1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2007 StatPro Italia srl
Copyright (C) 2023 Klaus Spanderen
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#include <ql/any.hpp>
#include <ql/exercise.hpp>
#include <ql/math/functional.hpp>
#include <ql/math/comparison.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/pricingengines/vanilla/bjerksundstenslandengine.hpp>
#include <utility>
#include <cmath>
namespace QuantLib {
namespace {
CumulativeNormalDistribution cumNormalDist;
Real phi(Real S, Real gamma, Real H, Real I,
Real rT, Real bT, Real variance) {
Real lambda = (-rT + gamma * bT + 0.5 * gamma * (gamma - 1.0)
* variance);
Real d = -(std::log(S / H) + (bT + (gamma - 0.5) * variance) )
/ std::sqrt(variance);
Real kappa = 2.0 * bT / variance + (2.0 * gamma - 1.0);
return std::exp(lambda) * (cumNormalDist(d)
- std::pow((I / S), kappa) *
cumNormalDist(d - 2.0 * std::log(I/S) / std::sqrt(variance)));
}
Real phi_S(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
const Real lsh = std::log(S/H);
const Real lis = std::log(I/S);
const Real sv = std::sqrt(v);
return std::exp(bT*gamma - rT + ((-1 +gamma)*gamma*v)/2.)*((-(std::pow(I/S,2*(gamma + bT/v))/(std::exp(squared(2*bT - v + 2*gamma*v + 4*lis + 2*lsh)/(8.*v))*I))- 1/(std::exp(squared(2*bT - v + 2*gamma*v + 2*lsh)/(8.*v))*S))/(M_SQRT2*M_SQRTPI*sv) +(std::pow(I/S,2*(gamma + bT/v))*(2*bT + (-1 + 2*gamma)*v)*std::erfc((2*bT- v + 2*gamma*v + 4*lis + 2*lsh)/(2.*M_SQRT2*sv)))/(2.*I*v));
}
Real phi_SS(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
const Real lsh = std::log(S/H);
const Real lis = std::log(I/S);
const Real sv = std::sqrt(v);
const Real ex = std::exp(squared(2*bT - v + 2*gamma*v + 4*lis + 2*lsh)/(8.*v));
const Real ey = std::exp(squared(2*bT + (-1 + 2*gamma)*v + 2*lsh)/(8.*v));
return (std::exp(bT*gamma - rT + ((-1 +gamma)*gamma*v)/2.)*((M_SQRT2*I*v*sv)/ey +(2*M_SQRT2*std::pow(I/S,2*(gamma + bT/v))*S*sv*(2*bT +(-1 + 2*gamma)*v))/ex -2*std::sqrt(M_PI)*std::pow(I/S,2*(gamma + bT/v))*S*(bT +gamma*v)*(2*bT + (-1 + 2*gamma)*v)*std::erfc((2*bT - v + 2*gamma*v +4*lis + 2*lsh)/(2.*M_SQRT2*sv)) +(M_SQRT2*I*sv*(bT + (-0.5 + gamma)*v +lsh))/ey - (std::pow(I/S,2*(gamma + bT/v))*S*sv*(2*bT - 3*v + 2*gamma*v + 4*lis +2*lsh))/(M_SQRT2*ex)))/(2.*I*M_SQRTPI*squared(S*v));
}
Real phi_gamma(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
const Real lsh = std::log(S/H);
const Real lis = std::log(I/S);
const Real sv = std::sqrt(v);
return std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2)*(((-std::exp(-squared(2*bT - v + 2*gamma*v +2*lsh)/(8*v)) + std::pow(I/S,-1 + 2*gamma +(2*bT)/v)/std::exp(squared(2*bT - v + 2*gamma*v + 4*lis +2*lsh)/(8*v)))*sv)/(M_SQRT2*M_SQRTPI) + ((2*bT+ (-1 + 2*gamma)*v)*std::erfc((2*bT + (-1 + 2*gamma)*v +2*lsh)/(2.*M_SQRT2*sv)))/4. -(std::pow(I/S,-1 + 2*gamma + (2*bT)/v)*std::erfc((2*bT - v + 2*gamma*v + 4*lis +2*lsh)/(2.*M_SQRT2*sv))*(2*bT + (-1 + 2*gamma)*v + 4*lis))/4.);
