File: bjerksundstenslandengine.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (507 lines) | stat: -rw-r--r-- 24,865 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 Ferdinando Ametrano
 Copyright (C) 2007 StatPro Italia srl
 Copyright (C) 2023 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/any.hpp>
#include <ql/exercise.hpp>
#include <ql/math/functional.hpp>
#include <ql/math/comparison.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/pricingengines/vanilla/bjerksundstenslandengine.hpp>
#include <utility>
#include <cmath>

namespace QuantLib {

    namespace {

        CumulativeNormalDistribution cumNormalDist;
        Real phi(Real S, Real gamma, Real H, Real I,
                 Real rT, Real bT, Real variance) {

            Real lambda = (-rT + gamma * bT + 0.5 * gamma * (gamma - 1.0)
                * variance);
            Real d = -(std::log(S / H) + (bT + (gamma - 0.5) * variance) )
                / std::sqrt(variance);
            Real kappa = 2.0 * bT / variance + (2.0 * gamma - 1.0);
            return std::exp(lambda) * (cumNormalDist(d)
                - std::pow((I / S), kappa) *
                cumNormalDist(d - 2.0 * std::log(I/S) / std::sqrt(variance)));
        }

        Real phi_S(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
            const Real lsh = std::log(S/H);
            const Real lis = std::log(I/S);
            const Real sv = std::sqrt(v);

            return std::exp(bT*gamma - rT + ((-1 +gamma)*gamma*v)/2.)*((-(std::pow(I/S,2*(gamma + bT/v))/(std::exp(squared(2*bT - v + 2*gamma*v + 4*lis + 2*lsh)/(8.*v))*I))- 1/(std::exp(squared(2*bT - v + 2*gamma*v + 2*lsh)/(8.*v))*S))/(M_SQRT2*M_SQRTPI*sv) +(std::pow(I/S,2*(gamma + bT/v))*(2*bT + (-1 + 2*gamma)*v)*std::erfc((2*bT- v + 2*gamma*v + 4*lis + 2*lsh)/(2.*M_SQRT2*sv)))/(2.*I*v));
        }

        Real phi_SS(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
            const Real lsh = std::log(S/H);
            const Real lis = std::log(I/S);
            const Real sv = std::sqrt(v);
            const Real ex = std::exp(squared(2*bT - v + 2*gamma*v + 4*lis + 2*lsh)/(8.*v));
            const Real ey = std::exp(squared(2*bT + (-1 + 2*gamma)*v + 2*lsh)/(8.*v));

            return (std::exp(bT*gamma - rT + ((-1 +gamma)*gamma*v)/2.)*((M_SQRT2*I*v*sv)/ey +(2*M_SQRT2*std::pow(I/S,2*(gamma + bT/v))*S*sv*(2*bT +(-1 + 2*gamma)*v))/ex -2*std::sqrt(M_PI)*std::pow(I/S,2*(gamma + bT/v))*S*(bT +gamma*v)*(2*bT + (-1 + 2*gamma)*v)*std::erfc((2*bT - v + 2*gamma*v +4*lis + 2*lsh)/(2.*M_SQRT2*sv)) +(M_SQRT2*I*sv*(bT + (-0.5 + gamma)*v +lsh))/ey - (std::pow(I/S,2*(gamma + bT/v))*S*sv*(2*bT - 3*v + 2*gamma*v + 4*lis +2*lsh))/(M_SQRT2*ex)))/(2.*I*M_SQRTPI*squared(S*v));
        }

        Real phi_gamma(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
            const Real lsh = std::log(S/H);
            const Real lis = std::log(I/S);
            const Real sv = std::sqrt(v);

            return std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2)*(((-std::exp(-squared(2*bT - v + 2*gamma*v +2*lsh)/(8*v)) + std::pow(I/S,-1 + 2*gamma +(2*bT)/v)/std::exp(squared(2*bT - v + 2*gamma*v + 4*lis +2*lsh)/(8*v)))*sv)/(M_SQRT2*M_SQRTPI) + ((2*bT+ (-1 + 2*gamma)*v)*std::erfc((2*bT + (-1 + 2*gamma)*v +2*lsh)/(2.*M_SQRT2*sv)))/4. -(std::pow(I/S,-1 + 2*gamma + (2*bT)/v)*std::erfc((2*bT - v + 2*gamma*v + 4*lis +2*lsh)/(2.*M_SQRT2*sv))*(2*bT + (-1 + 2*gamma)*v + 4*lis))/4.);
        }

