1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2024 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file choibasketengine.cpp
*/
#include <ql/exercise.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/math/matrixutilities/svd.hpp>
#include <ql/math/matrixutilities/householder.hpp>
#include <ql/math/matrixutilities/getcovariance.hpp>
#include <ql/math/matrixutilities/choleskydecomposition.hpp>
#include <ql/math/integrals/gaussianquadratures.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/pricingengines/basket/choibasketengine.hpp>
#include <ql/pricingengines/basket/vectorbsmprocessextractor.hpp>
#include <ql/pricingengines/basket/singlefactorbsmbasketengine.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
#include <boost/math/special_functions/sign.hpp>
namespace QuantLib {
ChoiBasketEngine::ChoiBasketEngine(
std::vector<ext::shared_ptr<GeneralizedBlackScholesProcess> > processes,
Matrix rho, Real lambda,
Size maxNrIntegrationSteps,
bool calcFwdDelta, bool controlVariate)
: n_(processes.size()),
processes_(std::move(processes)),
rho_(std::move(rho)),
lambda_(lambda),
maxNrIntegrationSteps_(maxNrIntegrationSteps),
calcFwdDelta_(calcFwdDelta || controlVariate),
controlVariate_(controlVariate) {
QL_REQUIRE(n_ > 0, "No Black-Scholes process is given.");
QL_REQUIRE(n_ == rho_.size1() && rho_.size1() == rho_.size2(),
"process and correlation matrix must have the same size.");
QL_REQUIRE(lambda_ > 0.0, "lambda must be positive");
std::for_each(processes_.begin(), processes_.end(),
[this](const auto& p) { registerWith(p); });
}
void ChoiBasketEngine::calculate() const {
const ext::shared_ptr<EuropeanExercise> exercise =
ext::dynamic_pointer_cast<EuropeanExercise>(arguments_.exercise);
QL_REQUIRE(exercise, "not an European exercise");
const Date maturityDate = exercise->lastDate();
const detail::VectorBsmProcessExtractor pExtractor(processes_);
const Array s = pExtractor.getSpot();
const Array dq = pExtractor.getDividendYieldDf(maturityDate);
const DiscountFactor dr0 = pExtractor.getInterestRateDf(maturityDate);
Array stdDev = Sqrt(pExtractor.getBlackVariance(maturityDate));
std::transform(stdDev.begin(), stdDev.end(), stdDev.begin(),
[](Real x) -> Real { return std::max(QL_EPSILON*QL_EPSILON, x); }
);
const Array fwd = s * dq/dr0;
const ext::shared_ptr<AverageBasketPayoff> avgPayoff =
(ext::dynamic_pointer_cast<AverageBasketPayoff>(arguments_.payoff) != nullptr)
? ext::dynamic_pointer_cast<AverageBasketPayoff>(arguments_.payoff)
: (ext::dynamic_pointer_cast<SpreadBasketPayoff>(arguments_.payoff) != nullptr)
? ext::make_shared<AverageBasketPayoff>(
ext::dynamic_pointer_cast<SpreadBasketPayoff>(
arguments_.payoff)->basePayoff(),
Array({1.0, -1.0})
)
: ext::shared_ptr<AverageBasketPayoff>();
QL_REQUIRE(avgPayoff, "average or spread basket payoff expected");
const Array weights = avgPayoff->weights();
QL_REQUIRE(n_ == weights.size() && n_ > 1,
"wrong number of weights arguments in payoff");
const Array g = weights*fwd / Norm2(weights*fwd);
const Matrix Sigma = getCovariance(stdDev.begin(), stdDev.end(), rho_);
Array vStar1 = Sigma*g;
vStar1 /= std::sqrt(DotProduct(g, vStar1));
const Matrix C = CholeskyDecomposition(Sigma);
const Real eps = 100*std::sqrt(QL_EPSILON);
// publication sets tol=0, pyfeng implementation sets tol=0.01
const Real tol = 100*std::sqrt(QL_EPSILON);
bool flip = false;
for (Size i=0; i < n_; ++i)
if (boost::math::sign(g[i])*vStar1[i] < tol*stdDev[i]) {
flip = true;
vStar1[i] = eps * boost::math::sign(g[i]) * stdDev[i];
}
Array q1(n_);
if (flip) {
//q1 = inverse(C)*vStar1;
for (Size i=0; i < n_; ++i)
q1[i] = (vStar1[i] - std::inner_product(
C.row_begin(i), C.row_begin(i) + i, q1.begin(), Real(0.0)))/C[i][i];
vStar1 /= Norm2(q1);
}
else {
q1 = transpose(C)*g;
}
q1 /= Norm2(q1);
Array e1(n_, 0.0);
e1[0] = 1.0;
