File: xoshiro256starstar.cpp

package info (click to toggle)
quantlib 1.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,480 kB
  • sloc: cpp: 400,885; makefile: 6,547; python: 214; sh: 150; lisp: 86
file content (263 lines) | stat: -rw-r--r-- 9,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2023 Ralf Konrad Eckel

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include "toplevelfixture.hpp"
#include "utilities.hpp"
#include <ql/math/randomnumbers/xoshiro256starstaruniformrng.hpp>
#include <numeric>

using namespace QuantLib;

BOOST_FIXTURE_TEST_SUITE(QuantLibTests, TopLevelFixture)

BOOST_AUTO_TEST_SUITE(Xoshiro256StarStarTests)

// we do not want to change the original xoshiro256starstar.c implementation. Therefore, we suppress
// any warnings from this file and also prevent linting and formatting.
// clang-format off
// NOLINTBEGIN
#if defined(__GNUC__)
    _Pragma("GCC diagnostic push")
    _Pragma("GCC diagnostic ignored \"-Wsign-compare\"")
#elif defined(__clang__)
    _Pragma("clang diagnostic push")
    _Pragma("clang diagnostic ignored \"-Wsign-compare\"")
#endif

// The block inside extern "C" { ... } inlines the reference implementation
// from https://prng.di.unimi.it/xoshiro256starstar.c

extern "C" {
    /*  Written in 2018 by David Blackman and Sebastiano Vigna (vigna@acm.org)

    To the extent possible under law, the author has dedicated all copyright
    and related and neighboring rights to this software to the public domain
    worldwide. This software is distributed without any warranty.

    See <http://creativecommons.org/publicdomain/zero/1.0/>. */

    #include <stdint.h>

    /* This is xoshiro256** 1.0, one of our all-purpose, rock-solid
       generators. It has excellent (sub-ns) speed, a state (256 bits) that is
       large enough for any parallel application, and it passes all tests we
       are aware of.

       For generating just floating-point numbers, xoshiro256+ is even faster.

       The state must be seeded so that it is not everywhere zero. If you have
       a 64-bit seed, we suggest to seed a splitmix64 generator and use its
       output to fill s. */

    static inline uint64_t rotl(const uint64_t x, int k) {
            return (x << k) | (x >> (64 - k));
    }


    static uint64_t s[4];

    uint64_t next(void) {
            const uint64_t result = rotl(s[1] * 5, 7) * 9;

            const uint64_t t = s[1] << 17;

            s[2] ^= s[0];
            s[3] ^= s[1];
            s[1] ^= s[2];
            s[0] ^= s[3];

            s[2] ^= t;

            s[3] = rotl(s[3], 45);

            return result;
    }


    /* This is the jump function for the generator. It is equivalent
       to 2^128 calls to next(); it can be used to generate 2^128
       non-overlapping subsequences for parallel computations. */

    void jump(void) {
            static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba, 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };

            uint64_t s0 = 0;
            uint64_t s1 = 0;
            uint64_t s2 = 0;
            uint64_t s3 = 0;
            for(int i = 0; i < sizeof JUMP / sizeof *JUMP; i++)
                    for(int b = 0; b < 64; b++) {
                            if (JUMP[i] & UINT64_C(1) << b) {
                                    s0 ^= s[0];
                                    s1 ^= s[1];
                                    s2 ^= s[2];
                                    s3 ^= s[3];
                            }
                            next();
                    }

            s[0] = s0;
            s[1] = s1;
            s[2] = s2;
            s[3] = s3;
    }



    /* This is the long-jump function for the generator. It is equivalent to
       2^192 calls to next(); it can be used to generate 2^64 starting points,
       from each of which jump() will generate 2^64 non-overlapping
       subsequences for parallel distributed computations. */

    void long_jump(void) {
            static const uint64_t LONG_JUMP[] = { 0x76e15d3efefdcbbf, 0xc5004e441c522fb3, 0x77710069854ee241, 0x39109bb02acbe635 };

            uint64_t s0 = 0;
            uint64_t s1 = 0;
            uint64_t s2 = 0;
            uint64_t s3 = 0;
            for(int i = 0; i < sizeof LONG_JUMP / sizeof *LONG_JUMP; i++)
                    for(int b = 0; b < 64; b++) {
                            if (LONG_JUMP[i] & UINT64_C(1) << b) {
                                    s0 ^= s[0];
                                    s1 ^= s[1];
                                    s2 ^= s[2];
                                    s3 ^= s[3];
                            }
                            next();
                    }

            s[0] = s0;
            s[1] = s1;
            s[2] = s2;
            s[3] = s3;
    }
}

#if defined(__GNUC__)
    _Pragma("GCC diagnostic pop")
#elif defined(__clang__)
    _Pragma("clang diagnostic pop")
#endif
// NOLINTEND
// clang-format on