        Real phi_H(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
            const Real lsh = std::log(S/H);

            return (std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2.)*(I/std::exp(squared(2*bT - v + 2*gamma*v + 2*lsh)/(8.*v))- (std::pow(I/S,2*(gamma + bT/v))*S)/std::exp(squared(2*bT - v + 2*gamma*v + 4*std::log(I/S) + 2*lsh)/(8.*v))))/(H*I*std::sqrt(2*M_PI)*std::sqrt(v));
        }

        Real phi_I(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
            const Real lsh = std::log(S/H);
            const Real lis = std::log(I/S);
            const Real sv = std::sqrt(v);

            return (std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2.)*std::pow(I/S,2*(gamma + bT/v))*S*((2*std::sqrt(2/M_PI))/(std::exp(squared(2*bT - v + 2*gamma*v + 4*lis + 2*lsh)/(8.*v))*sv) + (1 - 2*gamma - (2*bT)/v)*std::erfc((2*bT - v + 2*gamma*v + 4*lis +2*lsh)/(2.*M_SQRT2*sv))))/(2.*I*I);
        }

        Real phi_rt(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
            const Real lsh = std::log(S/H);
            return (std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2.)*(-(I*std::erfc((2*bT- v + 2*gamma*v + 2*lsh)/(2.*std::sqrt(2*v)))) +std::pow(I/S,2*(gamma + bT/v))*S*std::erfc((2*bT - v + 2*gamma*v + 4*std::log(I/S) +2*lsh)/(2.*std::sqrt(2*v)))))/(2.*I);
        }

        Real phi_bt(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
            const Real lsh = std::log(S/H);
            const Real lis = std::log(I/S);
            const Real sv = std::sqrt(v);

            return (std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2.)*(M_SQRT2*(-(I/std::exp(squared(2*bT - v +2*gamma*v + 2*lsh)/(8.*v))) + (std::pow(I/S,2*(gamma +bT/v))*S)/std::exp(squared(2*bT - v + 2*gamma*v + 4*lis +2*lsh)/(8.*v)))*sv + gamma*I*std::sqrt(M_PI)*v*std::erfc((2*bT - v + 2*gamma*v +2*lsh)/(2.*M_SQRT2*sv)) - M_SQRTPI*std::pow(I/S,2*(gamma + bT/v))*S*std::erfc((2*bT - v +2*gamma*v + 4*lis + 2*lsh)/(2.*M_SQRT2*sv))*(gamma*v +2*lis)))/(2.*I*std::sqrt(M_PI)*v);
        }

        Real phi_v(Real S, Real gamma, Real H, Real I, Real rT, Real bT, Real v) {
            const Real lsh = std::log(S/H);
            const Real lis = std::log(I/S);
            const Real sv = std::sqrt(v);
            const Real er = std::erfc((2*bT - v + 2*gamma*v + 4*lis + 2*lsh)/(2.*M_SQRT2*sv));

            return (std::exp(bT*gamma - rT + ((-1 + gamma)*gamma*v)/2.)*(((-1 +gamma)*gamma*(I*std::erfc((2*bT - v + 2*gamma*v + 2*lsh)/(2.*M_SQRT2*sv)) -std::pow(I/S,2*(gamma + bT/v))*S*er))/(2.*I) +(2*bT*std::pow(I/S,-1 + 2*gamma + (2*bT)/v)*er*lis)/(v*v)+ (2*bT + v - 2*gamma*v + 2*lsh)/(2.*std::exp(std::pow(2*bT + (-1 + 2*gamma)*v +2*lsh,2)/(8.*v))*M_SQRT2*M_SQRTPI*v*sv) -(std::pow(I/S,-1 + 2*gamma + (2*bT)/v)*(2*bT + v - 2*gamma*v +4*lis + 2*lsh))/(2.*std::exp(squared(2*bT - v + 2*gamma*v + 4*lis + 2*lsh)/(8.*v))*M_SQRT2*M_SQRTPI*v*sv)))/2.;
        }
    }

