1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2024 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/math/functional.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/pricingengines/basket/operatorsplittingspreadengine.hpp>
#include <utility>
namespace QuantLib {
OperatorSplittingSpreadEngine::OperatorSplittingSpreadEngine(
ext::shared_ptr<GeneralizedBlackScholesProcess> process1,
ext::shared_ptr<GeneralizedBlackScholesProcess> process2,
Real correlation,
Order order)
: SpreadBlackScholesVanillaEngine(std::move(process1), std::move(process2), correlation),
order_(order) {
}
Real OperatorSplittingSpreadEngine::calculate(
Real f1, Real f2, Real k, Option::Type optionType,
Real variance1, Real variance2, DiscountFactor df) const {
const auto callPutParityPrice = [f1, f2, df, k, optionType](Real callPrice) -> Real {
if (optionType == Option::Call)
return callPrice;
else
return callPrice - df*(f1-f2-k);
};
const Real vol1 = std::sqrt(variance1);
const Real vol2 = std::sqrt(variance2);
const Real sig2 = vol2*f2/(f2+k);
const Real sig_m = std::sqrt(variance1 +sig2*(sig2 - 2*rho_*vol1));
const Real d1 = (std::log(f1) - std::log(f2 + k))/sig_m + 0.5*sig_m;
const Real d2 = d1 - sig_m;
const CumulativeNormalDistribution N;
const Real kirkCallNPV = df*(f1*N(d1) - (f2 + k)*N(d2));
const Real vs = vol2/(sig_m*sig_m);
const Real rs = squared(rho_*vol1 - sig2);
const Real oPlt = -sig2*sig2*k*df*NormalDistribution()(d2)*vs
*( -d2*rs/sig2 - 0.5*vs*sig_m * k / (f2+k)
*(rs*d1*d2 + (1-rho_*rho_)*variance1));
if (order_ == First)
return callPutParityPrice(kirkCallNPV + 0.5*oPlt);
QL_REQUIRE(order_ == Second, "unknown approximation type");
/*
In the original paper, the second-order approximation was computed using numerical differentiation.
The following Mathematica scripts calculates the approximation to the n'th order.
vol2Hat[R2_] := vol2*(R2 - K)/R2
volMinusHat[R2_] := Sqrt[vol1^2 - 2*rho*vol1*vol2Hat[R2] + vol2Hat[R2]^2]
zeta1[R1_, R2_] := 1/(volMinusHat[R2]*Sqrt[t])*(Log[R1] + volMinusHat[R2]^2*t/2)
zeta2[R1_, R2_] := zeta1[R1, R2] - volMinusHat[R2]*Sqrt[t]
pLT[R1_, R2_] := Exp[-r*t]*R2*(R1*CDF[NormalDistribution[0, 1], zeta1[R1, R2]]
- CDF[NormalDistribution[0, 1], zeta2[R1, R2]])
opt[R1_, R2_] := (1/2*vol2Hat[R2]^2*R2^2*D[#, {R2, 2}] + (rho*vol1 - vol2Hat[R2])*vol2Hat[R2]*R1*R2*
D[#, R1, R2] - (rho*vol1 - vol2Hat[R2])*vol2Hat[R2]*R1*D[#, R1]) &
pStrange1[R1_, R2_] := pLT[R1, R2] + (t/2)^1/Factorial[1]*opt[R1, R2][pLT[R1, R2]]
pStrange2[R1_, R2_] := pStrange1[R1, R2] + (t/2)^2/Factorial[2]*opt[R1, R2][opt[R1, R2][pLT[R1, R2]]]