}
Real phi_H(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
const Real lsh = std::log(S/H);
return (std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2.)*(I/std::exp(squared(2*bT - v + 2*gamma*v + 2*lsh)/(8.*v))- (std::pow(I/S,2*(gamma + bT/v))*S)/std::exp(squared(2*bT - v + 2*gamma*v + 4*std::log(I/S) + 2*lsh)/(8.*v))))/(H*I*std::sqrt(2*M_PI)*std::sqrt(v));
}
Real phi_I(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
const Real lsh = std::log(S/H);
const Real lis = std::log(I/S);
const Real sv = std::sqrt(v);
return (std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2.)*std::pow(I/S,2*(gamma + bT/v))*S*((2*std::sqrt(2/M_PI))/(std::exp(squared(2*bT - v + 2*gamma*v + 4*lis + 2*lsh)/(8.*v))*sv) + (1 - 2*gamma - (2*bT)/v)*std::erfc((2*bT - v + 2*gamma*v + 4*lis +2*lsh)/(2.*M_SQRT2*sv))))/(2.*I*I);
}
Real phi_rt(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
const Real lsh = std::log(S/H);
return (std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2.)*(-(I*std::erfc((2*bT- v + 2*gamma*v + 2*lsh)/(2.*std::sqrt(2*v)))) +std::pow(I/S,2*(gamma + bT/v))*S*std::erfc((2*bT - v + 2*gamma*v + 4*std::log(I/S) +2*lsh)/(2.*std::sqrt(2*v)))))/(2.*I);
}
Real phi_bt(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
const Real lsh = std::log(S/H);
const Real lis = std::log(I/S);
const Real sv = std::sqrt(v);
return (std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2.)*(M_SQRT2*(-(I/std::exp(squared(2*bT - v +2*gamma*v + 2*lsh)/(8.*v))) + (std::pow(I/S,2*(gamma +bT/v))*S)/std::exp(squared(2*bT - v + 2*gamma*v + 4*lis +2*lsh)/(8.*v)))*sv + gamma*I*std::sqrt(M_PI)*v*std::erfc((2*bT - v + 2*gamma*v +2*lsh)/(2.*M_SQRT2*sv)) - M_SQRTPI*std::pow(I/S,2*(gamma + bT/v))*S*std::erfc((2*bT - v +2*gamma*v + 4*lis + 2*lsh)/(2.*M_SQRT2*sv))*(gamma*v +2*lis)))/(2.*I*std::sqrt(M_PI)*v);
}
Real phi_v(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
const Real lsh = std::log(S/H);
const Real lis = std::log(I/S);
const Real sv = std::sqrt(v);
const Real er = std::erfc((2*bT - v + 2*gamma*v + 4*lis + 2*lsh)/(2.*M_SQRT2*sv));
return (std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2.)*(((-1 +gamma)*gamma*(I*std::erfc((2*bT - v + 2*gamma*v + 2*lsh)/(2.*M_SQRT2*sv)) -std::pow(I/S,2*(gamma + bT/v))*S*er))/(2.*I) +(2*bT*std::pow(I/S,-1 + 2*gamma + (2*bT)/v)*er*lis)/(v*v)+ (2*bT + v - 2*gamma*v + 2*lsh)/(2.*std::exp(std::pow(2*bT + (-1 + 2*gamma)*v +2*lsh,2)/(8.*v))*M_SQRT2*M_SQRTPI*v*sv) -(std::pow(I/S,-1 + 2*gamma + (2*bT)/v)*(2*bT + v - 2*gamma*v +4*lis + 2*lsh))/(2.*std::exp(squared(2*bT - v + 2*gamma*v + 4*lis + 2*lsh)/(8.*v))*M_SQRT2*M_SQRTPI*v*sv)))/2.;
}
}
BjerksundStenslandApproximationEngine::BjerksundStenslandApproximationEngine(
ext::shared_ptr<GeneralizedBlackScholesProcess> process)