    BjerksundStenslandApproximationEngine::BjerksundStenslandApproximationEngine(
        ext::shared_ptr<GeneralizedBlackScholesProcess> process)
    : process_(std::move(process)) {
        registerWith(process_);
    }

    OneAssetOption::results
    BjerksundStenslandApproximationEngine::europeanCallResults(
        Real S, Real X, Real rfD, Real dD, Real variance) const {

        OneAssetOption::results results;

        const Real forwardPrice = S * dD/rfD;
        const BlackCalculator black(
            Option::Call, X, forwardPrice, std::sqrt(variance), rfD);

        results.value        = black.value();
        results.delta        = black.delta(S);
        results.gamma        = black.gamma(S);

        const DayCounter rfdc  = process_->riskFreeRate()->dayCounter();
        const DayCounter divdc = process_->dividendYield()->dayCounter();
        const DayCounter voldc = process_->blackVolatility()->dayCounter();
        Time t =
            rfdc.yearFraction(process_->riskFreeRate()->referenceDate(),
                              arguments_.exercise->lastDate());
        results.rho = black.rho(t);

        t = divdc.yearFraction(process_->dividendYield()->referenceDate(),
                               arguments_.exercise->lastDate());
        results.dividendRho = black.dividendRho(t);

        t = voldc.yearFraction(process_->blackVolatility()->referenceDate(),
                               arguments_.exercise->lastDate());
        results.vega        = black.vega(t);
        results.theta       = black.theta(S, t);
        results.thetaPerDay = black.thetaPerDay(S, t);

        results.strikeSensitivity  = black.strikeSensitivity();
        results.additionalResults["strikeGamma"] = Real(results.gamma*squared(S/X));
        results.additionalResults["exerciseType"] = std::string("European");

        return results;
    }

    OneAssetOption::results
    BjerksundStenslandApproximationEngine::immediateExercise(Real S, Real X) const {
        OneAssetOption::results results;
        results.value = std::max(0.0, S - X);
        results.delta = (S >= X)? 1.0 : 0.0;
        results.gamma = 0.0;
        results.rho = 0.0;
        results.dividendRho = 0.0;
        results.vega = 0.0;
        results.theta = 0.0;
        results.thetaPerDay = 0.0;

        results.strikeSensitivity = -results.delta;
        results.additionalResults["strikeGamma"] = Real(0.0);
        results.additionalResults["exerciseType"] = std::string("Immediate");

        return results;
    }

    OneAssetOption::results
    BjerksundStenslandApproximationEngine::americanCallApproximation(
        Real S, Real X, Real rfD, Real dD, Real variance) const {

        const OneAssetOption::results europeanResults
            = europeanCallResults(S, X, rfD, dD, variance);

        OneAssetOption::results results;

        const Real bT = std::log(dD/rfD);
        const Real rT = std::log(1.0/rfD);

        const Real beta = (0.5 - bT/variance) +
            std::sqrt(squared(bT/variance - 0.5) + 2.0 * rT/variance);

        const Real BInfinity = beta / (beta - 1.0) * X;
        const Real B0 = (bT == rT) ? X : std::max(X, rT / (rT - bT) * X);
        const Real ht = -(bT + 2.0*std::sqrt(variance)) * B0 / (BInfinity - B0);

        const Real I = B0 + (BInfinity - B0) * (1 - std::exp(ht));

        const Real fwd = S * dD/rfD;
        const Real q = std::log(I/fwd)/std::sqrt(variance);

