File: qdplusamericanengine.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (396 lines) | stat: -rw-r--r-- 14,171 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2022 Klaus Spanderen

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file qrplusamericanengine.cpp
*/

#include <algorithm>
#include <ql/exercise.hpp>
#include <ql/utilities/null.hpp>
#include <ql/math/functional.hpp>
#include <ql/math/comparison.hpp>
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/solvers1d/ridder.hpp>
#include <ql/math/solvers1d/newton.hpp>
#include <ql/math/interpolations/chebyshevinterpolation.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/pricingengines/vanilla/qdplusamericanengine.hpp>
#include <ql/math/integrals/tanhsinhintegral.hpp>
#ifndef QL_BOOST_HAS_TANH_SINH
#include <ql/math/integrals/gausslobattointegral.hpp>
#endif

namespace QuantLib {

    class QdPlusBoundaryEvaluator {
      public:
        QdPlusBoundaryEvaluator(
            Real S, Real strike, Rate rf, Rate dy, Volatility vol, Time t, Time T)
        : tau(t), K(strike), sigma(vol), sigma2(sigma * sigma), v(sigma * std::sqrt(tau)), r(rf),
          q(dy), dr(std::exp(-r * tau)), dq(std::exp(-q * tau)),
          ddr((std::abs(r*tau) > 1e-5)? Real(r/(1-dr)) : Real(1/(tau*(1-0.5*r*tau*(1-r*tau/3))))),
          omega(2 * (r - q) / sigma2),
          lambda(0.5 *
                 (-(omega - 1) - std::sqrt(squared(omega - 1) + 8 * ddr / sigma2))),
          lambdaPrime(2 * ddr*ddr /
                      (sigma2 * std::sqrt(squared(omega - 1) + 8 * ddr / sigma2))),
          alpha(2 * dr / (sigma2 * (2 * lambda + omega - 1))),
          beta(alpha * (ddr + lambdaPrime / (2 * lambda + omega - 1)) - lambda),
          xMax(QdPlusAmericanEngine::xMax(strike, r, q)),
          xMin(QL_EPSILON * 1e4 * std::min(0.5 * (strike + S), xMax)),

          sc(Null<Real>()) {}

        Real operator()(Real S) const {
            ++nrEvaluations;

            if (S != sc)
                preCalculate(S);

            if (close_enough(K-S, npv)) {
                return (1-dq*Phi_dp)*S + alpha*theta/dr;
            }
            else {
                const Real c0 = -beta - lambda + alpha*theta/(dr*(K-S-npv));
                return (1-dq*Phi_dp)*S + (lambda+c0)*(K-S-npv);
            }
        }
        Real derivative(Real S) const {
            if (S != sc)
                preCalculate(S);

            return 1 - dq*Phi_dp + dq/v*phi_dp + beta*(1-dq*Phi_dp)
                    + alpha/dr*charm;
        }
        Real fprime2(Real S) const {
            if (S != sc)
                preCalculate(S);

            const Real gamma = phi_dp*dq/(v*S);
            const Real colour = gamma*(q + (r-q)*dp/v + (1-dp*dm)/(2*tau));

            return dq*(phi_dp/(S*v) - phi_dp*dp/(S*v*v))
                    + beta*gamma + alpha/dr*colour;
        }

        Real xmin() const { return xMin; }
        Real xmax() const { return xMax; }
        Size evaluations() const { return nrEvaluations; }

      private:
        void preCalculate(Real S) const {
            S = std::max(QL_EPSILON, S);
            sc = S;
            dp = std::log(S*dq/(K*dr))/v + 0.5*v;
            dm = dp - v;
            Phi_dp = Phi(-dp);
            Phi_dm = Phi(-dm);
            phi_dp = phi(dp);

            npv = dr*K*Phi_dm - S*dq*Phi_dp;
            theta = r*K*dr*Phi_dm - q*S*dq*Phi_dp - sigma2*S/(2*v)*dq*phi_dp;
            charm = -dq*(phi_dp*((r-q)/v - dm/(2*tau)) +q*Phi_dp);
        }

        const CumulativeNormalDistribution Phi;
        const NormalDistribution phi;
        const Time tau;
        const Real K;
        const Volatility sigma, sigma2, v;
        const Rate r, q;
        const DiscountFactor dr, dq, ddr;
        const Real omega, lambda, lambdaPrime, alpha, beta, xMax, xMin;
        mutable Size nrEvaluations = 0;
        mutable Real sc, dp, dm, Phi_dp, Phi_dm, phi_dp;
        mutable Real npv, theta, charm;
    };


    detail::QdPlusAddOnValue::QdPlusAddOnValue(
        Time T, Real S, Real K, Rate r, Rate q, Volatility vol,
        const Real xmax, ext::shared_ptr<Interpolation> q_z)
    : T_(T), S_(S), K_(K), xmax_(xmax),
      r_(r), q_(q), vol_(vol), q_z_(std::move(q_z)) {}


