File: qdfpamericanengine.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (522 lines) | stat: -rw-r--r-- 18,044 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2022 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file qrfpamericanengine.cpp
*/

#include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/functional.hpp>
#include <ql/math/integrals/gaussianquadratures.hpp>
#include <ql/math/integrals/tanhsinhintegral.hpp>
#include <ql/math/interpolations/chebyshevinterpolation.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/pricingengines/vanilla/qdfpamericanengine.hpp>
#include <utility>
#ifndef QL_BOOST_HAS_TANH_SINH
#    include <ql/math/integrals/gausslobattointegral.hpp>
#endif

namespace QuantLib {

    QdFpLegendreScheme::QdFpLegendreScheme(
        Size l, Size m, Size n, Size p):
        m_(m), n_(n),
        fpIntegrator_(ext::make_shared<GaussLegendreIntegrator>(l)),
        exerciseBoundaryIntegrator_(
            ext::make_shared<GaussLegendreIntegrator>(p)) {

        QL_REQUIRE(m_ > 0, "at least one fixed point iteration step is needed");
        QL_REQUIRE(n_ > 0, "at least one interpolation point is needed");
    }

    Size QdFpLegendreScheme::getNumberOfChebyshevInterpolationNodes()
        const {
        return n_;
    }
    Size QdFpLegendreScheme::getNumberOfNaiveFixedPointSteps() const {
        return m_-1;
    }
    Size QdFpLegendreScheme::getNumberOfJacobiNewtonFixedPointSteps()
        const {
        return Size(1);
    }

    ext::shared_ptr<Integrator>
        QdFpLegendreScheme::getFixedPointIntegrator() const {
        return fpIntegrator_;
    }
    ext::shared_ptr<Integrator>
        QdFpLegendreScheme::getExerciseBoundaryToPriceIntegrator()
        const {
        return exerciseBoundaryIntegrator_;
    }

    QdFpTanhSinhIterationScheme::QdFpTanhSinhIterationScheme(
        Size m, Size n, Real eps)
    : m_(m), n_(n),
#ifdef QL_BOOST_HAS_TANH_SINH
      integrator_(ext::make_shared<TanhSinhIntegral>(eps))
#else
      integrator_(ext::make_shared<GaussLobattoIntegral>(
          100000, QL_MAX_REAL, 0.1*eps))
#endif
    {}

    Size QdFpTanhSinhIterationScheme::getNumberOfChebyshevInterpolationNodes()
        const {
        return n_;
    }
    Size QdFpTanhSinhIterationScheme::getNumberOfNaiveFixedPointSteps() const {
        return m_-1;
    }
    Size QdFpTanhSinhIterationScheme::getNumberOfJacobiNewtonFixedPointSteps()
        const {
        return Size(1);
    }

    ext::shared_ptr<Integrator>
    QdFpTanhSinhIterationScheme::getFixedPointIntegrator() const {
        return integrator_;
    }
    ext::shared_ptr<Integrator>
    QdFpTanhSinhIterationScheme::getExerciseBoundaryToPriceIntegrator()
        const {
        return integrator_;
    }

    QdFpLegendreTanhSinhScheme::QdFpLegendreTanhSinhScheme(
        Size l, Size m, Size n, Real eps)
    : QdFpLegendreScheme(l, m, n, 1),
      eps_(eps) {}

    ext::shared_ptr<Integrator>
    QdFpLegendreTanhSinhScheme::getExerciseBoundaryToPriceIntegrator() const {
#ifdef QL_BOOST_HAS_TANH_SINH
            return ext::make_shared<TanhSinhIntegral>(eps_);
#else
            return ext::make_shared<GaussLobattoIntegral>(
                100000, QL_MAX_REAL, 0.1*eps_);
#endif
    }


    class DqFpEquation {
      public:
        DqFpEquation(Rate _r,
                     Rate _q,
                     Volatility _vol,
                     std::function<Real(Real)> B,
                     ext::shared_ptr<Integrator> _integrator)
        : r(_r), q(_q), vol(_vol), B(std::move(B)), integrator(std::move(_integrator)) {
            const auto legendreIntegrator =
                ext::dynamic_pointer_cast<GaussLegendreIntegrator>(integrator);

            if (legendreIntegrator != nullptr) {
                x_i = legendreIntegrator->getIntegration()->x();
                w_i = legendreIntegrator->getIntegration()->weights();
            }
        }

        virtual std::pair<Real, Real> NDd(Real tau, Real b) const = 0;
        virtual std::tuple<Real, Real, Real> f(Real tau, Real b) const = 0;

        virtual ~DqFpEquation() = default;