: process_(std::move(process)) {
registerWith(process_);
}
OneAssetOption::results
BjerksundStenslandApproximationEngine::europeanCallResults(
Real S, Real X, Real rfD, Real dD, Real variance) const {
OneAssetOption::results results;
const Real forwardPrice = S * dD/rfD;
const BlackCalculator black(
Option::Call, X, forwardPrice, std::sqrt(variance), rfD);
results.value = black.value();
results.delta = black.delta(S);
results.gamma = black.gamma(S);
const DayCounter rfdc = process_->riskFreeRate()->dayCounter();
const DayCounter divdc = process_->dividendYield()->dayCounter();
const DayCounter voldc = process_->blackVolatility()->dayCounter();
Time t =
rfdc.yearFraction(process_->riskFreeRate()->referenceDate(),
arguments_.exercise->lastDate());
results.rho = black.rho(t);
t = divdc.yearFraction(process_->dividendYield()->referenceDate(),
arguments_.exercise->lastDate());
results.dividendRho = black.dividendRho(t);
t = voldc.yearFraction(process_->blackVolatility()->referenceDate(),
arguments_.exercise->lastDate());
results.vega = black.vega(t);
results.theta = black.theta(S, t);
results.thetaPerDay = black.thetaPerDay(S, t);
results.strikeSensitivity = black.strikeSensitivity();
results.additionalResults["strikeGamma"] = Real(results.gamma*squared(S/X));
results.additionalResults["exerciseType"] = std::string("European");
return results;
}
OneAssetOption::results
BjerksundStenslandApproximationEngine::immediateExercise(Real S, Real X) const {
OneAssetOption::results results;
results.value = std::max(0.0, S - X);
results.delta = (S >= X)? 1.0 : 0.0;
results.gamma = 0.0;
results.rho = 0.0;
results.dividendRho = 0.0;
results.vega = 0.0;
results.theta = 0.0;
results.thetaPerDay = 0.0;
results.strikeSensitivity = -results.delta;
results.additionalResults["strikeGamma"] = Real(0.0);
results.additionalResults["exerciseType"] = std::string("Immediate");
return results;
}
OneAssetOption::results
BjerksundStenslandApproximationEngine::americanCallApproximation(
Real S, Real X, Real rfD, Real dD, Real variance) const {
const OneAssetOption::results europeanResults
= europeanCallResults(S, X, rfD, dD, variance);
OneAssetOption::results results;
const Real bT = std::log(dD/rfD);
const Real rT = std::log(1.0/rfD);
const Real beta = (0.5 - bT/variance) +
std::sqrt(squared(bT/variance - 0.5) + 2.0 * rT/variance);
const Real BInfinity = beta / (beta - 1.0) * X;
const Real B0 = (bT == rT) ? X : std::max(X, rT / (rT - bT) * X);
const Real ht = -(bT + 2.0*std::sqrt(variance)) * B0 / (BInfinity - B0);
const Real I = B0 + (BInfinity - B0) * (1 - std::exp(ht));
const Real fwd = S * dD/rfD;
const Real q = std::log(I/fwd)/std::sqrt(variance);
if (S >= I) {
results = immediateExercise(S, X);
}
else if (q > 12.5) {
// We have a run away exercise boundary. It is numerically
// more accurate to use the Greeks of the European engine.