        if (S >= I) {
            results = immediateExercise(S, X);
        }
        else if (q > 12.5) {
            // We have a run away exercise boundary. It is numerically
            // more accurate to use the Greeks of the European engine.
            results = europeanResults;
        }
        else {
            const Real phi_S_beta_I_I_rT_bT_v
                = phi(S, beta, I, I, rT, bT, variance);
            const Real phi_S_1_I_I_rT_bT_v
                = phi(S,  1.0, I, I, rT, bT, variance);
            const Real phi_S_1_X_I_rT_bT_V
                = phi(S, 1.0, X, I, rT, bT, variance);
            results.value = (I - X) * std::pow(S/I, beta)
                    *(1 - phi_S_beta_I_I_rT_bT_v)
                +    S * phi_S_1_I_I_rT_bT_v
                -    S * phi_S_1_X_I_rT_bT_V
                -    X * phi(S, 0.0, I, I, rT, bT, variance)
                +    X * phi(S, 0.0, X, I, rT, bT, variance);

            const Real phi_S_S_beta_I_I_rT_bT_v
                = phi_S(S, beta, I, I, rT, bT, variance);
            const Real phi_S_S_1_I_I_rT_bT_v
                = phi_S(S, 1.0, I, I, rT, bT, variance);
            const Real phi_S_S_1_X_I_rT_bT_v
                = phi_S(S, 1.0, X, I, rT, bT, variance);
            results.delta = (I - X) * std::pow(S/I, beta-1)*beta/I
                    * (1 - phi_S_beta_I_I_rT_bT_v)
                - (I - X) * std::pow(S/I, beta)
                    * phi_S_S_beta_I_I_rT_bT_v
                +   phi_S_1_I_I_rT_bT_v
                + S*phi_S_S_1_I_I_rT_bT_v
                -   phi_S_1_X_I_rT_bT_V
                - S*phi_S_S_1_X_I_rT_bT_v
                - X*phi_S(S, 0.0, I, I, rT, bT, variance)
                + X*phi_S(S, 0.0, X, I, rT, bT, variance);

            const Date refDate = process_->riskFreeRate()->referenceDate();
            const Date exerciseDate = arguments_.exercise->lastDate();
            const DayCounter qdc = process_->dividendYield()->dayCounter();
            const Time tq = qdc.yearFraction(refDate, exerciseDate);

            const Real betaDq = tq*(1/variance
                - 1/(2*std::sqrt(squared(bT/variance - 0.5) + 2.0 * rT/variance))
                  * 2*(bT/variance-0.5)/variance);
            const Real BInfinityDq = -X/squared(beta-1.0)*betaDq;
            const Real B0Dq = (dD <= rfD) ? Real(0.0)
                : Real(X*std::log(rfD)/squared(std::log(dD))*tq);

            const Real htDq = tq * B0 / (BInfinity - B0)
                - (bT + 2.0*std::sqrt(variance))
                    *(B0Dq*(BInfinity - B0) - B0*(BInfinityDq - B0Dq))
                        /squared(BInfinity - B0);
            const Real IDq = B0Dq + (BInfinityDq - B0Dq) * (1 - std::exp(ht))
                - (BInfinity - B0) * std::exp(ht)*htDq;

            const Real phi_H_S_beta_I_I_rT_bT_v
                = phi_H(S, beta, I, I, rT, bT, variance);
            const Real phi_I_S_beta_I_I_rT_bT_v
                = phi_I(S, beta, I, I, rT, bT, variance);
            const Real phi_gamma_S_beta_I_I_rT_bT_v
                = phi_gamma(S, beta, I, I, rT, bT, variance);
            const Real phi_bt_S_beta_I_I_rT_bT_v
                = phi_bt(S, beta, I, I, rT, bT, variance);
            const Real phi_H_S_1_I_I_rT_bT_v
                = phi_H(S, 1.0, I, I, rT, bT, variance);
            const Real phi_I_S_1_I_I_rT_bT_v
                = phi_I(S, 1.0, I, I, rT, bT, variance);
            const Real phi_bt_S_1_I_I_rT_bT_v
                = phi_bt(S, 1.0, I, I, rT, bT, variance);
            const Real phi_I_S_1_X_I_rT_bT_v
                = phi_I(S, 1.0, X, I, rT, bT, variance);
            const Real phi_bt_S_1_X_I_rT_bT_v
                = phi_bt(S, 1.0, X, I, rT, bT, variance);
            const Real phi_H_S_0_I_I_rT_bT_v
                = phi_H(S, 0.0, I, I, rT, bT, variance);
            const Real phi_I_S_0_I_I_rT_bT_v
                = phi_I(S, 0.0, I, I, rT, bT, variance);
            const Real phi_bt_S_0_I_I_rT_bT_v
                = phi_bt(S, 0.0, I, I, rT, bT, variance);
            const Real phi_I_S_0_X_I_rT_bT_v
                = phi_I(S, 0.0, X, I, rT, bT, variance);
            const Real phi_bt_S_0_X_I_rT_bT_v
                = phi_bt(S, 0.0, X, I, rT, bT, variance);