      protected:
        std::pair<Real, Real> d(Time t, Real z) const {
            const Real v = vol * std::sqrt(t);
            const Real m = (std::log(z) + (r-q)*t)/v + 0.5*v;

            return std::make_pair(m, m-v);
        }

        Array x_i, w_i;
        const Rate r, q;
        const Volatility vol;

        const std::function<Real(Real)> B;
        const ext::shared_ptr<Integrator> integrator;

        const NormalDistribution phi;
        const CumulativeNormalDistribution Phi;
    };

    class DqFpEquation_B: public DqFpEquation {
      public:
        DqFpEquation_B(Real K,
                       Rate _r,
                       Rate _q,
                       Volatility _vol,
                       std::function<Real(Real)> B,
                       ext::shared_ptr<Integrator> _integrator);

        std::pair<Real, Real> NDd(Real tau, Real b) const override;
        std::tuple<Real, Real, Real> f(Real tau, Real b) const override;

      private:
          const Real K;
    };

    class DqFpEquation_A: public DqFpEquation {
      public:
        DqFpEquation_A(Real K,
                       Rate _r,
                       Rate _q,
                       Volatility _vol,
                       std::function<Real(Real)> B,
                       ext::shared_ptr<Integrator> _integrator);

        std::pair<Real, Real> NDd(Real tau, Real b) const override;
        std::tuple<Real, Real, Real> f(Real tau, Real b) const override;

      private:
          const Real K;
    };

    DqFpEquation_A::DqFpEquation_A(Real K,
                                   Rate _r,
                                   Rate _q,
                                   Volatility _vol,
                                   std::function<Real(Real)> B,
                                   ext::shared_ptr<Integrator> _integrator)
    : DqFpEquation(_r, _q, _vol, std::move(B), std::move(_integrator)), K(K) {}

    std::tuple<Real, Real, Real> DqFpEquation_A::f(Real tau, Real b) const {
        const Real v = vol * std::sqrt(tau);

        Real N, D;
        if (tau < squared(QL_EPSILON)) {
            if (close_enough(b, K)) {
                N = 1/(M_SQRT2*M_SQRTPI * v);
                D = N + 0.5;
            }
            else {
                N = 0.0;
                D = (b > K)? 1.0: 0.0;
            }
        }
        else {
            const Real stv = std::sqrt(tau)/vol;

            Real K12, K3;
            if (!x_i.empty()) {
                K12 = K3 = 0.0;

                for (Integer i = x_i.size()-1; i >= 0; --i) {
                    const Real y = x_i[i];
                    const Real m = 0.25*tau*squared(1+y);
                    const std::pair<Real, Real> dpm = d(m, b/B(tau-m));

                    K12 += w_i[i] * std::exp(q*tau - q*m)
                        *(0.5*tau*(y+1)*Phi(dpm.first) + stv*phi(dpm.first));
                    K3 += w_i[i] * stv*std::exp(r*tau-r*m)*phi(dpm.second);
                }
            } else {
                K12 = (*integrator)([&, this](Real y) -> Real {
                    const Real m = 0.25*tau*squared(1+y);
                    const Real df = std::exp(q*tau - q*m);

                    if (y <= 5*QL_EPSILON - 1) {
                        if (close_enough(b, B(tau-m)))
                            return df*stv/(M_SQRT2*M_SQRTPI);
                        else
                            return 0.0;
                    }
                    else {
                        const Real dp = d(m, b/B(tau-m)).first;
                        return df*(0.5*tau*(y+1)*Phi(dp) + stv*phi(dp));
                    }
                }, -1, 1);

                K3 = (*integrator)([&, this](Real y) -> Real {
                    const Real m = 0.25*tau*squared(1+y);
                    const Real df = std::exp(r*tau-r*m);

                    if (y <= 5*QL_EPSILON - 1) {
                        if (close_enough(b, B(tau-m)))
                            return df*stv/(M_SQRT2*M_SQRTPI);
                        else
                            return 0.0;
                    }
                    else
                        return df*stv*phi(d(m, b/B(tau-m)).second);
                }, -1, 1);
            }
            const std::pair<Real, Real> dpm = d(tau, b/K);
            N = phi(dpm.second)/v + r*K3;
            D = phi(dpm.first)/v + Phi(dpm.first) + q*K12;
        }

        const Real alpha = K*std::exp(-(r-q)*tau);
        Real fv;
        if (tau < squared(QL_EPSILON)) {
            if (close_enough(b, K))
                fv = alpha;
            else if (b > K)
                fv = 0.0;
            else {
                if (close_enough(q, Real(0)))
                    fv = alpha*r*((q < 0)? -1.0 : 1.0)/QL_EPSILON;
                else
                    fv = alpha*r/q;
            }
        }
        else
            fv = alpha*N/D;