results = europeanResults;
}
else {
const Real phi_S_beta_I_I_rT_bT_v
= phi(S, beta, I, I, rT, bT, variance);
const Real phi_S_1_I_I_rT_bT_v
= phi(S, 1.0, I, I, rT, bT, variance);
const Real phi_S_1_X_I_rT_bT_V
= phi(S, 1.0, X, I, rT, bT, variance);
results.value = (I - X) * std::pow(S/I, beta)
*(1 - phi_S_beta_I_I_rT_bT_v)
+ S * phi_S_1_I_I_rT_bT_v
- S * phi_S_1_X_I_rT_bT_V
- X * phi(S, 0.0, I, I, rT, bT, variance)
+ X * phi(S, 0.0, X, I, rT, bT, variance);
const Real phi_S_S_beta_I_I_rT_bT_v
= phi_S(S, beta, I, I, rT, bT, variance);
const Real phi_S_S_1_I_I_rT_bT_v
= phi_S(S, 1.0, I, I, rT, bT, variance);
const Real phi_S_S_1_X_I_rT_bT_v
= phi_S(S, 1.0, X, I, rT, bT, variance);
results.delta = (I - X) * std::pow(S/I, beta-1)*beta/I
* (1 - phi_S_beta_I_I_rT_bT_v)
- (I - X) * std::pow(S/I, beta)
* phi_S_S_beta_I_I_rT_bT_v
+ phi_S_1_I_I_rT_bT_v
+ S*phi_S_S_1_I_I_rT_bT_v
- phi_S_1_X_I_rT_bT_V
- S*phi_S_S_1_X_I_rT_bT_v
- X*phi_S(S, 0.0, I, I, rT, bT, variance)
+ X*phi_S(S, 0.0, X, I, rT, bT, variance);
const Date refDate = process_->riskFreeRate()->referenceDate();
const Date exerciseDate = arguments_.exercise->lastDate();
const DayCounter qdc = process_->dividendYield()->dayCounter();
const Time tq = qdc.yearFraction(refDate, exerciseDate);
const Real betaDq = tq*(1/variance
- 1/(2*std::sqrt(squared(bT/variance - 0.5) + 2.0 * rT/variance))
* 2*(bT/variance-0.5)/variance);
const Real BInfinityDq = -X/squared(beta-1.0)*betaDq;
const Real B0Dq = (dD <= rfD) ? Real(0.0)
: Real(X*std::log(rfD)/squared(std::log(dD))*tq);
const Real htDq = tq * B0 / (BInfinity - B0)
- (bT + 2.0*std::sqrt(variance))
*(B0Dq*(BInfinity - B0) - B0*(BInfinityDq - B0Dq))
/squared(BInfinity - B0);
const Real IDq = B0Dq + (BInfinityDq - B0Dq) * (1 - std::exp(ht))
- (BInfinity - B0) * std::exp(ht)*htDq;
const Real phi_H_S_beta_I_I_rT_bT_v
= phi_H(S, beta, I, I, rT, bT, variance);
const Real phi_I_S_beta_I_I_rT_bT_v
= phi_I(S, beta, I, I, rT, bT, variance);
const Real phi_gamma_S_beta_I_I_rT_bT_v
= phi_gamma(S, beta, I, I, rT, bT, variance);
const Real phi_bt_S_beta_I_I_rT_bT_v
= phi_bt(S, beta, I, I, rT, bT, variance);
const Real phi_H_S_1_I_I_rT_bT_v
= phi_H(S, 1.0, I, I, rT, bT, variance);
const Real phi_I_S_1_I_I_rT_bT_v
= phi_I(S, 1.0, I, I, rT, bT, variance);
const Real phi_bt_S_1_I_I_rT_bT_v
= phi_bt(S, 1.0, I, I, rT, bT, variance);
const Real phi_I_S_1_X_I_rT_bT_v
= phi_I(S, 1.0, X, I, rT, bT, variance);
const Real phi_bt_S_1_X_I_rT_bT_v
= phi_bt(S, 1.0, X, I, rT, bT, variance);
const Real phi_H_S_0_I_I_rT_bT_v
= phi_H(S, 0.0, I, I, rT, bT, variance);