BOOST_AUTO_TEST_CASE(testMeanAndStdDevOfNextReal) {
    BOOST_TEST_MESSAGE(
        "Testing Xoshiro256StarStarUniformRng::nextReal() for mean=0.5 and stddev=1/12...");

    auto random = Xoshiro256StarStarUniformRng(1);
    const auto iterations = 10'000'000;
    auto randoms = std::vector<Real>();
    randoms.reserve(iterations);
    for (auto j = 0; j < iterations; ++j) {
        auto next = random.nextReal();
        if (next <= 0.0 || 1.0 <= next) {
            BOOST_FAIL("next " << next << " not in range");
        }
        randoms.push_back(next);
    }
    Real mean = std::accumulate(randoms.begin(), randoms.end(), Real(0.0)) / randoms.size();
    Real meanError = std::fabs(0.5 - mean);
    if (meanError > 0.005) {
        BOOST_ERROR("Mean " << mean << " for seed 1 is not close to 0.5.");
    }
    std::vector<Real> diff(randoms.size());
    std::transform(randoms.begin(), randoms.end(), diff.begin(),
                   [mean](Real x) -> Real { return x - mean; });
    Real stdDev = std::inner_product(diff.begin(), diff.end(), diff.begin(), Real(0.0)) / randoms.size();
    Real stdDevError = std::fabs(1.0 / 12.0 - stdDev);
    if (stdDevError > 0.00005) {
        BOOST_ERROR("Standard deviation " << stdDev << " for seed 1 is not close to 1/12.");
    }
}

BOOST_AUTO_TEST_CASE(testAgainstReferenceImplementationInC) {
    BOOST_TEST_MESSAGE(
        "Testing Xoshiro256StarStarUniformRng::nextInt64() against reference implementation in C...");
    
    // some random initial seed
    static const auto seed = 10108360646465513120ULL;

    static const auto s0 = 18274946675476036270ULL;
    static const auto s1 = 6043068446171522962ULL;
    static const auto s2 = 96311065249897859ULL;
    static const auto s3 = 16504445955133574805ULL;

    s[0] = s0;
    s[1] = s1;
    s[2] = s2;
    s[3] = s3;

    auto rngFromSeed = Xoshiro256StarStarUniformRng(seed);
    auto rngFroms0s1s2s3 = Xoshiro256StarStarUniformRng(s0, s1, s2, s3);
    for (auto i = 0; i < 1'000; i++) {
        auto nextRefImpl = next();
        auto nextFromSeed = rngFromSeed.nextInt64();
        auto nextFroms0s1s2s3 = rngFroms0s1s2s3.nextInt64();
        if (nextRefImpl != nextFromSeed) {
            BOOST_FAIL("Test failed at index "
                       << i << " (expected from reference implementation: " << nextRefImpl
                       << "ULL, from Xoshiro256StarStarUniformRng(" << seed
                       << "ULL): " << nextFromSeed << "ULL)");
        }
        if (nextFroms0s1s2s3 != nextFromSeed) {
            BOOST_FAIL("Test failed at index " << i << " (from Xoshiro256StarStarUniformRng("
                                               << seed << "): " << nextFroms0s1s2s3
                                               << "ULL, from Xoshiro256StarStarUniformRng(" << s0
                                               << "ULL, " << s1 << "ULL, " << s2 << "ULL, " << s3
                                               << "ULL): " << nextFromSeed << "ULL)");
        }
    }
}

BOOST_AUTO_TEST_CASE(testAbsenceOfInteractionBetweenInstances) {
    BOOST_TEST_MESSAGE(
        "Testing Xoshiro256StarStarUniformRng for absence of interaction between instances...");

    auto seed = 16880566536755896171ULL;
    Xoshiro256StarStarUniformRng rng(seed);
    for (auto i = 0; i < 999; ++i)
        rng.nextInt64();
    auto referenceValue = rng.nextInt64();

    // sequential use
    Xoshiro256StarStarUniformRng rng1(seed), rng2(seed);
    for (auto i = 0; i < 1'000; i++)
        rng1.nextInt64();
    for (auto i = 0; i < 999; i++)
        rng2.nextInt64();
    if (referenceValue != rng2.nextInt64())
        BOOST_FAIL("Detected interaction between Xoshiro256StarStarUniformRng instances during "
                   "sequential computation");

    // parallel use
    Xoshiro256StarStarUniformRng rng3(seed), rng4(seed);
    for (auto i = 0; i < 999; i++) {
        rng3.nextInt64();
        rng4.nextInt64();
    }
    if (referenceValue != rng3.nextInt64() || referenceValue != rng4.nextInt64())
        BOOST_FAIL("Detected interaction between Xoshiro256StarStarUniformRng instances during "
                   "parallel computation");
}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_SUITE_END()