File: mcforwardvanillaengine.hpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (179 lines) | stat: -rw-r--r-- 7,542 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/
 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.
 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file mcforwardvanillaengine.hpp
    \brief Monte Carlo engine for forward-starting strike-reset vanilla options
*/

#ifndef quantlib_mcforwardvanilla_engine_hpp
#define quantlib_mcforwardvanilla_engine_hpp

#include <ql/instruments/forwardvanillaoption.hpp>
#include <ql/instruments/vanillaoption.hpp>
#include <ql/pricingengines/mcsimulation.hpp>
#include <utility>

namespace QuantLib {

    //! Monte Carlo engine for forward-starting vanilla options
    /*! \ingroup forwardengines
    */
    template<template <class> class MC,
             class RNG = PseudoRandom, class S = Statistics>
    class MCForwardVanillaEngine : public GenericEngine<ForwardOptionArguments<VanillaOption::arguments>,
                                                        VanillaOption::results>,
                                   public McSimulation<MC,RNG,S>
    {
      public:
        typedef typename McSimulation<MC,RNG,S>::path_generator_type
            path_generator_type;
        typedef typename McSimulation<MC,RNG,S>::path_pricer_type
            path_pricer_type;
        typedef typename McSimulation<MC,RNG,S>::stats_type
            stats_type;
        // constructor
        MCForwardVanillaEngine(ext::shared_ptr<StochasticProcess> process,
                               Size timeSteps,
                               Size timeStepsPerYear,
                               bool brownianBridge,
                               bool antitheticVariate,
                               Size requiredSamples,
                               Real requiredTolerance,
                               Size maxSamples,
                               BigNatural seed,
                               bool controlVariate = false);
        void calculate() const override {
            McSimulation<MC,RNG,S>::calculate(requiredTolerance_,
                                              requiredSamples_,
                                              maxSamples_);
            this->results_.value = this->mcModel_->sampleAccumulator().mean();
            if constexpr (RNG::allowsErrorEstimate)
                this->results_.errorEstimate =
                    this->mcModel_->sampleAccumulator().errorEstimate();
        }

      protected:
        // McSimulation implementation
        TimeGrid timeGrid() const override;
        Real controlVariateValue() const override;
        ext::shared_ptr<path_generator_type> pathGenerator() const override {

            Size dimensions = process_->factors();
            TimeGrid grid = this->timeGrid();
            typename RNG::rsg_type gen =
                RNG::make_sequence_generator(dimensions*(grid.size()-1),seed_);
            return ext::shared_ptr<path_generator_type>(
                         new path_generator_type(process_, grid,
                                                 gen, brownianBridge_));
        }
        // data members
        ext::shared_ptr<StochasticProcess> process_;
        Size timeSteps_, timeStepsPerYear_, requiredSamples_, maxSamples_;
        Real requiredTolerance_;
        bool brownianBridge_;
        BigNatural seed_;
    };

    template <template <class> class MC, class RNG, class S>
    inline MCForwardVanillaEngine<MC, RNG, S>::MCForwardVanillaEngine(
        ext::shared_ptr<StochasticProcess> process,
        Size timeSteps,
        Size timeStepsPerYear,
        bool brownianBridge,
        bool antitheticVariate,
        Size requiredSamples,
        Real requiredTolerance,
        Size maxSamples,
        BigNatural seed,
        bool controlVariate)
    : McSimulation<MC, RNG, S>(antitheticVariate, controlVariate), process_(std::move(process)),
      timeSteps_(timeSteps), timeStepsPerYear_(timeStepsPerYear), requiredSamples_(requiredSamples),
      maxSamples_(maxSamples), requiredTolerance_(requiredTolerance),
      brownianBridge_(brownianBridge), seed_(seed) {
        QL_REQUIRE(timeSteps != Null<Size>() ||
                   timeStepsPerYear != Null<Size>(),
                   "no time steps provided");
        QL_REQUIRE(timeSteps == Null<Size>() ||
                   timeStepsPerYear == Null<Size>(),
                   "both time steps and time steps per year were provided");
        QL_REQUIRE(timeSteps != 0,
                   "timeSteps must be positive, " << timeSteps <<
                   " not allowed");
        QL_REQUIRE(timeStepsPerYear != 0,
                   "timeStepsPerYear must be positive, " << timeStepsPerYear <<
                   " not allowed");
        registerWith(process_);
    }

    template <template <class> class MC, class RNG, class S>
    inline TimeGrid MCForwardVanillaEngine<MC,RNG,S>::timeGrid() const {

        Date resetDate = arguments_.resetDate;
        Date lastExerciseDate = arguments_.exercise->lastDate();

        Time t1 = process_->time(resetDate);
        Time t2 = process_->time(lastExerciseDate);

        Size totalSteps = Null<Size>();
        if (this->timeSteps_ != Null<Size>()) {
            totalSteps = timeSteps_;
        } else if (this->timeStepsPerYear_ != Null<Size>()) {
            totalSteps = static_cast<Size>(this->timeStepsPerYear_*t2);
        }

        std::vector<Time> fixingTimes;
        fixingTimes.push_back(t1);
        fixingTimes.push_back(t2);

        return TimeGrid(fixingTimes.begin(), fixingTimes.end(), totalSteps);
    }

    template <template <class> class MC, class RNG, class S>
    inline Real MCForwardVanillaEngine<MC,RNG,S>::controlVariateValue() const {

        ext::shared_ptr<PricingEngine> controlPE =
                this->controlPricingEngine();
        QL_REQUIRE(controlPE, "engine does not provide "
                              "control variation pricing engine");

        // Create vanilla option arguments with the same payoff and expiry, but with
        // strike-reset equal to initial spot*moneyness, price analytically
        ext::shared_ptr<StrikedTypePayoff> payoff =
            ext::dynamic_pointer_cast<StrikedTypePayoff>(
                this->arguments_.payoff);
        QL_REQUIRE(payoff, "non-plain payoff given");

        Real spot = this->process_->initialValues()[0];
        Real moneyness = this->arguments_.moneyness;
        Real strike = moneyness * spot;

        ext::shared_ptr<StrikedTypePayoff> newPayoff(new
            PlainVanillaPayoff(payoff->optionType(), strike));

        auto* controlArguments = dynamic_cast<VanillaOption::arguments*>(controlPE->getArguments());

        controlArguments->payoff = newPayoff;
        controlArguments->exercise = this->arguments_.exercise;
        controlPE->calculate();

        const auto* controlResults =
            dynamic_cast<const VanillaOption::results*>(controlPE->getResults());

        return controlResults->value;
    }
}


#endif