const Real phi_I_S_0_I_I_rT_bT_v
= phi_I(S, 0.0, I, I, rT, bT, variance);
const Real phi_bt_S_0_I_I_rT_bT_v
= phi_bt(S, 0.0, I, I, rT, bT, variance);
const Real phi_I_S_0_X_I_rT_bT_v
= phi_I(S, 0.0, X, I, rT, bT, variance);
const Real phi_bt_S_0_X_I_rT_bT_v
= phi_bt(S, 0.0, X, I, rT, bT, variance);
results.dividendRho =
(IDq*std::pow(S/I, beta)
+ (I-X)*std::pow(S/I, beta)*(betaDq*std::log(S/I) - beta*1/I*IDq))
* (1 - phi_S_beta_I_I_rT_bT_v)
- (I - X) * std::pow(S/I, beta)
*( phi_H_S_beta_I_I_rT_bT_v*IDq
+phi_I_S_beta_I_I_rT_bT_v*IDq
+phi_gamma_S_beta_I_I_rT_bT_v*betaDq
-phi_bt_S_beta_I_I_rT_bT_v*tq)
+ S*( phi_H_S_1_I_I_rT_bT_v*IDq
+ phi_I_S_1_I_I_rT_bT_v*IDq
- phi_bt_S_1_I_I_rT_bT_v*tq)
- S*( phi_I_S_1_X_I_rT_bT_v*IDq
- phi_bt_S_1_X_I_rT_bT_v*tq)
- X*( phi_H_S_0_I_I_rT_bT_v*IDq
+ phi_I_S_0_I_I_rT_bT_v*IDq
- phi_bt_S_0_I_I_rT_bT_v*tq)
+ X*( phi_I_S_0_X_I_rT_bT_v*IDq
- phi_bt_S_0_X_I_rT_bT_v*tq);
const DayCounter rdc = process_->riskFreeRate()->dayCounter();
const Time tr = rdc.yearFraction(refDate, exerciseDate);
const Real betaDr = tr*(-1/variance
+ 1/(2*std::sqrt(squared(bT/variance - 0.5) + 2.0 * rT/variance))
* 2*((bT/variance-0.5)/variance + 1/variance));
const Real BInfinityDr = -X/squared(beta-1.0)*betaDr;
const Real B0Dr = (dD <= rfD) ? Real(0) : Real(-X*tr/std::log(dD));
const Real htDr = -tr * B0 / (BInfinity - B0)
- (bT + 2.0*std::sqrt(variance))
*(B0Dr*(BInfinity - B0) - B0*(BInfinityDr - B0Dr))
/squared(BInfinity - B0);
const Real IDr = B0Dr + (BInfinityDr - B0Dr) * (1 - std::exp(ht))
- (BInfinity - B0) * std::exp(ht)*htDr;
results.rho =
(IDr*std::pow(S/I, beta)
+ (I-X)*std::pow(S/I, beta)*(betaDr*std::log(S/I) - beta/I*IDr))
* (1 - phi_S_beta_I_I_rT_bT_v)
- (I - X) * std::pow(S/I, beta)
*( phi_H_S_beta_I_I_rT_bT_v*IDr
+ phi_I_S_beta_I_I_rT_bT_v*IDr
+ phi_gamma_S_beta_I_I_rT_bT_v*betaDr
+ phi_rt(S, beta, I, I, rT, bT, variance)*tr
+ phi_bt_S_beta_I_I_rT_bT_v*tr)
+ S*( phi_H_S_1_I_I_rT_bT_v*IDr
+ phi_I_S_1_I_I_rT_bT_v*IDr
+ phi_rt(S, 1.0, I, I, rT, bT, variance)*tr
+ phi_bt_S_1_I_I_rT_bT_v*tr)
- S*( phi_I_S_1_X_I_rT_bT_v*IDr
+ phi_rt(S, 1.0, X, I, rT, bT, variance)*tr
+ phi_bt_S_1_X_I_rT_bT_v*tr)
- X*( phi_H_S_0_I_I_rT_bT_v*IDr
+ phi_I_S_0_I_I_rT_bT_v*IDr
+ phi_rt(S, 0.0, I, I, rT, bT, variance)*tr
+ phi_bt_S_0_I_I_rT_bT_v*tr)
+ X*( phi_I_S_0_X_I_rT_bT_v*IDr
+ phi_rt(S, 0.0, X, I, rT, bT, variance)*tr
+ phi_bt_S_0_X_I_rT_bT_v*tr);
const Real beta = (0.5 - bT/variance) +
std::sqrt(squared(bT/variance - 0.5) + 2.0 * rT/variance);
const DayCounter vdc = process_->blackVolatility()->dayCounter();