            results.dividendRho =
                (IDq*std::pow(S/I, beta)
                 + (I-X)*std::pow(S/I, beta)*(betaDq*std::log(S/I) - beta*1/I*IDq))
                 * (1 - phi_S_beta_I_I_rT_bT_v)
                - (I - X) * std::pow(S/I, beta)
                 *( phi_H_S_beta_I_I_rT_bT_v*IDq
                   +phi_I_S_beta_I_I_rT_bT_v*IDq
                   +phi_gamma_S_beta_I_I_rT_bT_v*betaDq
                   -phi_bt_S_beta_I_I_rT_bT_v*tq)
                + S*(  phi_H_S_1_I_I_rT_bT_v*IDq
                     + phi_I_S_1_I_I_rT_bT_v*IDq
                     - phi_bt_S_1_I_I_rT_bT_v*tq)
                - S*(  phi_I_S_1_X_I_rT_bT_v*IDq
                     - phi_bt_S_1_X_I_rT_bT_v*tq)
                - X*(  phi_H_S_0_I_I_rT_bT_v*IDq
                     + phi_I_S_0_I_I_rT_bT_v*IDq
                     - phi_bt_S_0_I_I_rT_bT_v*tq)
                + X*(  phi_I_S_0_X_I_rT_bT_v*IDq
                     - phi_bt_S_0_X_I_rT_bT_v*tq);

            const DayCounter rdc = process_->riskFreeRate()->dayCounter();
            const Time tr = rdc.yearFraction(refDate, exerciseDate);

            const Real betaDr = tr*(-1/variance
                + 1/(2*std::sqrt(squared(bT/variance - 0.5) + 2.0 * rT/variance))
                  * 2*((bT/variance-0.5)/variance + 1/variance));
            const Real BInfinityDr = -X/squared(beta-1.0)*betaDr;
            const Real B0Dr = (dD <= rfD) ? Real(0) : Real(-X*tr/std::log(dD));
            const Real htDr = -tr * B0 / (BInfinity - B0)
                - (bT + 2.0*std::sqrt(variance))
                    *(B0Dr*(BInfinity - B0) - B0*(BInfinityDr - B0Dr))
                        /squared(BInfinity - B0);
            const Real IDr = B0Dr + (BInfinityDr - B0Dr) * (1 - std::exp(ht))
                - (BInfinity - B0) * std::exp(ht)*htDr;

            results.rho =
                (IDr*std::pow(S/I, beta)
                 + (I-X)*std::pow(S/I, beta)*(betaDr*std::log(S/I) - beta/I*IDr))
                 * (1 - phi_S_beta_I_I_rT_bT_v)
                - (I - X) * std::pow(S/I, beta)
                 *(  phi_H_S_beta_I_I_rT_bT_v*IDr
                   + phi_I_S_beta_I_I_rT_bT_v*IDr
                   + phi_gamma_S_beta_I_I_rT_bT_v*betaDr
                   + phi_rt(S, beta, I, I, rT, bT, variance)*tr
                   + phi_bt_S_beta_I_I_rT_bT_v*tr)
                + S*(  phi_H_S_1_I_I_rT_bT_v*IDr
                     + phi_I_S_1_I_I_rT_bT_v*IDr
                     + phi_rt(S, 1.0, I, I, rT, bT, variance)*tr
                     + phi_bt_S_1_I_I_rT_bT_v*tr)
                - S*(  phi_I_S_1_X_I_rT_bT_v*IDr
                     + phi_rt(S, 1.0, X, I, rT, bT, variance)*tr
                     + phi_bt_S_1_X_I_rT_bT_v*tr)
                - X*(  phi_H_S_0_I_I_rT_bT_v*IDr
                     + phi_I_S_0_I_I_rT_bT_v*IDr
                     + phi_rt(S, 0.0, I, I, rT, bT, variance)*tr
                     + phi_bt_S_0_I_I_rT_bT_v*tr)
                + X*(  phi_I_S_0_X_I_rT_bT_v*IDr
                     + phi_rt(S, 0.0, X, I, rT, bT, variance)*tr
                     + phi_bt_S_0_X_I_rT_bT_v*tr);