        return std::make_tuple(N, D, fv);
    }

    std::pair<Real, Real> DqFpEquation_A::NDd(Real tau, Real b) const {
        Real Dd, Nd;

        if (tau < squared(QL_EPSILON)) {
            if (close_enough(b, K)) {
                const Real sqTau = std::sqrt(tau);
                const Real vol2 = vol*vol;
                Dd = M_1_SQRTPI*M_SQRT_2*(
                    -(0.5*vol2 + r-q) / (b*vol*vol2*sqTau) + 1 / (b*vol*sqTau));
                Nd = M_1_SQRTPI*M_SQRT_2 * (-0.5*vol2 + r-q)  / (b*vol*vol2*sqTau);
            }
            else
                Dd = Nd = 0.0;
        }
        else {
            const std::pair<Real, Real> dpm = d(tau, b/K);

            Dd = -phi(dpm.first) * dpm.first / (b*vol*vol*tau) +
                    phi(dpm.first) / (b*vol * std::sqrt(tau));
            Nd = -phi(dpm.second) * dpm.second / (b*vol*vol*tau);
        }

        return std::make_pair(Nd, Dd);
    }


    DqFpEquation_B::DqFpEquation_B(Real K,
                                   Rate _r,
                                   Rate _q,
                                   Volatility _vol,
                                   std::function<Real(Real)> B,
                                   ext::shared_ptr<Integrator> _integrator)
    : DqFpEquation(_r, _q, _vol, std::move(B), std::move(_integrator)), K(K) {}


    std::tuple<Real, Real, Real> DqFpEquation_B::f(Real tau, Real b) const {
        Real N, D;
        if (tau < squared(QL_EPSILON)) {
            if (close_enough(b, K))
                N = D = 0.5;
            else if (b < K)
                N = D = 0.0;
            else
                N = D = 1.0;
        }
        else {
            Real ni, di;
            if (!x_i.empty()) {
                const Real c = 0.5*tau;

                ni = di = 0.0;
                for (Integer i = x_i.size()-1; i >= 0; --i) {
                    const Real u = c*x_i[i] + c;
                    const std::pair<Real, Real> dpm = d(tau - u, b/B(u));
                    ni += w_i[i] * std::exp(r*u)*Phi(dpm.second);
                    di += w_i[i] * std::exp(q*u)*Phi(dpm.first);
                }
                ni *= c;
                di *= c;
            } else {
                ni = (*integrator)([&, this](Real u) -> Real {
                	const Real df = std::exp(r*u);
                    if (u >= tau*(1 - 5*QL_EPSILON)) {
                        if (close_enough(b, B(u)))
                            return 0.5*df;
                        else
                            return df*((b < B(u)? 0.0: 1.0));
                    }
                    else
                        return df*Phi(d(tau - u, b/B(u)).second);
                }, 0, tau);
                di = (*integrator)([&, this](Real u) -> Real {
                	const Real df = std::exp(q*u);
                    if (u >= tau*(1 - 5*QL_EPSILON)) {
                        if (close_enough(b, B(u)))
                            return 0.5*df;
                        else
                            return df*((b < B(u)? 0.0: 1.0));
                    }
                    else
                        return df*Phi(d(tau - u, b/B(u)).first);
                    }, 0, tau);
            }

            const std::pair<Real, Real> dpm = d(tau, b/K);

            N = Phi(dpm.second) + r*ni;
            D = Phi(dpm.first) + q*di;
        }

        Real fv;
        const Real alpha = K*std::exp(-(r-q)*tau);
        if (tau < squared(QL_EPSILON)) {
            if (close_enough(b, K) || b > K)
                fv = alpha;
            else {
                if (close_enough(q, Real(0)))
                    fv = alpha*r*((q < 0)? -1.0 : 1.0)/QL_EPSILON;
                else
                    fv = alpha*r/q;
            }
        }
        else
            fv = alpha*N/D;

        return std::make_tuple(N, D, fv);
    }

    std::pair<Real, Real> DqFpEquation_B::NDd(Real tau, Real b) const {
        const std::pair<Real, Real> dpm = d(tau, b/K);
        return std::make_pair(
            phi(dpm.second) / (b*vol*std::sqrt(tau)),
            phi(dpm.first)  / (b*vol*std::sqrt(tau))
        );
    }