const Time tv = vdc.yearFraction(refDate, exerciseDate);
const Real varianceDv = 2*std::sqrt(variance*tv);
const Real betaDv = bT/squared(variance)*varianceDv +
- 1/(2*std::sqrt(squared(bT/variance - 0.5) + 2.0 * rT/variance))
*( 2*(bT/variance - 0.5)*bT*varianceDv/squared(variance)
+2*rT/squared(variance)*varianceDv );
const Real BInfinityDv = -X/squared(beta-1.0)*betaDv;
const Real htDv = -1/std::sqrt(variance)*varianceDv*B0/(BInfinity-B0)
+ (bT + 2*std::sqrt(variance))*B0/squared(BInfinity-B0)*BInfinityDv;
const Real IDv = BInfinityDv*(1-std::exp(ht))
- (BInfinity-B0)*std::exp(ht)*htDv;
results.vega =
(IDv*std::pow(S/I, beta)
+ (I-X)*std::pow(S/I, beta)*(betaDv*std::log(S/I) - beta/I*IDv))
* (1 - phi_S_beta_I_I_rT_bT_v)
- (I - X) * std::pow(S/I, beta)
*( phi_H_S_beta_I_I_rT_bT_v*IDv
+ phi_I_S_beta_I_I_rT_bT_v*IDv
+ phi_gamma_S_beta_I_I_rT_bT_v*betaDv
+ phi_v(S, beta, I, I, rT, bT, variance)*varianceDv)
+ S*( phi_H_S_1_I_I_rT_bT_v*IDv
+ phi_I_S_1_I_I_rT_bT_v*IDv
+ phi_v(S, 1.0, I, I, rT, bT, variance)*varianceDv)
- S*( phi_I_S_1_X_I_rT_bT_v*IDv
+ phi_v(S, 1.0, X, I, rT, bT, variance)*varianceDv)
- X*( phi_H_S_0_I_I_rT_bT_v*IDv
+ phi_I_S_0_I_I_rT_bT_v*IDv
+ phi_v(S, 0.0, I, I, rT, bT, variance)*varianceDv)
+ X*( phi_I_S_0_X_I_rT_bT_v*IDv
+ phi_v(S, 0.0, X, I, rT, bT, variance)*varianceDv);
results.gamma =
(I - X) * std::pow(S/I, beta-2)*beta*(beta-1)/squared(I)
* (1 - phi_S_beta_I_I_rT_bT_v)
- 2*(I - X) * std::pow(S/I, beta-1)*beta/I
*phi_S_S_beta_I_I_rT_bT_v
- (I - X) * std::pow(S/I, beta)
* phi_SS(S, beta, I, I, rT, bT, variance)
+ 2*phi_S_S_1_I_I_rT_bT_v
+ S*phi_SS(S, 1.0, I, I, rT, bT, variance)
- 2*phi_S_S_1_X_I_rT_bT_v
- S*phi_SS(S, 1.0, X, I, rT, bT, variance)
- X*phi_SS(S, 0.0, I, I, rT, bT, variance)
+ X*phi_SS(S, 0.0, X, I, rT, bT, variance);
const Volatility vol = std::sqrt(variance/tv);
const Date tomorrow = refDate + Period(1, Days);
const Time dtq = qdc.yearFraction(refDate, exerciseDate)
- qdc.yearFraction(tomorrow, exerciseDate);
const Time dtr = rdc.yearFraction(refDate, exerciseDate)
- rdc.yearFraction(tomorrow, exerciseDate);
const Time dtv = vdc.yearFraction(refDate, exerciseDate)
- vdc.yearFraction(tomorrow, exerciseDate);
results.thetaPerDay = -(0.5*results.vega*vol/tv*dtv
+ results.rho*rT/(tr*tr)*dtr + results.dividendRho*(rT-bT)/(tq*tq)*dtq);
results.theta = 365*results.thetaPerDay;
results.strikeSensitivity = results.value/X - S/X*results.delta;
results.additionalResults["strikeGamma"] = Real(results.gamma*squared(S/X));
results.additionalResults["exerciseType"] = std::string("American");
}