const Matrix R = HouseholderTransformation(
HouseholderReflection(e1).reflectionVector(q1)).getMatrix();
Matrix R_2_n = Matrix(n_, n_-1);
for (Size i=0; i < n_; ++i)
std::copy(R.row_begin(i)+1, R.row_end(i), R_2_n.row_begin(i));
const SVD svd(C*R_2_n);
const Matrix& U = svd.U();
const Array& sv = svd.singularValues();
Matrix v(n_, n_-1);
for (Size i=0; i < n_-1; ++i)
std::transform(
U.column_begin(i), U.column_end(i), v.column_begin(i),
[i, &sv](Real x) -> Real { return sv[i]*x; }
);
std::vector<Size> nIntOrder(n_-1);
Real lambda = lambda_;
const Real alpha = 1/std::abs(DotProduct(g, vStar1));
do {
const Real intScale = lambda * alpha;
for (Size i=0; i < n_-1; ++i)
nIntOrder[i] = Size(std::lround(1 + intScale*sv[i]));
lambda*=0.9;
QL_REQUIRE(lambda/lambda_ > 1e-10,
"can not rescale lambda to fit max integration order");
} while (std::accumulate(
nIntOrder.begin(), nIntOrder.end(), 1.0, std::multiplies<>())
> Real(maxNrIntegrationSteps_));
std::vector<ext::shared_ptr<SimpleQuote> > quotes;
std::vector<ext::shared_ptr<GeneralizedBlackScholesProcess> > p;
for (Size i=0; i < n_; ++i) {
quotes.push_back(ext::make_shared<SimpleQuote>(fwd[i]));
const Handle<BlackVolTermStructure> bv = processes_[i]->blackVolatility();
const Volatility vol = vStar1[i] / std::sqrt(
bv->dayCounter().yearFraction(bv->referenceDate(), maturityDate)
);
p.push_back(
ext::make_shared<BlackProcess>(
Handle<Quote>(quotes[i]),
processes_[i]->riskFreeRate(),
Handle<BlackVolTermStructure>(
ext::make_shared<BlackConstantVol>(
bv->referenceDate(), bv->calendar(),
Handle<Quote>(ext::make_shared<SimpleQuote>(vol)),
bv->dayCounter()
)
)
)
);
}
BasketOption option(avgPayoff, exercise);
option.setPricingEngine(ext::make_shared<SingleFactorBsmBasketEngine>(p));
Array vq(n_);
for (Size i=0; i < n_; ++i)
vq[i] = 0.5*std::accumulate(
v.row_begin(i), v.row_end(i), Real(0.0),
[](Real acc, Real x) -> Real { return acc + x*x; }
);
MultiDimGaussianIntegration ghq(
nIntOrder,
[](const Size n) { return ext::make_shared<GaussHermiteIntegration>(n); }
);
const Real normFactor = std::pow(M_PI, -0.5*nIntOrder.size());
std::vector<Real> dStore;
dStore.reserve(ghq.weights().size());
const auto bsm1dPricer = [&](const Array& z) -> Real {
const Array f = Exp(-M_SQRT2*(v*z) - vq) * fwd;
for (Size i=0; i < f.size(); ++i)
quotes[i]->setValue(f[i]);
dStore.push_back(ext::any_cast<Real>(option.additionalResults().at("d")));
return std::exp(-DotProduct(z, z)) * option.NPV();
};
results_.value = ghq(bsm1dPricer) * normFactor;
if (calcFwdDelta_) {
const ext::shared_ptr<PlainVanillaPayoff> payoff =
ext::dynamic_pointer_cast<PlainVanillaPayoff>(avgPayoff->basePayoff());
QL_REQUIRE(payoff, "non-plain vanilla payoff given");
const Real putIndicator = (payoff->optionType() == Option::Call) ? 0.0 : -1.0;
Size dStoreCounter;
const CumulativeNormalDistribution N;
Array fwdDelta(n_), fHat(n_);
for (Size k=0; k < n_; ++k) {
dStoreCounter = 0;
const auto deltaPricer = [&](const Array& z) -> Real {
const Real d = dStore[dStoreCounter++];
const Real vz = std::inner_product(
v.row_begin(k), v.row_end(k), z.begin(), Real(0.0));
const Real f = std::exp(-M_SQRT2*vz - vq[k]);
return std::exp(-DotProduct(z, z)) * f * N(d + vStar1[k]);
};
fwdDelta[k] = dr0*weights[k]*(ghq(deltaPricer) * normFactor + putIndicator);
const std::string deltaName = "forwardDelta " + std::to_string(k);
results_.additionalResults[deltaName] = fwdDelta[k];
}
if (controlVariate_) {
for (Size k=0; k < n_; ++k) {
const auto fHatPricer = [&](const Array& z) -> Real {
const Real vz = std::inner_product(
v.row_begin(k), v.row_end(k), z.begin(), Real(0.0));
const Real f = std::exp(-M_SQRT2*vz - vq[k]);
return std::exp(-DotProduct(z, z)) * f;
};
fHat[k] = ghq(fHatPricer) * normFactor;
}
const Array cv = fwdDelta*fwd*(fHat-1.0);
results_.value -= std::accumulate(cv.begin(), cv.end(), Real(0.0));
}
}
}
}
|