    QdFpAmericanEngine::QdFpAmericanEngine(
        ext::shared_ptr<GeneralizedBlackScholesProcess> bsProcess,
        ext::shared_ptr<QdFpIterationScheme> iterationScheme,
        FixedPointEquation fpEquation)
    : detail::QdPutCallParityEngine(std::move(bsProcess)),
      iterationScheme_(std::move(iterationScheme)),
      fpEquation_(fpEquation) {
    }

    ext::shared_ptr<QdFpIterationScheme>
    QdFpAmericanEngine::fastScheme() {
        static auto scheme = ext::make_shared<QdFpLegendreScheme>(7, 2, 7, 27);
        return scheme;
    }

    ext::shared_ptr<QdFpIterationScheme>
    QdFpAmericanEngine::accurateScheme() {
        static auto scheme = ext::make_shared<QdFpLegendreTanhSinhScheme>(25, 5, 13, 1e-8);
        return scheme;
    }

    ext::shared_ptr<QdFpIterationScheme>
    QdFpAmericanEngine::highPrecisionScheme() {
        static auto scheme = ext::make_shared<QdFpTanhSinhIterationScheme>(10, 30, 1e-10);
        return scheme;
    }

    Real QdFpAmericanEngine::calculatePut(
            Real S, Real K, Rate r, Rate q, Volatility vol, Time T) const {

        if (r < 0.0 && q < r)
            QL_FAIL("double-boundary case q<r<0 for a put option is given");

        const Real xmax =  QdPlusAmericanEngine::xMax(K, r, q);
        const Size n = iterationScheme_->getNumberOfChebyshevInterpolationNodes();

        const ext::shared_ptr<ChebyshevInterpolation> interp =
            QdPlusAmericanEngine(
                    process_, n+1, QdPlusAmericanEngine::Halley, 1e-8)
                .getPutExerciseBoundary(S, K, r, q, vol, T);

        const Array z = interp->nodes();
        const Array x = 0.5*std::sqrt(T)*(1.0+z);

        const auto B = [xmax, T, &interp](Real tau) -> Real {
            const Real z = 2*std::sqrt(std::abs(tau)/T)-1;
            return xmax*std::exp(-std::sqrt(std::max(Real(0), (*interp)(z, true))));
        };

        const auto h = [=](Real fv) -> Real {
            return squared(std::log(fv/xmax));
        };

        const ext::shared_ptr<DqFpEquation> eqn
            = (fpEquation_ == FP_A
               || (fpEquation_ == Auto && std::abs(r-q) < 0.001))?
              ext::shared_ptr<DqFpEquation>(new DqFpEquation_A(
                  K, r, q, vol, B,
                  iterationScheme_->getFixedPointIntegrator()))
            : ext::shared_ptr<DqFpEquation>(new DqFpEquation_B(
                    K, r, q, vol, B,
                    iterationScheme_->getFixedPointIntegrator()));

        Array y(x.size());
        y[0] = 0.0;

        const Size n_newton
            = iterationScheme_->getNumberOfJacobiNewtonFixedPointSteps();
        for (Size k=0; k < n_newton; ++k) {
            for (Size i=1; i < x.size(); ++i) {
                const Real tau = squared(x[i]);
                const Real b = B(tau);

                const std::tuple<Real, Real, Real> results = eqn->f(tau, b);
                const Real N = std::get<0>(results);
                const Real D = std::get<1>(results);
                const Real fv = std::get<2>(results);

                if (tau < QL_EPSILON)
                    y[i] = h(fv);
                else {
                    const std::pair<Real, Real> ndd = eqn->NDd(tau, b);
                    const Real Nd = std::get<0>(ndd);
                    const Real Dd = std::get<1>(ndd);

                    const Real fd = K*std::exp(-(r-q)*tau) * (Nd/D - Dd*N/(D*D));

                    y[i] = h(b - (fv - b)/ (fd-1));
                }
            }
            interp->updateY(y);
        }

        const Size n_fp = iterationScheme_->getNumberOfNaiveFixedPointSteps();
        for (Size k=0; k < n_fp; ++k) {
            for (Size i=1; i < x.size(); ++i) {
                const Real tau = squared(x[i]);
                const Real fv = std::get<2>(eqn->f(tau, B(tau)));

                y[i] = h(fv);
            }
            interp->updateY(y);
        }

        const detail::QdPlusAddOnValue aov(T, S, K, r, q, vol, xmax, interp);
        const Real addOn =
           (*iterationScheme_->getExerciseBoundaryToPriceIntegrator())(
               aov, 0.0, std::sqrt(T));

        const Real europeanValue = BlackCalculator(
            Option::Put, K, S*std::exp((r-q)*T),
            vol*std::sqrt(T), std::exp(-r*T)).value();

        return std::max(europeanValue, 0.0) + std::max(0.0, addOn);
    }

}