// check if European engine gives higher NPV
if (results.value < europeanResults.value) {
results = europeanResults;
}
return results;
}
void BjerksundStenslandApproximationEngine::calculate() const {
QL_REQUIRE(arguments_.exercise->type() == Exercise::American,
"not an American Option");
ext::shared_ptr<AmericanExercise> ex =
ext::dynamic_pointer_cast<AmericanExercise>(arguments_.exercise);
QL_REQUIRE(ex, "non-American exercise given");
QL_REQUIRE(!ex->payoffAtExpiry(),
"payoff at expiry not handled");
ext::shared_ptr<PlainVanillaPayoff> payoff =
ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
QL_REQUIRE(payoff, "non-plain payoff given");
Real variance =
process_->blackVolatility()->blackVariance(ex->lastDate(),
payoff->strike());
DiscountFactor dividendDiscount =
process_->dividendYield()->discount(ex->lastDate());
DiscountFactor riskFreeDiscount =
process_->riskFreeRate()->discount(ex->lastDate());
Real spot = process_->stateVariable()->value();
QL_REQUIRE(spot > 0.0, "negative or null underlying given");
Real strike = payoff->strike();
if (payoff->optionType()==Option::Put) {
// use put-call symmetry
std::swap(spot, strike);
std::swap(riskFreeDiscount, dividendDiscount);
payoff = ext::make_shared<PlainVanillaPayoff>(
Option::Call, strike);
}
if (dividendDiscount > 1.0 && riskFreeDiscount > dividendDiscount)
QL_FAIL("double-boundary case r<q<0 for a call given");
if (dividendDiscount >= 1.0 && dividendDiscount >= riskFreeDiscount) {
results_ = europeanCallResults(
spot, strike, riskFreeDiscount, dividendDiscount, variance);
} else {
// early exercise can be optimal - use approximation
results_ = americanCallApproximation(
spot, strike, riskFreeDiscount, dividendDiscount, variance);
}
// check if immediate exercise gives higher NPV
if (results_.value < (spot - strike)*(1+10*QL_EPSILON) ) {
results_ = immediateExercise(spot, strike);
}
if (ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff)
->optionType() == Option::Put) {
std::swap(results_.delta, results_.strikeSensitivity);
Real tmp = results_.gamma;
results_.gamma =
ext::any_cast<Real>(results_.additionalResults["strikeGamma"]);
results_.additionalResults["strikeGamma"] = tmp;
std::swap(results_.rho, results_.dividendRho);
Time tr = process_->riskFreeRate()->dayCounter().yearFraction(
process_->riskFreeRate()->referenceDate(),
arguments_.exercise->lastDate());
Time tq = process_->dividendYield()->dayCounter().yearFraction(
process_->dividendYield()->referenceDate(),
arguments_.exercise->lastDate());
results_.rho *= tr/tq;
results_.dividendRho *= tq/tr;
}
}
}
|