1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Warren Chou
Copyright (C) 2007 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/exercise.hpp>
#include <ql/pricingengines/lookback/analyticcontinuouspartialfloatinglookback.hpp>
#include <utility>
namespace QuantLib {
AnalyticContinuousPartialFloatingLookbackEngine::
AnalyticContinuousPartialFloatingLookbackEngine(
ext::shared_ptr<GeneralizedBlackScholesProcess> process)
: process_(std::move(process)) {
registerWith(process_);
}
void AnalyticContinuousPartialFloatingLookbackEngine::calculate() const {
ext::shared_ptr<FloatingTypePayoff> payoff =
ext::dynamic_pointer_cast<FloatingTypePayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "Non-floating payoff given");
QL_REQUIRE(process_->x0() > 0.0, "negative or null underlying");
switch (payoff->optionType()) {
case Option::Call:
results_.value = A(1);
break;
case Option::Put:
results_.value = A(-1);
break;
default:
QL_FAIL("Unknown type");
}
}
Real AnalyticContinuousPartialFloatingLookbackEngine::underlying() const {
return process_->x0();
}
Time AnalyticContinuousPartialFloatingLookbackEngine::residualTime() const {
return process_->time(arguments_.exercise->lastDate());
}
Volatility AnalyticContinuousPartialFloatingLookbackEngine::volatility() const {
return process_->blackVolatility()->blackVol(residualTime(), minmax());
}
Real AnalyticContinuousPartialFloatingLookbackEngine::stdDeviation() const {
return volatility() * std::sqrt(residualTime());
}
Rate AnalyticContinuousPartialFloatingLookbackEngine::riskFreeRate() const {
return process_->riskFreeRate()->zeroRate(residualTime(), Continuous,
NoFrequency);
}
DiscountFactor AnalyticContinuousPartialFloatingLookbackEngine::riskFreeDiscount()
const {
return process_->riskFreeRate()->discount(residualTime());
}
Rate AnalyticContinuousPartialFloatingLookbackEngine::dividendYield() const {
return process_->dividendYield()->zeroRate(residualTime(),
Continuous, NoFrequency);
}
DiscountFactor AnalyticContinuousPartialFloatingLookbackEngine::dividendDiscount()
const {
return process_->dividendYield()->discount(residualTime());
}
Real AnalyticContinuousPartialFloatingLookbackEngine::minmax() const {
return arguments_.minmax;
}
Real AnalyticContinuousPartialFloatingLookbackEngine::lambda() const {
return arguments_.lambda;
}
Time AnalyticContinuousPartialFloatingLookbackEngine::lookbackPeriodEndTime() const {
return process_->time(arguments_.lookbackPeriodEnd);
}
Real AnalyticContinuousPartialFloatingLookbackEngine::A(Real eta) const {
bool fullLookbackPeriod = lookbackPeriodEndTime() == residualTime();
Real carry = riskFreeRate() - dividendYield();
Volatility vol = volatility();
Real x = 2.0*carry/(vol*vol);
Real s = underlying()/minmax();
Real ls = std::log(s);
Real d1 = ls/stdDeviation() + 0.5*(x+1.0)*stdDeviation();
Real d2 = d1 - stdDeviation();
Real e1 = 0, e2 = 0;
if (!fullLookbackPeriod)
{
e1 = (carry + vol * vol / 2) * (residualTime() - lookbackPeriodEndTime()) / (vol * std::sqrt(residualTime() - lookbackPeriodEndTime()));
e2 = e1 - vol * std::sqrt(residualTime() - lookbackPeriodEndTime());
}
Real f1 = (ls + (carry + vol * vol / 2) * lookbackPeriodEndTime()) / (vol * std::sqrt(lookbackPeriodEndTime()));
Real f2 = f1 - vol * std::sqrt(lookbackPeriodEndTime());
Real l1 = std::log(lambda()) / vol;
Real g1 = l1 / std::sqrt(residualTime());
Real n1 = f_(eta*(d1 - g1));
Real n2 = f_(eta*(d2 - g1));
BivariateCumulativeNormalDistributionWe04DP cnbn1(1), cnbn2(0), cnbn3(-1);
if (!fullLookbackPeriod) {
cnbn1 = BivariateCumulativeNormalDistributionWe04DP (std::sqrt(lookbackPeriodEndTime() / residualTime()));
cnbn2 = BivariateCumulativeNormalDistributionWe04DP (-std::sqrt(1 - lookbackPeriodEndTime() / residualTime()));
cnbn3 = BivariateCumulativeNormalDistributionWe04DP (-std::sqrt(lookbackPeriodEndTime() / residualTime()));
}
Real n3 = cnbn1(eta*(-f1+2.0* carry * std::sqrt(lookbackPeriodEndTime()) / vol), eta*(-d1+x*stdDeviation()-g1));
Real n4 = 0, n5 = 0, n6 = 0, n7 = 0;
if (!fullLookbackPeriod)
{
Real g2 = l1 / std::sqrt(residualTime() - lookbackPeriodEndTime());
n4 = cnbn2(-eta*(d1+g1), eta*(e1 + g2));
n5 = cnbn2(-eta*(d1-g1), eta*(e1 - g2));
n6 = cnbn3(eta*-f2, eta*(d2 - g1));
n7 = f_(eta*(e2 - g2));
}
else
{
n4 = f_(-eta*(d1+g1));
}
Real n8 = f_(-eta*f1);
Real pow_s = std::pow(s, -x);
Real pow_l = std::pow(lambda(), x);
if (!fullLookbackPeriod)
{
return eta*(underlying() * dividendDiscount() * n1 -
lambda() * minmax() * riskFreeDiscount() * n2 +
underlying() * riskFreeDiscount() * lambda() / x *
(pow_s * n3 - dividendDiscount() / riskFreeDiscount() * pow_l * n4)
+ underlying() * dividendDiscount() * n5 +
riskFreeDiscount() * lambda() * minmax() * n6 -
std::exp(-carry * (residualTime() - lookbackPeriodEndTime())) *
dividendDiscount() * (1 + 0.5 * vol * vol / carry) * lambda() *
underlying() * n7 * n8);
}
else
{
//Simpler calculation
return eta*(underlying() * dividendDiscount() * n1 -
lambda() * minmax() * riskFreeDiscount() * n2 +
underlying() * riskFreeDiscount() * lambda() / x *
(pow_s * n3 - dividendDiscount() / riskFreeDiscount() * pow_l * n4));
}
}
}
|