File: globalbootstrap.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (118 lines) | stat: -rw-r--r-- 4,273 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2019 SoftSolutions! S.r.l.
 Copyright (C) 2025 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/termstructures/globalbootstrap.hpp>

namespace QuantLib {

MultiCurveBootstrap::MultiCurveBootstrap(Real accuracy) {
    optimizer_ = ext::make_shared<LevenbergMarquardt>(accuracy, accuracy, accuracy);
    endCriteria_ = ext::make_shared<EndCriteria>(1000, 10, accuracy, accuracy, accuracy);
}

MultiCurveBootstrap::MultiCurveBootstrap(ext::shared_ptr<OptimizationMethod> optimizer,
                                         ext::shared_ptr<EndCriteria> endCriteria)
: optimizer_(std::move(optimizer)), endCriteria_(std::move(endCriteria)) {
    constexpr auto accuracy = 1E-10;
    if (optimizer_ == nullptr)
        optimizer_ = ext::make_shared<LevenbergMarquardt>(accuracy, accuracy, accuracy);
    if (endCriteria_ == nullptr)
        endCriteria_ = ext::make_shared<EndCriteria>(1000, 10, accuracy, accuracy, accuracy);
}

void MultiCurveBootstrap::add(const MultiCurveBootstrapContributor* c) {
    contributors_.push_back(c);
    c->setParentBootstrapper(shared_from_this());
}

void MultiCurveBootstrap::addObserver(Observer* o) {
    observers_.push_back(o);
}

void MultiCurveBootstrap::runMultiCurveBootstrap() {

    std::vector<Size> guessSizes;
    std::vector<Real> globalGuess;

    for (auto const& c : contributors_) {
        Array guess = c->setupCostFunction();
        globalGuess.insert(globalGuess.end(), guess.begin(), guess.end());
        guessSizes.push_back(guess.size());
    }

    auto fn = [this, &guessSizes](const Array& x) {
        // call the contributors' cost functions' set part

        std::size_t offset = 0;
        for (std::size_t c = 0; c < contributors_.size(); ++c) {
            Array tmp(guessSizes[c]);
            std::copy(std::next(x.begin(), offset), std::next(x.begin(), offset + guessSizes[c]),
                      tmp.begin());
            offset += guessSizes[c];
            contributors_[c]->setCostFunctionArgument(tmp);
        }

        // update observers
        for(auto *o: observers_)
            o->update();

        // collect the contributors' result

        std::vector<Array> results;
        results.reserve(contributors_.size());
        for (auto& contributor : contributors_) {
            results.push_back(contributor->evaluateCostFunction());
        }

        // concatenate the contributors' values and return the concatenation as the result

        std::size_t resultSize =
            std::accumulate(results.begin(), results.end(), (std::size_t)0,
                            [](std::size_t len, const Array& a) { return len + a.size(); });

        Array result(resultSize);

        offset = 0;
        for (auto const& r : results) {
            std::copy(r.begin(), r.end(), std::next(result.begin(), offset));
            offset += r.size();
        }

        return result;
    };

    SimpleCostFunction<decltype(fn)> costFunction(fn);
    NoConstraint noConstraint;
    Problem problem(costFunction, noConstraint, Array(globalGuess.begin(), globalGuess.end()));
    EndCriteria::Type endType = optimizer_->minimize(problem, *endCriteria_);

    QL_REQUIRE(
        EndCriteria::succeeded(endType),
        "global bootstrap failed to minimize to required accuracy (during multi curve bootstrap): "
            << endType);

    // set all contributors to valid

    for (auto const& c : contributors_)
        c->setToValid();
}

} // namespace QuantLib