1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file mcforwardvanillaengine.hpp
\brief Monte Carlo engine for forward-starting strike-reset vanilla options
*/
#ifndef quantlib_mcforwardvanilla_engine_hpp
#define quantlib_mcforwardvanilla_engine_hpp
#include <ql/instruments/forwardvanillaoption.hpp>
#include <ql/instruments/vanillaoption.hpp>
#include <ql/pricingengines/mcsimulation.hpp>
#include <utility>
namespace QuantLib {
//! Monte Carlo engine for forward-starting vanilla options
/*! \ingroup forwardengines
*/
template<template <class> class MC,
class RNG = PseudoRandom, class S = Statistics>
class MCForwardVanillaEngine : public GenericEngine<ForwardOptionArguments<VanillaOption::arguments>,
VanillaOption::results>,
public McSimulation<MC,RNG,S>
{
public:
typedef typename McSimulation<MC,RNG,S>::path_generator_type
path_generator_type;
typedef typename McSimulation<MC,RNG,S>::path_pricer_type
path_pricer_type;
typedef typename McSimulation<MC,RNG,S>::stats_type
stats_type;
// constructor
MCForwardVanillaEngine(ext::shared_ptr<StochasticProcess> process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed,
bool controlVariate = false);
void calculate() const override {
McSimulation<MC,RNG,S>::calculate(requiredTolerance_,
requiredSamples_,
maxSamples_);
this->results_.value = this->mcModel_->sampleAccumulator().mean();
if constexpr (RNG::allowsErrorEstimate)
this->results_.errorEstimate =
this->mcModel_->sampleAccumulator().errorEstimate();
}
protected:
// McSimulation implementation
TimeGrid timeGrid() const override;
Real controlVariateValue() const override;
ext::shared_ptr<path_generator_type> pathGenerator() const override {
Size dimensions = process_->factors();
TimeGrid grid = this->timeGrid();
typename RNG::rsg_type gen =
RNG::make_sequence_generator(dimensions*(grid.size()-1),seed_);
return ext::shared_ptr<path_generator_type>(
new path_generator_type(process_, grid,
gen, brownianBridge_));
}
// data members
ext::shared_ptr<StochasticProcess> process_;
Size timeSteps_, timeStepsPerYear_, requiredSamples_, maxSamples_;
Real requiredTolerance_;
bool brownianBridge_;
BigNatural seed_;
};
template <template <class> class MC, class RNG, class S>
inline MCForwardVanillaEngine<MC, RNG, S>::MCForwardVanillaEngine(
ext::shared_ptr<StochasticProcess> process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed,
bool controlVariate)
: McSimulation<MC, RNG, S>(antitheticVariate, controlVariate), process_(std::move(process)),
timeSteps_(timeSteps), timeStepsPerYear_(timeStepsPerYear), requiredSamples_(requiredSamples),
maxSamples_(maxSamples), requiredTolerance_(requiredTolerance),
brownianBridge_(brownianBridge), seed_(seed) {
QL_REQUIRE(timeSteps != Null<Size>() ||
timeStepsPerYear != Null<Size>(),
"no time steps provided");
QL_REQUIRE(timeSteps == Null<Size>() ||
timeStepsPerYear == Null<Size>(),
"both time steps and time steps per year were provided");
QL_REQUIRE(timeSteps != 0,
"timeSteps must be positive, " << timeSteps <<
" not allowed");
QL_REQUIRE(timeStepsPerYear != 0,
"timeStepsPerYear must be positive, " << timeStepsPerYear <<
" not allowed");
registerWith(process_);
}
template <template <class> class MC, class RNG, class S>
inline TimeGrid MCForwardVanillaEngine<MC,RNG,S>::timeGrid() const {
Date resetDate = arguments_.resetDate;
Date lastExerciseDate = arguments_.exercise->lastDate();
Time t1 = process_->time(resetDate);
Time t2 = process_->time(lastExerciseDate);
Size totalSteps = Null<Size>();
if (this->timeSteps_ != Null<Size>()) {
totalSteps = timeSteps_;
} else if (this->timeStepsPerYear_ != Null<Size>()) {
totalSteps = static_cast<Size>(this->timeStepsPerYear_*t2);
}
std::vector<Time> fixingTimes;
fixingTimes.push_back(t1);
fixingTimes.push_back(t2);
return TimeGrid(fixingTimes.begin(), fixingTimes.end(), totalSteps);
}
template <template <class> class MC, class RNG, class S>
inline Real MCForwardVanillaEngine<MC,RNG,S>::controlVariateValue() const {
ext::shared_ptr<PricingEngine> controlPE =
this->controlPricingEngine();
QL_REQUIRE(controlPE, "engine does not provide "
"control variation pricing engine");
// Create vanilla option arguments with the same payoff and expiry, but with
// strike-reset equal to initial spot*moneyness, price analytically
ext::shared_ptr<StrikedTypePayoff> payoff =
ext::dynamic_pointer_cast<StrikedTypePayoff>(
this->arguments_.payoff);
QL_REQUIRE(payoff, "non-plain payoff given");
Real spot = this->process_->initialValues()[0];
Real moneyness = this->arguments_.moneyness;
Real strike = moneyness * spot;
ext::shared_ptr<StrikedTypePayoff> newPayoff(new
PlainVanillaPayoff(payoff->optionType(), strike));
auto* controlArguments = dynamic_cast<VanillaOption::arguments*>(controlPE->getArguments());
controlArguments->payoff = newPayoff;
controlArguments->exercise = this->arguments_.exercise;
controlPE->calculate();
const auto* controlResults =
dynamic_cast<const VanillaOption::results*>(controlPE->getResults());
return controlResults->value;
}
}
#endif
|