*/
const Real R2 = f2+k;
const Real R1 = f1/R2;
const Real vol12 = vol1*vol1;
const Real vol22 = vol2*vol2;
const Real vol23 = vol22*vol2;
if (rs < std::pow(QL_EPSILON, 0.625)) {
const Real vol24 = vol22*vol22;
const Real vol26 = vol22*vol24;
const Real k2 = k*k;
const Real R22 = R2*R2;
const Real R24 = R22*R22;
const Real kmR22 = squared(k-R2);
const Real lnR1 = std::log(R1);
const Real ooPlt = -0.0625*(k2*kmR22*vol26*(-8*R22*R24*(7*k2 - 7*k*R2 + R22)*vol12*vol12
+ kmR22*R24*vol12*(-112*k*R2 + 16*R22 + k2*(124 + 3*vol12))*vol22 - 2*kmR22*kmR22*R22*
(-28*k*R2 + 4*R22 + k2*(34 + 3*vol12))*vol24 + 3*k2*kmR22*kmR22*kmR22*vol26 - 4*k*(k -R2)*
R24*lnR1*(-4*R22*vol12 + 4*kmR22*vol22 + 3*k*(k - R2)*vol22*lnR1)))
/(std::exp(squared(-(R22*vol12) + kmR22*vol22 + 2*R22*lnR1)/(8*R24*vol12 - 8*kmR22*R22*vol22))*
M_SQRTPI*M_SQRT2*R22*R24*R2*squared(R22*vol12 - kmR22*vol22)*std::sqrt(vol12 - (kmR22*vol22)/R22));
return callPutParityPrice(kirkCallNPV + 0.5*oPlt + 0.125*ooPlt);
}
const Real F2 = f2;
const Real F22 = F2*F2;
const Real F23 = F22*F2;
const Real F24 = F22*F22;
const Real iR2 = 1.0/R2;
const Real iR22 = iR2*iR2;
const Real iR23 = iR22*iR2;
const Real iR24 = iR22*iR22;
const Real a = vol12 - 2*F2*iR2*rho_*vol1*vol2 + F22*iR22*vol22;
const Real a2 = a*a;
const Real b = a/2+std::log(R1);
const Real b2 = b*b;
const Real c = std::sqrt(a);
const Real d = b/c;
const Real e = rho_*vol1 - F2*iR2*vol2;
const Real e2 = e*e;
const Real f = d-c;
const Real g = -2*iR2*rho_*vol1*vol2 + 2*F2*iR22*rho_*vol1*vol2 + 2*F2*iR22*vol22 - 2*F22*iR23*vol22;
const Real h = rho_*rho_;
const Real j = 1-h;
const Real iat = 1/c;
const Real l = b*iat - c;
const Real m = f*(1 - (R2*rho_*vol1)/(F2*vol2)) - (e*iR2*k*(d*l + (j*vol12)/(e*e))*vol2)/(2.*c);
const Real n = (iat*(1 - (R2*rho_*vol1)/(F2*vol2)))/R1 - (e*iR2*k*((f*iat)/R1 + b/(a*R1))*vol2)/(2.*c);
const Real o = df*std::exp(-0.5*f*f);
const Real p = d*l + (j*vol12)/(e*e);
const Real q = (-2*j*vol12*(-(iR2*vol2) + F2*iR22*vol2))/(e*e*e);
const Real s = q - (b2*g)/(2.*a2) - (b*f*g)/(2.*a*c) + (f*g)/(2.*c);
const Real u = f*(-((rho_*vol1)/(F2*vol2)) + (R2*rho_*vol1)/(F22*vol2));
const Real v = -0.5*(b*g*(1 - (R2*rho_*vol1)/(F2*vol2)))/(a*c);
const Real w = (3*g*g)/(4.*a2*c) - (4*iR22*rho_*vol1*vol2 - 4*F2*iR23*rho_*vol1*vol2 +
2*iR22*vol22 - 8*F2*iR23*vol22 + 6*F22*iR24*vol22)/(2.*a*c);
const Real x = u + v + (e*g*iR2*k*p*vol2)/(4.*a*c) + (e*iR22*k*p*vol2)/(2.*c) -
(e*iR2*k*s*vol2)/(2.*c) - (iR2*k*p*vol2*(-(iR2*vol2) + F2*iR22*vol2))/(2.*c);
