1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2020 Lew Wei Hao
Copyright (C) 2021 Magnus Mencke
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file coxingersollrossprocess.hpp
\brief CoxIngersollRoss process
*/
#ifndef quantlib_coxingersollross_process_hpp
#define quantlib_coxingersollross_process_hpp
#include <ql/stochasticprocess.hpp>
#include <ql/math/distributions/normaldistribution.hpp>
namespace QuantLib {
//! CoxIngersollRoss process class
/*! This class describes the CoxIngersollRoss process governed by
\f[
dx(t) = k (\theta - x(t)) dt + \sigma \sqrt{x(t)} dW(t).
\f]
The process is discretized using the Quadratic Exponential scheme.
For details see Leif Andersen,
Efficient Simulation of the Heston Stochastic Volatility Model.
\ingroup processes
*/
class CoxIngersollRossProcess : public StochasticProcess1D {
public:
CoxIngersollRossProcess(Real speed,
Volatility vol,
Real x0 = 0.0,
Real level = 0.0);
//@{
Real drift(Time t, Real x) const override;
Real diffusion(Time t, Real x) const override;
Real expectation(Time t0, Real x0, Time dt) const override;
Real stdDeviation(Time t0, Real x0, Time dt) const override;
//@}
Real x0() const override;
Real speed() const;
Real volatility() const;
Real level() const;
Real variance(Time t0, Real x0, Time dt) const override;
Real evolve (Time t0,
Real x0,
Time dt,
Real dw) const override;
private:
Real x0_, speed_, level_;
Volatility volatility_;
};
// inline
inline Real CoxIngersollRossProcess::x0() const {
return x0_;
}
inline Real CoxIngersollRossProcess::speed() const {
return speed_;
}
inline Real CoxIngersollRossProcess::volatility() const {
return volatility_;
}
inline Real CoxIngersollRossProcess::level() const {
return level_;
}
inline Real CoxIngersollRossProcess::drift(Time, Real x) const {
return speed_ * (level_ - x);
}
inline Real CoxIngersollRossProcess::diffusion(Time, Real) const {
return volatility_;
}
inline Real CoxIngersollRossProcess::expectation(Time, Real x0,
Time dt) const {
return level_ + (x0 - level_) * std::exp(-speed_*dt);
}
inline Real CoxIngersollRossProcess::stdDeviation(Time t, Real x0,
Time dt) const {
return std::sqrt(variance(t,x0,dt));
}
inline Real CoxIngersollRossProcess::evolve (Time t0,
Real x0,
Time dt,
Real dw) const {
Real result;
const Real ex = std::exp(-speed_*dt);
const Real m = level_+(x0-level_)*ex;
const Real s2 = x0*volatility_*volatility_*ex/speed_*(1-ex)
+ level_*volatility_*volatility_/(2*speed_)*(1-ex)*(1-ex);
const Real psi = s2/(m*m);
if (psi <= 1.5) {
const Real b2 = 2/psi-1+std::sqrt(2/psi*(2/psi-1));
const Real b = std::sqrt(b2);
const Real a = m/(1+b2);
result = a*(b+dw)*(b+dw);
}
else {
const Real p = (psi-1)/(psi+1);
const Real beta = (1-p)/m;
const Real u = CumulativeNormalDistribution()(dw);
result = ((u <= p) ? 0.0 : Real(std::log((1-p)/(1-u))/beta));
}
return result;
}
}
#endif
|