File: coshestonengine.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (302 lines) | stat: -rw-r--r-- 11,993 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2017 Klaus Spanderen
 Copyright (C) 2022 Ignacio Anguita

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/functional.hpp>
#include <ql/pricingengines/vanilla/coshestonengine.hpp>

namespace QuantLib {

    COSHestonEngine::COSHestonEngine(
       const ext::shared_ptr<HestonModel>& model, Real L, Size N)
    : GenericModelEngine<HestonModel,
                         VanillaOption::arguments,
                         VanillaOption::results>(model),
    L_(L), N_(N),
    kappa_(model_->kappa()),
    theta_(model_->theta()),
    sigma_(model_->sigma()),
    rho_  (model_->rho())  ,
    v0_   (model_->v0()) { }


    void COSHestonEngine::update() {
        kappa_ = model_->kappa();
        theta_ = model_->theta();
        sigma_ = model_->sigma();
        rho_   = model_->rho();
        v0_    = model_->v0();

        GenericModelEngine<HestonModel,
                           VanillaOption::arguments,
                           VanillaOption::results>::update();
    }


    void COSHestonEngine::calculate() const {

        // this is a european option pricer
        QL_REQUIRE(arguments_.exercise->type() == Exercise::European,
                   "not an European option");

        // plain vanilla
        const ext::shared_ptr<PlainVanillaPayoff> payoff =
            ext::dynamic_pointer_cast<PlainVanillaPayoff>(arguments_.payoff);
        QL_REQUIRE(payoff, "non plain vanilla payoff given");

        const ext::shared_ptr<HestonProcess> process = model_->process();

        const Date maturityDate = arguments_.exercise->lastDate();
        const Time maturity = process->time(maturityDate);

        const Real cum1 = c1(maturity);
        const Real w = std::sqrt(std::fabs(c2(maturity))
            // the 4th order doesn't necessarily improve the precision
            // + std::sqrt(std::fabs(c4(maturity)))
        );

        const Real k = payoff->strike();
        const Real spot = process->s0()->value();
        QL_REQUIRE(spot > 0.0, "negative or null underlying given");

        const DiscountFactor df
            = process->riskFreeRate()->discount(maturityDate);
        const DiscountFactor qf
            = process->dividendYield()->discount(maturityDate);
        const Real fwd = spot*qf/df;
        const Real x = std::log(fwd/k);

        const Real a = x + cum1 - L_*w;
        const Real b = x + cum1 + L_*w;
        
        // Check if it exceeds the truncation bound
        
        if (x >= b/2 || x <= a/2) {
            //returns lower/upper bounds
            if (payoff->optionType() == Option::Put)
                results_.value = std::max(-spot*qf+k*df,0.0);
            else if (payoff->optionType() == Option::Call)
           	    results_.value = std::max(spot*qf-k*df,0.0);
       	    else
                QL_FAIL("unknown payoff type");
            return;
        }
		

        const Real d = 1.0/(b-a);

        const Real expA = std::exp(a);
        Real s = chF(0, maturity).real()*(expA-1-a)*d;

        for (Size n=1; n < N_; ++n) {
            const Real r = n*M_PI*d;
            const Real U_n = 2.0*d*( 1.0/(1.0 + r*r)
                *(expA + r*std::sin(r*a) - std::cos(r*a)) - 1.0/r*std::sin(r*a));

            s += U_n*(chF(r, maturity)
                     *std::exp(std::complex<Real>(0, r*(x-a)))).real();
        }

        if (payoff->optionType() == Option::Put)
            results_.value = k*df*s;
        else if (payoff->optionType() == Option::Call) {
            const DiscountFactor qf
                = process->dividendYield()->discount(maturityDate);
            results_.value = spot*qf - k*df*(1-s);
        }
        else
            QL_FAIL("unknown payoff type");
    }

    Real COSHestonEngine::muT(Time t) const {
        return std::log(  model_->process()->dividendYield()->discount(t)
                        / model_->process()->riskFreeRate()->discount(t));
    }

    std::complex<Real> COSHestonEngine::chF(Real u, Real t)
    const {
        const Real sigma2 = sigma_*sigma_;

        const std::complex<Real> D = std::sqrt(
            squared(std::complex<Real>(kappa_, -rho_*sigma_*u))
            + std::complex<Real>(u*u, u)*sigma2);

        const std::complex<Real> g(kappa_, -rho_*sigma_*u);

        const std::complex<Real> G = (g-D)/(g+D);

        return std::exp(
              v0_/(sigma2)*(1.0-std::exp(-D*t))/(1.0-G*std::exp(-D*t))
             *(g-D) + kappa_*theta_/sigma2*((g-D)*t
                -2.0*std::log((1.0-G*std::exp(-D*t))/(1.0-G)))
            );
   }