    Real detail::QdPlusAddOnValue::operator()(Real z) const {
        const Real t = z*z;
        const Real q = (*q_z_)(2*std::sqrt(std::max(0.0, T_-t)/T_) - 1, true);
        const Real b_t = xmax_*std::exp(-std::sqrt(std::max(0.0, q)));

        const Real dr = std::exp(-r_*t);
        const Real dq = std::exp(-q_*t);
        const Real v = vol_*std::sqrt(t);

        Real r;
        if (v >= QL_EPSILON) {
            if (b_t > QL_EPSILON) {
                const Real dp = std::log(S_*dq/(b_t*dr))/v + 0.5*v;
                r = 2*z*(r_*K_*dr*Phi_(-dp+v) - q_*S_*dq*Phi_(-dp));
            }
            else
                r = 0.0;
        }
        else if (close_enough(S_*dq, b_t*dr))
            r = z*(r_*K_*dr - q_*S_*dq);
        else if (b_t*dr > S_*dq)
            r = 2*z*(r_*K_*dr - q_*S_*dq);
        else
            r = 0.0;

        return r;
    }


    detail::QdPutCallParityEngine::QdPutCallParityEngine(
        ext::shared_ptr<GeneralizedBlackScholesProcess> process)
    : process_(std::move(process)) {
        registerWith(process_);
    }

    void detail::QdPutCallParityEngine::calculate() const {
        QL_REQUIRE(arguments_.exercise->type() == Exercise::American,
                   "not an American option");

        const auto payoff =
            ext::dynamic_pointer_cast<StrikedTypePayoff>(arguments_.payoff);
        QL_REQUIRE(payoff, "non-striked payoff given");

        const Real spot = process_->x0();
        QL_REQUIRE(spot >= 0.0, "negative underlying given");

        const auto maturity = arguments_.exercise->lastDate();
        const Time T = process_->time(maturity);
        const Real S = process_->x0();
        const Real K = payoff->strike();
        const Rate r = -std::log(process_->riskFreeRate()->discount(maturity))/T;
        const Rate q = -std::log(process_->dividendYield()->discount(maturity))/T;
        const Volatility vol = process_->blackVolatility()->blackVol(T, K);

        QL_REQUIRE(S >= 0, "zero or positive underlying value is required");
        QL_REQUIRE(K >= 0, "zero or positive strike is required");
        QL_REQUIRE(vol >= 0, "zero or positive volatility is required");

        if (payoff->optionType() == Option::Put)
            results_.value = calculatePutWithEdgeCases(S, K, r, q, vol, T);
        else if (payoff->optionType() == Option::Call)
            results_.value = calculatePutWithEdgeCases(K, S, q, r, vol, T);
        else
            QL_FAIL("unknown option type");
    }

    Real detail::QdPutCallParityEngine::calculatePutWithEdgeCases(
        Real S, Real K, Rate r, Rate q, Volatility vol, Time T) const {

        if (close(K, 0.0))
            return 0.0;

        if (close(S, 0.0))
            return std::max(K, K*std::exp(-r*T));

        if (r <= 0.0 && r <= q)
            return std::max(0.0,
                BlackCalculator(Option::Put, K, S*std::exp((r-q)*T),
                                vol*std::sqrt(T), std::exp(-r*T)).value());

        if (close(vol, 0.0)) {
            const auto intrinsic = [&](Real t)  -> Real {
                return std::max(0.0, K*std::exp(-r*t)-S*std::exp(-q*t));
            };
            const Real npv0 = intrinsic(0.0);
            const Real npvT = intrinsic(T);
            const Real extremT
                = close_enough(r, q)? QL_MAX_REAL : Real(std::log(r*K/(q*S))/(r-q));

            if (extremT > 0.0 && extremT < T)
                return std::max({npv0, npvT, intrinsic(extremT)});
            else
                return std::max(npv0, npvT);
        }

        return calculatePut(S, K, r, q, vol, T);
    }


    Real QdPlusAmericanEngine::xMax(Real K, Rate r, Rate q) {
        //Table 2 from Leif Andersen, Mark Lake (2021)
        //"Fast American Option Pricing: The Double-Boundary Case"

        if (r > 0.0 && q > 0.0)
            return K*std::min(1.0, r/q);
        else if (r > 0.0 && q <= 0.0)
            return K;
        else if (r == 0.0 && q < 0.0)
            return K;
        else if (r == 0.0 && q >= 0.0)
            return 0.0; // Eurpoean case
        else if (r < 0.0 && q >= 0.0)
            return 0.0; // European case
        else if (r < 0.0 && q < r)
            return K; // double boundary case
        else if (r < 0.0 && r <= q && q < 0.0)
            return 0; // European case
        else
            QL_FAIL("internal error");
    }

