1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*
Quickplot - an interactive 2D plotter
Copyright (C) 1998-2011 Lance Arsenault
This file is part of Quickplot.
Quickplot is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.
Quickplot is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quickplot. If not, see <http://www.gnu.org/licenses/>.
*/
#include <sys/types.h>
#include <math.h>
#ifndef _QP_DEBUG_H_
#error "You must include qp_debug.h before this file."
#endif
#ifndef NAN
#error "number NAN is not defined"
#endif
#ifndef INFINITY
#error "number INFINITY not defined"
#endif
#define END_DOUBLE (NAN)
extern
void qp_channel_series_double_append(qp_channel_t channel, double val);
extern
double qp_channel_series_double_begin(qp_channel_t channel);
extern
double qp_channel_series_double_end(qp_channel_t channel);
/* Find the value that is less than and next to or as close as possible
* For series that is increasing
* *v in is the value to search on
* *v out is the value found from the channel
* sets the current read to that value in the channel
* returns the index to the value in the channel
* returns 0 if a value was not found and the value
* is set to the first value
* */
extern
size_t qp_channel_series_double_find_lt(qp_channel_t channel, double *v);
/* Find the value that is greater than and next to or as close as possible
* For series that is increasing
* *v in is the value to search on
* *v out is the value found from the channel
* sets the current read to that value in the channel
* returns the index to the value in the channel
* returns length - 1 if the value was not found
* and the value is set to the last value
* */
extern
size_t qp_channel_series_double_find_gt(qp_channel_t channel, double *v);
/* Check that i is in bounds before this call */
/* This is a little slow, so don't iterate with it
* you can use it to start an iteration at a point
* not necessarily at the first or last value. It is
* a lot faster than iterating to the i-th value
* with qp_channel_series_double_next() and
* qp_channel_series_double_prev()
*
* Returns the i-th value where i = [ 0, length-1 ] and
* sets the current value to that value */
static inline
double qp_channel_series_double_index(qp_channel_t c, size_t i)
{
double *array;
ASSERT(c->form == QP_CHANNEL_FORM_SERIES);
ASSERT(i >= 0);
ASSERT(i < qp_channel_series_length(c));
ASSERT(c->value_type == QP_TYPE_DOUBLE);
ASSERT(*(c->series.ref_count) > 0);
array = qp_dllist_begin(c->series.arrays);
for(;i >= ARRAY_LENGTH; i -= ARRAY_LENGTH)
array = qp_dllist_next(c->series.arrays);
c->series.array_current_index = i;
return array[i];
}
/* This is not so fast. Do not use in a tight loop. */
/* This returns the current index or (size_t) -1 if their is none. */
static inline
size_t qp_channel_series_double_get_index(qp_channel_t c)
{
size_t ret = 0;
void *current_array, *array;
ASSERT(c->form == QP_CHANNEL_FORM_SERIES);
ASSERT(c->value_type == QP_TYPE_DOUBLE);
ASSERT(qp_channel_series_is_reading(c));
ASSERT(*(c->series.ref_count) > 0);
if(!qp_channel_series_is_reading(c))
return (size_t) -1;
ret += c->series.array_current_index;
current_array = qp_dllist_val(c->series.arrays);
array = qp_dllist_begin(c->series.arrays);
while(array != current_array)
{
ret += ARRAY_LENGTH;
array = qp_dllist_next(c->series.arrays);
ASSERT(array);
}
return ret;
}
static inline
double qp_channel_series_double_next(qp_channel_t c)
{
double *array;
struct qp_channel_series *cs;
ASSERT(c);
ASSERT(c->form == QP_CHANNEL_FORM_SERIES ||
c->form == QP_CHANNEL_FORM_FUNC);
ASSERT(c->value_type == QP_TYPE_DOUBLE);
ASSERT(c->series.arrays);
ASSERT(*(c->series.ref_count) > 0);
cs = &c->series;
++(cs->array_current_index);
array = (double *) qp_dllist_val(cs->arrays);
if(!array) return END_DOUBLE;
if(array != cs->last_array)
{
if(cs->array_current_index < ARRAY_LENGTH)
return array[cs->array_current_index];
array = (double *) qp_dllist_next(cs->arrays);
cs->array_current_index = 0;
}
if(array != cs->last_array)
return array[cs->array_current_index];
if(array && cs->array_current_index <= cs->array_last_index)
return array[cs->array_current_index];
if(array)
{
/* push it past the end */
qp_dllist_next(cs->arrays);
ASSERT(!qp_dllist_val(cs->arrays));
return END_DOUBLE;
}
/* there are no values left or there are no values */
return END_DOUBLE;
}
static inline
double qp_channel_series_double_prev(qp_channel_t c)
{
double *array;
struct qp_channel_series *cs;
ASSERT(c);
ASSERT(c->form == QP_CHANNEL_FORM_SERIES ||
c->form == QP_CHANNEL_FORM_FUNC);
ASSERT(c->value_type == QP_TYPE_DOUBLE);
ASSERT(*(c->series.ref_count) > 0);
ASSERT(c->series.arrays);
cs = &c->series;
--(cs->array_current_index);
array = (double *) qp_dllist_val(cs->arrays);
if(array)
{
if(cs->array_current_index != (size_t) -1)
{
return array[cs->array_current_index];
}
else
{
array = (double *) qp_dllist_prev(cs->arrays);
if(array)
{
cs->array_current_index = ARRAY_LENGTH - 1;
return array[cs->array_current_index];
}
}
}
return END_DOUBLE;
}
|