   /*
    Mathematica program to calculate the n-th cumulant

    d[z_] := Sqrt[(kappa -i*rho*sigma*z)^2 + (z*z+i*z)*sigma^2]

    g[z_] := (kappa -i*rho*sigma*z - d[z])/(kappa -i*rho*sigma*z + d[z])

    phi[z_] := Exp[ v0/(sigma^2)*(1-Exp[-d[z]*t])/(1-g[z]*Exp[-d[z]*t])
        *(kappa -i*rho*sigma*z - d[z]) + kappa*theta/sigma^2
        *((kappa -i*rho*sigma*z-d[z])*t
          -2*Log[(1-g[z]*Exp[-d[z]*t])/(1-g[z]) ]) ]

    e[z_] := Log[phi[-i*z]]

    // for C++ formatting see
    // http://mathematica.stackexchange.com/questions/114175/cform-not-getting-exp-pow-log-functions
    cpp = RawBoxes[Replace[ToBoxes@#,
        InterpretationBox[a_, b_, c___] :>  With[{aa =
        StringReplace[ a, {"Sqrt" -> "std::sqrt", "Power(E," -> "std::exp(",
                           "Power" -> "std::pow"}]}, aa], {0, Infinity}]] &;

    c[n_] := cpp@CForm[FullSimplify[Derivative[n][e][0],
         kappa > 0 && theta > 0 && v0 > 0 && sigma > 0 &&
         rho [Element] {-1, 1} && i^2 == -1]]
    */

   Real COSHestonEngine::c1(Time t) const {
       return (-theta_ + std::exp(kappa_*t)
           *( theta_ - kappa_*t*theta_ -
               v0_) + v0_)/(2*std::exp(kappa_*t)*kappa_);
   }

   Real COSHestonEngine::c2(Time t) const {
       const Real sigma2 = sigma_*sigma_;
       const Real kappa2 = kappa_*kappa_;
       const Real kappa3 = kappa2*kappa_;

       return (sigma2*(theta_ - 2*v0_) +
           std::exp(2*kappa_*t)*(8*kappa3*t*theta_ -
           8*kappa2*(theta_ + rho_*sigma_*t*theta_ - v0_) +
           sigma2*(-5*theta_ + 2*v0_) + 2*kappa_*sigma_*(8*rho_*theta_ +
           sigma_*t*theta_ - 4*rho_*v0_)) +
           4*std::exp(kappa_*t)*(sigma2*theta_ -
           2*kappa2*(-1 + rho_*sigma_*t)*(theta_ - v0_) +
           kappa_*sigma_*(sigma_*t*(theta_ - v0_) + 2*rho_*(-2*theta_ +
           v0_))))/(8.*std::exp(2*kappa_*t)*kappa3);
   }

   Real COSHestonEngine::c3(Time t) const {
       const Real sigma2 = sigma_*sigma_;
       const Real sigma3 = sigma2*sigma_;
       const Real kappa2 = kappa_*kappa_;
       const Real kappa3 = kappa2*kappa_;
       const Real kappa4 = kappa3*kappa_;
       const Real rho2   = rho_*rho_;

       return
         -(sigma_*(sigma3*(theta_ - 3*v0_) +
           std::exp(3*kappa_*t)*(2*(-11*sigma3 -
           24*kappa4*rho_*t + 3*kappa_*sigma2*(20*rho_ +
           sigma_*t) - 6*kappa2*sigma_*(5 + 3*rho_*(4*rho_ + sigma_*t)) +
           12*kappa3*(sigma_*t + 2*rho_*(2 + rho_*sigma_*t)))*theta_ -
           6*(2*kappa_*rho_ - sigma_)*(4*kappa2 - 4*kappa_*rho_*sigma_ +
           sigma2)*v0_) + 6*std::exp(kappa_*t)*sigma_*(-2*kappa2*(-1 +
           rho_*sigma_*t)*(theta_ - 2*v0_) + sigma2*(theta_ - v0_) +
           kappa_*sigma_*(-4*rho_*theta_ + sigma_*t*theta_ + 6*rho_*v0_ - 2*sigma_*t*v0_)) +
           3*std::exp(2*kappa_*t)*(2*kappa_*sigma2*(-16*rho_*theta_ +
           sigma_*t*(3*theta_ - v0_)) + 8*kappa4*rho_*t*(-2 +
           rho_*sigma_*t)*(theta_ - v0_) + sigma3*(5*theta_ + v0_) +
           8*kappa3*(-(rho_*(4 + sigma2*t*t)*theta_) + 2*sigma_*t*(theta_ - v0_) +
           2*rho2*sigma_*t*(2*theta_ - v0_) + rho_*(2 +
           sigma2*t*t)*v0_) + 2*kappa2*sigma_*((8
           + 24*rho2 - 16*rho_*sigma_*t + sigma2*t*t)*theta_ - (8*rho2 -
           8*rho_*sigma_*t + sigma2*t*t)*v0_))))/(16.*std::exp(3*kappa_*t)*
           kappa_*kappa4);
   }