    QdPlusAmericanEngine::QdPlusAmericanEngine(
        ext::shared_ptr<GeneralizedBlackScholesProcess> process,
        Size interpolationPoints,
        QdPlusAmericanEngine::SolverType solverType,
        Real eps, Size maxIter)
    : detail::QdPutCallParityEngine(std::move(process)),
      interpolationPoints_(interpolationPoints),
      solverType_(solverType),
      eps_(eps),
      maxIter_((maxIter == Null<Size>()) ? (
          (solverType == Newton
           || solverType == Brent || solverType== Ridder)? 100 : 10)
          : maxIter ) { }

    template <class Solver>
    Real QdPlusAmericanEngine::buildInSolver(
        const QdPlusBoundaryEvaluator& eval,
        Solver solver, Real S, Real strike, Size maxIter, Real guess) const {

        solver.setMaxEvaluations(maxIter);
        solver.setLowerBound(eval.xmin());

        const Real fxmin = eval(eval.xmin());
        Real xmax = std::max(0.5*(eval.xmax() + S), eval.xmax());
        while (eval(xmax)*fxmin > 0.0 && eval.evaluations() < maxIter_)
            xmax*=2;

        if (guess == Null<Real>())
            guess = 0.5*(xmax + S);

        if (guess >= xmax)
            guess = std::nextafter(xmax, Real(-1));
        else if (guess <= eval.xmin())
            guess = std::nextafter(eval.xmin(), QL_MAX_REAL);

        return solver.solve(eval, eps_, guess, eval.xmin(), xmax);
    }

    std::pair<Size, Real> QdPlusAmericanEngine::putExerciseBoundaryAtTau(
            Real S, Real K, Rate r, Rate q,
            Volatility vol, Time T, Time tau) const {

        if (tau < QL_EPSILON)
            return std::pair<Size, Real>(
                Size(0), xMax(K, r, q));

        const QdPlusBoundaryEvaluator eval(S, K, r, q, vol, tau, T);

        Real x;
        switch (solverType_) {
          case Brent:
            x = buildInSolver(eval, QuantLib::Brent(), S, K, maxIter_);
            break;
          case Newton:
            x = buildInSolver(eval, QuantLib::Newton(), S, K, maxIter_);
            break;
          case Ridder:
            x = buildInSolver(eval, QuantLib::Ridder(), S, K, maxIter_);
            break;
          case Halley:
          case SuperHalley:
            {
                bool resultCloseEnough;
                x = eval.xmax();
                Real xOld, fx;
                const Real xmin = eval.xmin();

                do {
                    xOld = x;
                    fx = eval(x);
                    const Real fPrime = eval.derivative(x);
                    const Real lf = fx*eval.fprime2(x)/(fPrime*fPrime);
                    const Real step = (solverType_ == Halley)
                        ? Real(1/(1 - 0.5*lf)*fx/fPrime)
                        : Real((1 + 0.5*lf/(1-lf))*fx/fPrime);

                    x = std::max(xmin, x - step);
                    resultCloseEnough = std::fabs(x-xOld) < 0.5*eps_;
                }
                while (!resultCloseEnough && eval.evaluations() < maxIter_);

                if (!resultCloseEnough && !close(std::fabs(fx), 0.0)) {
                    x = buildInSolver(eval, QuantLib::Brent(), S, K, 10*maxIter_, x);
                }
            }
            break;
          default:
            QL_FAIL("unknown solver type");
        }

        return std::pair<Size, Real>(eval.evaluations(), x);
    }

    ext::shared_ptr<ChebyshevInterpolation>
        QdPlusAmericanEngine::getPutExerciseBoundary(
        Real S, Real K, Rate r, Rate q, Volatility vol, Time T) const {

        const Real xmax = xMax(K, r, q);

        return ext::make_shared<ChebyshevInterpolation>(
            interpolationPoints_,
            [&, this](Real z) {
                const Real x_sq = 0.25*T*squared(1+z);
                return squared(std::log(
                    this->putExerciseBoundaryAtTau(S, K, r, q, vol, T, x_sq)
                        .second/xmax));
            },
            ChebyshevInterpolation::SecondKind
        );
    }

    Real QdPlusAmericanEngine::calculatePut(
        Real S, Real K, Rate r, Rate q, Volatility vol, Time T) const {

        if (r < 0.0 && q < r)
            QL_FAIL("double-boundary case q<r<0 for a put option is given");

        const ext::shared_ptr<Interpolation> q_z
            = getPutExerciseBoundary(S, K, r, q, vol, T);

        const Real xmax = xMax(K, r, q);
        const detail::QdPlusAddOnValue aov(T, S, K, r, q, vol, xmax, q_z);

#ifdef QL_BOOST_HAS_TANH_SINH
        const Real addOn = TanhSinhIntegral(eps_)(aov, 0.0, std::sqrt(T));
#else
        const Real addOn = GaussLobattoIntegral(100000, QL_MAX_REAL, 0.1*eps_)
                (aov, 0.0, std::sqrt(T));
#endif

        QL_REQUIRE(addOn > -10*eps_,
            "negative early exercise value " << addOn);

        const Real europeanValue = std::max(
            0.0,
            BlackCalculator(
                Option::Put, K,
                S*std::exp((r-q)*T),
                vol*std::sqrt(T), std::exp(-r*T)).value()
        );

        return europeanValue + std::max(0.0, addOn);
    }
}