,
ext::shared_ptr<LocalVolTermStructure> leverageFct,
const Real mixingFactor)
: GenericModelEngine<HestonModel,
BarrierOption::arguments,
BarrierOption::results>(model),
dividends_(std::move(dividends)),
tGrid_(tGrid), xGrid_(xGrid), vGrid_(vGrid), dampingSteps_(dampingSteps),
schemeDesc_(schemeDesc), leverageFct_(std::move(leverageFct)), mixingFactor_(mixingFactor) {}
QL_DEPRECATED_ENABLE_WARNING
void FdHestonRebateEngine::calculate() const {
// 1. Mesher
const ext::shared_ptr<HestonProcess>& process = model_->process();
const Time maturity = process->time(arguments_.exercise->lastDate());
// 1.1 The variance mesher
const Size tGridMin = 5;
const Size tGridAvgSteps = std::max(tGridMin, tGrid_/50);
const ext::shared_ptr<FdmHestonLocalVolatilityVarianceMesher> vMesher
= ext::make_shared<FdmHestonLocalVolatilityVarianceMesher>(
vGrid_, process, leverageFct_, maturity, tGridAvgSteps, 0.0001, mixingFactor_);
// 1.2 The equity mesher
const ext::shared_ptr<StrikedTypePayoff> payoff =
ext::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
Real xMin=Null<Real>();
Real xMax=Null<Real>();
if ( arguments_.barrierType == Barrier::DownIn
|| arguments_.barrierType == Barrier::DownOut) {
xMin = std::log(arguments_.barrier);
}
if ( arguments_.barrierType == Barrier::UpIn
|| arguments_.barrierType == Barrier::UpOut) {
xMax = std::log(arguments_.barrier);
}
const ext::shared_ptr<Fdm1dMesher> equityMesher(
new FdmBlackScholesMesher(
xGrid_,
FdmBlackScholesMesher::processHelper(
process->s0(), process->dividendYield(),
process->riskFreeRate(), vMesher->volaEstimate()),
maturity, payoff->strike(),
xMin, xMax, 0.0001, 1.5,
std::make_pair(Null<Real>(), Null<Real>()),
dividends_));
const ext::shared_ptr<FdmMesher> mesher (
new FdmMesherComposite(equityMesher, vMesher));
// 2. Calculator
const ext::shared_ptr<StrikedTypePayoff> rebatePayoff(
new CashOrNothingPayoff(Option::Call, 0.0, arguments_.rebate));
const ext::shared_ptr<FdmInnerValueCalculator> calculator(
new FdmLogInnerValue(rebatePayoff, mesher, 0));
// 3. Step conditions
QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
"only european style option are supported");
const ext::shared_ptr<FdmStepConditionComposite> conditions =
FdmStepConditionComposite::vanillaComposite(
dividends_, arguments_.exercise,
mesher, calculator,
process->riskFreeRate()->referenceDate(),
process->riskFreeRate()->dayCounter());
// 4. Boundary conditions
FdmBoundaryConditionSet boundaries;
if ( arguments_.barrierType == Barrier::DownIn
|| arguments_.barrierType == Barrier::DownOut) {
boundaries.push_back(FdmBoundaryConditionSet::value_type(
new FdmDirichletBoundary(mesher, arguments_.rebate, 0,
FdmDirichletBoundary::Lower)));
}
if ( arguments_.barrierType == Barrier::UpIn
|| arguments_.barrierType == Barrier::UpOut) {
boundaries.push_back(FdmBoundaryConditionSet::value_type(
new FdmDirichletBoundary(mesher, arguments_.rebate, 0,
FdmDirichletBoundary::Upper)));
}
// 5. Solver
FdmSolverDesc solverDesc = { mesher, boundaries, conditions,
calculator, maturity,
tGrid_, dampingSteps_ };
ext::shared_ptr<FdmHestonSolver> solver(new FdmHestonSolver(
Handle<HestonProcess>(process), solverDesc, schemeDesc_,
Handle<FdmQuantoHelper>(), leverageFct_, mixingFactor_));
const Real spot = process->s0()->value();
results_.value = solver->valueAt(spot, process->v0());
results_.delta = solver->deltaAt(spot, process->v0());
results_.gamma = solver->gammaAt(spot, process->v0());
results_.theta = solver->thetaAt(spot, process->v0());
}
}
|