   Real COSHestonEngine::c4(Time t) const {
       const Real sigma2 = sigma_*sigma_;
       const Real sigma3 = sigma2*sigma_;
       const Real sigma4 = sigma2*sigma2;
       const Real kappa2 = kappa_*kappa_;
       const Real kappa3 = kappa2*kappa_;
       const Real kappa4 = kappa2*kappa2;
       const Real kappa5 = kappa2*kappa3;
       const Real kappa6 = kappa3*kappa3;
       const Real kappa7 = kappa4*kappa3;
       const Real rho2   = rho_*rho_;
       const Real rho3   = rho2*rho_;
       const Time t2     = t*t;
       const Time t3     = t2*t;

       return
           (sigma2*(3*sigma4*(theta_ - 4*v0_) +
           3*std::exp(4*kappa_*t)*((-93*sigma4 +
           64*kappa5*(t + 4*rho2*t) +
           4*kappa_*sigma3*(176*rho_ + 5*sigma_*t) -
           32*kappa2*sigma2*(11 + 50*rho2 +
           5*rho_*sigma_*t) + 32*kappa3*sigma_*(3*sigma_*t + 4*rho_*(10 +
           8*rho2 + 3*rho_*sigma_*t)) - 32*kappa4*(5 +
           4*rho_*(6*rho_ + (3 + 2*rho2)*sigma_*t)))*theta_ +
           4*(4*kappa2 - 4*kappa_*rho_*sigma_ +
           sigma2)*(4*kappa2*(1 + 4*rho2) -
           20*kappa_*rho_*sigma_ + 5*sigma2)*v0_) +
           24*std::exp(kappa_*t)*sigma2*(-2*kappa2*(-1 +
           rho_*sigma_*t)*(theta_ - 3*v0_) + sigma2*(theta_ - 2*v0_) +
           kappa_*sigma_*(-4*rho_*theta_ + sigma_*t*theta_ + 10*rho_*v0_ -
           3*sigma_*t*v0_)) + 12*std::exp(2*kappa_*t)*(sigma4*(7*theta_ -
           4*v0_) + 8*kappa4*(1 + 2*rho_*sigma_*t*(-2 +
           rho_*sigma_*t))*(theta_ - 2*v0_) +
           2*kappa_*sigma3*(-24*rho_*theta_ + 5*sigma_*t*theta_ +
           20*rho_*v0_ - 6*sigma_*t*v0_) + 4*kappa2*sigma2*((6
           + 20*rho2 - 14*rho_*sigma_*t +
           sigma2*t2)*theta_ - 2*(3 + 12*rho2 -
           10*rho_*sigma_*t + sigma2*t2)*v0_) +
           8*kappa3*sigma_*((3*sigma_*t + 2*rho_*(-4 + sigma_*t*(4*rho_ -
           sigma_*t)))*theta_ + 2*(-3*sigma_*t + 2*rho_*(3 + sigma_*t*(-3*rho_ +
           sigma_*t)))*v0_)) -
           8*std::exp(3*kappa_*t)*(16*kappa6*rho2*t2*(-3 + rho_*sigma_*t)*(theta_ - v0_) - 3*sigma4*(7*theta_ +
           2*v0_) + 2*kappa3*sigma_*((192*(rho_ + rho3) -
           6*(9 + 40*rho2)*sigma_*t + 42*rho_*sigma2*t2 -
           sigma3*t3)*theta_ + (-48*rho3 + 18*(1
           + 4*rho2)*sigma_*t - 24*rho_*sigma2*t2
           + sigma3*t3)*v0_) + 12*kappa4*((-4 -
           24*rho2 + 8*rho_*(4 + 3*rho2)*sigma_*t - (3 +
           14*rho2)*sigma2*t2 + rho_*sigma3*t3)*theta_ + (8*rho2 -
           8*rho_*(2 + rho2)*sigma_*t + (3 +
           8*rho2)*sigma2*t2 - rho_*sigma3*t3)*v0_) -
           6*kappa2*sigma2*((15 + 80*rho2 -
           35*rho_*sigma_*t + 2*sigma2*t2)*theta_ + (3 +
           sigma_*t*(7*rho_ - sigma_*t))*v0_) + 24*kappa5*t*((-2 +
           rho_*(4*sigma_*t + rho_*(-8 + sigma_*t*(4*rho_ - sigma_*t))))*theta_ + (2 +
           rho_*(-4*sigma_*t + rho_*(4 + sigma_*t*(-2*rho_ + sigma_*t))))*v0_) +
           3*kappa_*sigma3*(sigma_*t*(-9*theta_ + v0_) + 10*rho_*(6*theta_
           + v0_)))))/(64.*std::exp(4*kappa_*t)*kappa7);
   }

   Real COSHestonEngine::mu(Time t) const {
       return c1(t);
   }
   Real COSHestonEngine::var(Time t) const {
       return c2(t);
   }
   Real COSHestonEngine::skew(Time t) const {
       return c3(t)/std::pow(c2(t), 1.5);
   }
   Real COSHestonEngine::kurtosis(Time t) const {
       return c4(t)/squared(c2(t));
   }

}