1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Warren Chou
Copyright (C) 2007 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/exercise.hpp>
#include <ql/pricingengines/lookback/analyticcontinuouspartialfixedlookback.hpp>
#include <utility>
namespace QuantLib {
AnalyticContinuousPartialFixedLookbackEngine::AnalyticContinuousPartialFixedLookbackEngine(
ext::shared_ptr<GeneralizedBlackScholesProcess> process)
: process_(std::move(process)) {
registerWith(process_);
}
void AnalyticContinuousPartialFixedLookbackEngine::calculate() const {
ext::shared_ptr<PlainVanillaPayoff> payoff =
ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "Non-plain payoff given");
QL_REQUIRE(process_->x0() > 0.0, "negative or null underlying");
switch (payoff->optionType()) {
case Option::Call:
QL_REQUIRE(payoff->strike()>=0.0,
"Strike must be positive or null");
results_.value = A(1);
break;
case Option::Put:
QL_REQUIRE(payoff->strike()>0.0,
"Strike must be positive");
results_.value = A(-1);
break;
default:
QL_FAIL("Unknown type");
}
}
Real AnalyticContinuousPartialFixedLookbackEngine::underlying() const {
return process_->x0();
}
Real AnalyticContinuousPartialFixedLookbackEngine::strike() const {
ext::shared_ptr<PlainVanillaPayoff> payoff =
ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "Non-plain payoff given");
return payoff->strike();
}
Time AnalyticContinuousPartialFixedLookbackEngine::residualTime() const {
return process_->time(arguments_.exercise->lastDate());
}
Volatility AnalyticContinuousPartialFixedLookbackEngine::volatility() const {
return process_->blackVolatility()->blackVol(residualTime(), strike());
}
Real AnalyticContinuousPartialFixedLookbackEngine::stdDeviation() const {
return volatility() * std::sqrt(residualTime());
}
Rate AnalyticContinuousPartialFixedLookbackEngine::riskFreeRate() const {
return process_->riskFreeRate()->zeroRate(residualTime(), Continuous,
NoFrequency);
}
DiscountFactor AnalyticContinuousPartialFixedLookbackEngine::riskFreeDiscount()
const {
return process_->riskFreeRate()->discount(residualTime());
}
Rate AnalyticContinuousPartialFixedLookbackEngine::dividendYield() const {
return process_->dividendYield()->zeroRate(residualTime(),
Continuous, NoFrequency);
}
DiscountFactor AnalyticContinuousPartialFixedLookbackEngine::dividendDiscount()
const {
return process_->dividendYield()->discount(residualTime());
}
Time AnalyticContinuousPartialFixedLookbackEngine::lookbackPeriodStartTime() const {
return process_->time(arguments_.lookbackPeriodStart);
}
Real AnalyticContinuousPartialFixedLookbackEngine::A(Real eta) const {
bool differentStartOfLookback = lookbackPeriodStartTime() != residualTime();
Real carry = riskFreeRate() - dividendYield();
Volatility vol = volatility();
Real x = 2.0*carry/(vol*vol);
Real s = underlying()/strike();
Real ls = std::log(s);
Real d1 = ls/stdDeviation() + 0.5*(x+1.0)*stdDeviation();
Real d2 = d1 - stdDeviation();
Real e1 = 0, e2 = 0;
if (differentStartOfLookback)
{
e1 = (carry + vol * vol / 2) * (residualTime() - lookbackPeriodStartTime()) / (vol * std::sqrt(residualTime() - lookbackPeriodStartTime()));
e2 = e1 - vol * std::sqrt(residualTime() - lookbackPeriodStartTime());
}
Real f1 = (ls + (carry + vol * vol / 2) * lookbackPeriodStartTime()) / (vol * std::sqrt(lookbackPeriodStartTime()));
Real f2 = f1 - vol * std::sqrt(lookbackPeriodStartTime());
Real n1 = f_(eta*d1);
Real n2 = f_(eta*d2);
BivariateCumulativeNormalDistributionWe04DP cnbn1(-1), cnbn2(0), cnbn3(0);
if (differentStartOfLookback) {
cnbn1 = BivariateCumulativeNormalDistributionWe04DP (-std::sqrt(lookbackPeriodStartTime() / residualTime()));
cnbn2 = BivariateCumulativeNormalDistributionWe04DP (std::sqrt(1 - lookbackPeriodStartTime() / residualTime()));
cnbn3 = BivariateCumulativeNormalDistributionWe04DP (-std::sqrt(1 - lookbackPeriodStartTime() / residualTime()));
}
Real n3 = cnbn1(eta*(d1-x*stdDeviation()), eta*(-f1+2.0* carry * std::sqrt(lookbackPeriodStartTime()) / vol));
Real n4 = cnbn2(eta*e1, eta*d1);
Real n5 = cnbn3(-eta*e1, eta*d1);
Real n6 = cnbn1(eta*f2, -eta*d2);
Real n7 = f_(eta*f1);
Real n8 = f_(-eta*e2);
Real pow_s = std::pow(s, -x);
Real carryDiscount = std::exp(-carry * (residualTime() - lookbackPeriodStartTime()));
return eta*(underlying() * dividendDiscount() * n1
- strike() * riskFreeDiscount() * n2
+ underlying() * riskFreeDiscount() / x
* (-pow_s * n3 + dividendDiscount() / riskFreeDiscount() * n4)
- underlying() * dividendDiscount() * n5
- strike() * riskFreeDiscount() * n6
+ carryDiscount * dividendDiscount()
* (1 - 0.5 * vol * vol / carry) *
underlying() * n7 * n8);
}
}
|