            const Real beta = (0.5 - bT/variance) +
                std::sqrt(squared(bT/variance - 0.5) + 2.0 * rT/variance);

            const DayCounter vdc = process_->blackVolatility()->dayCounter();
            const Time tv = vdc.yearFraction(refDate, exerciseDate);
            const Real varianceDv = 2*std::sqrt(variance*tv);

            const Real betaDv = bT/squared(variance)*varianceDv +
                - 1/(2*std::sqrt(squared(bT/variance - 0.5) + 2.0 * rT/variance))
                  *( 2*(bT/variance - 0.5)*bT*varianceDv/squared(variance)
                    +2*rT/squared(variance)*varianceDv );
            const Real BInfinityDv = -X/squared(beta-1.0)*betaDv;
            const Real htDv = -1/std::sqrt(variance)*varianceDv*B0/(BInfinity-B0)
                    + (bT + 2*std::sqrt(variance))*B0/squared(BInfinity-B0)*BInfinityDv;

            const Real IDv = BInfinityDv*(1-std::exp(ht))
                - (BInfinity-B0)*std::exp(ht)*htDv;

            results.vega =
                (IDv*std::pow(S/I, beta)
                 + (I-X)*std::pow(S/I, beta)*(betaDv*std::log(S/I) - beta/I*IDv))
                 * (1 - phi_S_beta_I_I_rT_bT_v)
                - (I - X) * std::pow(S/I, beta)
                *(  phi_H_S_beta_I_I_rT_bT_v*IDv
                  + phi_I_S_beta_I_I_rT_bT_v*IDv
                  + phi_gamma_S_beta_I_I_rT_bT_v*betaDv
                  + phi_v(S, beta, I, I, rT, bT, variance)*varianceDv)
               + S*(  phi_H_S_1_I_I_rT_bT_v*IDv
                    + phi_I_S_1_I_I_rT_bT_v*IDv
                    + phi_v(S, 1.0, I, I, rT, bT, variance)*varianceDv)
               - S*(  phi_I_S_1_X_I_rT_bT_v*IDv
                    + phi_v(S, 1.0, X, I, rT, bT, variance)*varianceDv)
               - X*(  phi_H_S_0_I_I_rT_bT_v*IDv
                    + phi_I_S_0_I_I_rT_bT_v*IDv
                    + phi_v(S, 0.0, I, I, rT, bT, variance)*varianceDv)
               + X*(  phi_I_S_0_X_I_rT_bT_v*IDv
                    + phi_v(S, 0.0, X, I, rT, bT, variance)*varianceDv);

            results.gamma =
                  (I - X) * std::pow(S/I, beta-2)*beta*(beta-1)/squared(I)
                  * (1 - phi_S_beta_I_I_rT_bT_v)
                - 2*(I - X) * std::pow(S/I, beta-1)*beta/I
                  *phi_S_S_beta_I_I_rT_bT_v
                - (I - X) * std::pow(S/I, beta)
                  * phi_SS(S, beta, I, I, rT, bT, variance)

                + 2*phi_S_S_1_I_I_rT_bT_v
                + S*phi_SS(S, 1.0, I, I, rT, bT, variance)

                - 2*phi_S_S_1_X_I_rT_bT_v
                - S*phi_SS(S, 1.0, X, I, rT, bT, variance)