const Real y = (4*iR22 - 4*F2*iR23)*rho_*vol1*vol2 + (2*iR22 - 8*F2*iR23 + 6*F22*iR24)*vol22;
const Real z = 4*iR22*rho_*vol1*vol2 - 4*F2*iR23*rho_*vol1*vol2 + 2*iR22*vol22 -
8*F2*iR23*vol22 + 6*F22*iR24*vol22;
const Real ooPlt = (k*o*vol23*(-2*c*b2*e2*e*(-1 + f*f)*F23*F24*g*g*iR22*m*vol23 +
2*b2*e2*e2*F23*F24*g*g*iR2*iR22*k*vol22*vol22 + 2*a*b*e2*e*F23*F22*g*iR22*vol2*(-8*
e2*F2*iR2*k*vol22 + 7*f*F22*g*m*vol22) - a*c*e2*e*F23*F22*g*iR22*vol2*(4*e*F2*
vol2*(-2*b*(-1 + f*f)*m + e*f*iR2*k*vol2) + F22*g*(16*m + e*(2*f + 3*b*iat)*iR2*k*vol2)*vol22) -
4*a2*a*c*e2*(e2*F22*vol2*(4*F22*iat*iR22*R2*rho_*vol1 + 8*F23*iR22*n*R1*vol2 -
4*F24*3*iR23*n*R1*vol2 - F23*iR22*(4*iat*rho_*vol1 + F22*iR2*k*p*vol23*w))
+ 4*F23*F22*vol22*vol22*(iR22*(-2*F2*iR2 + 3*F22*iR22)*m + F22*(2*iR2 - 3*F2*iR22)*iR23*m
+ F22*iR22*(-iR2 + F2*iR22)*x) + 2*e*F22*(2*F24*F2*iR24*n*R1*vol23 +
2*f*F2*F22*iR22*rho_*vol1*vol22 - 2*f*F22*iR22*R2*rho_*vol1*vol22 -
b*F24*iR22*R2*rho_*vol1*vol22*w - 2*F24*vol2*(iR23*n*R1*vol22 + 4*iR23*m*vol22 - 2*iR22*vol22*x) +
F23*(2*iR22*m*vol23 + 6*F22*iR24*m*vol23 + b*F22*iR22*vol23*w - 4*F22*iR23*vol23*x))) +
2*a2*c*e2*F23*F22*vol2*(8*F22*g*iR22*(-iR2 + F2*iR22)*m*vol23 +
e2*iR22*vol2*(8*F2*g*n*R1 + b*F22*iat*iR2*k*vol22*(y - z)) +
4*e*vol22*(4*F2*g*iR22*m + F22*(-4*g*iR23*m + 2*g*iR22*x + iR22*m*z))) +
2*a2*a*F22*(-4*e2*e2*e*f*F24*iat*iR24*k*vol23 + 8*e*F2*F24*iR23*(-iR22 + F2*iR23)*j*k*vol12*vol23*vol22 +
12*F2*F24*iR23*squared(iR2 - F2*iR22)*j*k*vol12*vol23*vol23 +
e2*e2*F2*vol22*(2*F24*iR22*k*vol22*(2*(iR23*p - iR22*s) + b2*iat*iR2*w) + f*(4*F22*iR22*(4*m +
F22*iat*iR2*iR22*k*vol22) - 4*F23*(6*iR23*m + iat*iR24*k*vol22 - 2*iR22*x)
+ F24*iR23*k*vol22*(2*b*w + iat*y))) - 2*e2*e*F22*iR22*(4*f*F22*(iR2 - F2*iR22)*m*vol23 +
F22*vol22*(F2*vol2*(2*k*(F2*iR24*p + F2*iR24*p + iR22*s - iR23*(2*p + F2*s))*vol22 + y - z)
+ R2*rho_*vol1*(-y + z)))) - 2*a2*e2*F23*(2*e2*e*F23*iR22*k*(2*b*iR22 + g*(-1 + f*iat)*iR2)*vol23 +
4*b*f*F22*F22*g*iR22*(-iR2 + F2*iR22)*m*vol22*vol22 +
2*e2*F22*iR22*vol2*(2*b*F2*iR2*(iR2 - F2*iR22)*k*vol23 + g*(2*R2*rho_*vol1 + 2*F2*(-1 + 3*f*m +
b*f*n*R1)*vol2 + F22*k*(-(iR22*p) + iR2*s)*vol23)) + e*vol22*(F2*F22*g*iR22*(g*R2*rho_*vol1 + F2*g*(-1 + f*m)*vol2 +
2*F2*iR2*(-iR2 + F2*iR22)*k*p*vol23) + 2*b*(2*F2*F22*g*iR22*rho_*vol1 - 2*F22*g*iR22*R2*rho_*vol1 +
4*f*F23*g*iR22*m*vol2 + f*F24*vol2*(-4*g*iR23*m + 2*g*iR22*x +
iR22*m*z))))))/(16.*a2*a2*c*e2*F23*M_SQRT2*M_SQRTPI*vol2);
return callPutParityPrice(kirkCallNPV + 0.5*oPlt + 0.125*ooPlt);
}
}
|