                - X*phi_SS(S, 0.0, I, I, rT, bT, variance)
                + X*phi_SS(S, 0.0, X, I, rT, bT, variance);

            const Volatility vol = std::sqrt(variance/tv);

            const Date tomorrow = refDate + Period(1, Days);
            const Time dtq = qdc.yearFraction(refDate, exerciseDate)
                    - qdc.yearFraction(tomorrow,  exerciseDate);
            const Time dtr = rdc.yearFraction(refDate, exerciseDate)
                    - rdc.yearFraction(tomorrow,  exerciseDate);
            const Time dtv = vdc.yearFraction(refDate, exerciseDate)
                    - vdc.yearFraction(tomorrow,  exerciseDate);

            results.thetaPerDay = -(0.5*results.vega*vol/tv*dtv
                + results.rho*rT/(tr*tr)*dtr + results.dividendRho*(rT-bT)/(tq*tq)*dtq);
            results.theta = 365*results.thetaPerDay;

            results.strikeSensitivity = results.value/X - S/X*results.delta;
            results.additionalResults["strikeGamma"] = Real(results.gamma*squared(S/X));

            results.additionalResults["exerciseType"] = std::string("American");
        }

        // check if European engine gives higher NPV
        if (results.value < europeanResults.value) {
            results = europeanResults;
        }

        return results;
    }


    void BjerksundStenslandApproximationEngine::calculate() const {

        QL_REQUIRE(arguments_.exercise->type() == Exercise::American,
                   "not an American Option");

        ext::shared_ptr<AmericanExercise> ex =
            ext::dynamic_pointer_cast<AmericanExercise>(arguments_.exercise);
        QL_REQUIRE(ex, "non-American exercise given");
        QL_REQUIRE(!ex->payoffAtExpiry(),
                   "payoff at expiry not handled");

        ext::shared_ptr<PlainVanillaPayoff> payoff =
            ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
        QL_REQUIRE(payoff, "non-plain payoff given");

        Real variance =
            process_->blackVolatility()->blackVariance(ex->lastDate(),
                                                       payoff->strike());
        DiscountFactor dividendDiscount =
            process_->dividendYield()->discount(ex->lastDate());
        DiscountFactor riskFreeDiscount =
            process_->riskFreeRate()->discount(ex->lastDate());
        Real spot = process_->stateVariable()->value();
        QL_REQUIRE(spot > 0.0, "negative or null underlying given");
        Real strike = payoff->strike();

        if (payoff->optionType()==Option::Put) {
            // use put-call symmetry
            std::swap(spot, strike);
            std::swap(riskFreeDiscount, dividendDiscount);
            payoff = ext::make_shared<PlainVanillaPayoff>(
                                Option::Call, strike);
        }

        if (dividendDiscount > 1.0 && riskFreeDiscount > dividendDiscount)
            QL_FAIL("double-boundary case r<q<0 for a call given");


        if (dividendDiscount >= 1.0 && dividendDiscount >= riskFreeDiscount) {
            results_ = europeanCallResults(
                spot, strike, riskFreeDiscount, dividendDiscount, variance);
        } else {
            // early exercise can be optimal - use approximation
            results_ = americanCallApproximation(
                spot, strike, riskFreeDiscount, dividendDiscount, variance);
        }

        // check if immediate exercise gives higher NPV
        if (results_.value < (spot - strike)*(1+10*QL_EPSILON) ) {
            results_ = immediateExercise(spot, strike);
        }

        if (ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff)
                ->optionType() == Option::Put) {

            std::swap(results_.delta, results_.strikeSensitivity);

            Real tmp = results_.gamma;
            results_.gamma =
                ext::any_cast<Real>(results_.additionalResults["strikeGamma"]);
            results_.additionalResults["strikeGamma"] = tmp;

            std::swap(results_.rho, results_.dividendRho);

            Time tr = process_->riskFreeRate()->dayCounter().yearFraction(
                process_->riskFreeRate()->referenceDate(),
                arguments_.exercise->lastDate());
            Time tq = process_->dividendYield()->dayCounter().yearFraction(
                process_->dividendYield()->referenceDate(),
                arguments_.exercise->lastDate());

            results_.rho *= tr/tq;
            results_.dividendRho *= tq/tr;
        }
    }
}