1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
|
//******************************
// Written by Peter Golde
// Copyright (c) 2004-2007, Wintellect
//
// Use and restribution of this code is subject to the license agreement
// contained in the file "License.txt" accompanying this file.
//******************************
using System;
using System.Diagnostics;
using System.Collections.Generic;
namespace Wintellect.PowerCollections
{
/// <summary>
/// Describes what to do if a key is already in the tree when doing an
/// insertion.
/// </summary>
internal enum DuplicatePolicy {
InsertFirst, // Insert a new node before duplicates
InsertLast, // Insert a new node after duplicates
ReplaceFirst, // Replace the first of the duplicate nodes
ReplaceLast, // Replace the last of the duplicate nodes
DoNothing // Do nothing to the tree
};
/// <summary>
/// The base implementation for various collections classes that use Red-Black trees
/// as part of their implementation. This class should not (and can not) be
/// used directly by end users; it's only for internal use by the collections package.
/// </summary>
/// <remarks>
/// The Red-Black tree manages items of type T, and uses a IComparer<T> that
/// compares items to sort the tree. Multiple items can compare equal and be stored
/// in the tree. Insert, Delete, and Find operations are provided in their full generality;
/// all operations allow dealing with either the first or last of items that compare equal.
///</remarks>
[Serializable]
internal class RedBlackTree<T>: IEnumerable<T> {
private readonly IComparer<T> comparer; // interface for comparing elements, only Compare is used.
private Node root; // The root of the tree. Can be null when tree is empty.
private int count; // The count of elements in the tree.
private int changeStamp; // An integer that is changed every time the tree structurally changes.
// Used so that enumerations throw an exception if the tree is changed
// during enumeration.
private Node[] stack; // A stack of nodes. This is cached locally to avoid constant re-allocated it.
/// <summary>
/// Create an array of Nodes big enough for any path from top
/// to bottom. This is cached, and reused from call-to-call, so only one
/// can be around at a time per tree.
/// </summary>
/// <returns>The node stack.</returns>
private Node[] GetNodeStack()
{
// Maximum depth needed is 2 * lg count + 1.
int maxDepth;
if (count < 0x400)
maxDepth = 21;
else if (count < 0x10000)
maxDepth = 41;
else
maxDepth = 65;
if (stack == null || stack.Length < maxDepth)
stack = new Node[maxDepth];
return stack;
}
/// <summary>
/// The class that is each node in the red-black tree.
/// </summary>
[Serializable]
private class Node {
public Node left, right;
public T item;
private const uint REDMASK = 0x80000000;
private uint count;
/// <summary>
/// Is this a red node?
/// </summary>
public bool IsRed {
get { return (count & REDMASK) != 0; }
set {
if (value)
count |= REDMASK;
else
count &= ~REDMASK;
}
}
/// <summary>
/// Get or set the Count field -- a 31-bit field
/// that holds the number of nodes at or below this
/// level.
/// </summary>
public int Count
{
get { return (int)(count & ~REDMASK); }
set { count = (count & REDMASK) | (uint)value; }
}
/// <summary>
/// Add one to the Count.
/// </summary>
public void IncrementCount()
{
++count;
}
/// <summary>
/// Subtract one from the Count. The current
/// Count must be non-zero.
/// </summary>
public void DecrementCount()
{
Debug.Assert(Count != 0);
--count;
}
/// <summary>
/// Clones a node and all its descendants.
/// </summary>
/// <returns>The cloned node.</returns>
public Node Clone()
{
Node newNode = new Node();
newNode.item = item;
newNode.count = count;
if (left != null)
newNode.left = left.Clone();
if (right != null)
newNode.right = right.Clone();
return newNode;
}
}
/// <summary>
/// Must be called whenever there is a structural change in the tree. Causes
/// changeStamp to be changed, which causes any in-progress enumerations
/// to throw exceptions.
/// </summary>
internal void StopEnumerations()
{
++changeStamp;
}
/// <summary>
/// Checks the given stamp against the current change stamp. If different, the
/// collection has changed during enumeration and an InvalidOperationException
/// must be thrown
/// </summary>
/// <param name="startStamp">changeStamp at the start of the enumeration.</param>
private void CheckEnumerationStamp(int startStamp)
{
if (startStamp != changeStamp) {
throw new InvalidOperationException(Strings.ChangeDuringEnumeration);
}
}
/// <summary>
/// Initialize a red-black tree, using the given interface instance to compare elements. Only
/// Compare is used on the IComparer interface.
/// </summary>
/// <param name="comparer">The IComparer<T> used to sort keys.</param>
public RedBlackTree(IComparer<T> comparer) {
this.comparer = comparer;
this.count = 0;
this.root = null;
}
/// <summary>
/// Returns the number of elements in the tree.
/// </summary>
public int ElementCount {
get {
return count;
}
}
/// <summary>
/// Clone the tree, returning a new tree containing the same items. Should
/// take O(N) take.
/// </summary>
/// <returns>Clone version of this tree.</returns>
public RedBlackTree<T> Clone()
{
RedBlackTree<T> newTree = new RedBlackTree<T>(comparer);
newTree.count = this.count;
if (this.root != null)
newTree.root = this.root.Clone();
return newTree;
}
/// <summary>
/// Finds the key in the tree. If multiple items in the tree have
/// compare equal to the key, finds the first or last one. Optionally replaces the item
/// with the one searched for.
/// </summary>
/// <param name="key">Key to search for.</param>
/// <param name="findFirst">If true, find the first of duplicates, else finds the last of duplicates.</param>
/// <param name="replace">If true, replaces the item with key (if function returns true)</param>
/// <param name="item">Returns the found item, before replacing (if function returns true).</param>
/// <returns>True if the key was found.</returns>
public bool Find(T key, bool findFirst, bool replace, out T item) {
Node current = root; // current search location in the tree
Node found = null; // last node found with the key, or null if none.
while (current != null) {
int compare = comparer.Compare(key, current.item);
if (compare < 0) {
current = current.left;
}
else if (compare > 0) {
current = current.right;
}
else {
// Go left/right on equality to find first/last of elements with this key.
Debug.Assert(compare == 0);
found = current;
if (findFirst)
current = current.left;
else
current = current.right;
}
}
if (found != null) {
item = found.item;
if (replace)
found.item = key;
return true;
}
else {
item = default(T);
return false;
}
}
/// <summary>
/// Finds the index of the key in the tree. If multiple items in the tree have
/// compare equal to the key, finds the first or last one.
/// </summary>
/// <param name="key">Key to search for.</param>
/// <param name="findFirst">If true, find the first of duplicates, else finds the last of duplicates.</param>
/// <returns>Index of the item found if the key was found, -1 if not found.</returns>
public int FindIndex(T key, bool findFirst)
{
T dummy;
if (findFirst)
return FirstItemInRange(EqualRangeTester(key), out dummy);
else
return LastItemInRange(EqualRangeTester(key), out dummy);
}
/// <summary>
/// Find the item at a particular index in the tree.
/// </summary>
/// <param name="index">The zero-based index of the item. Must be >= 0 and < Count.</param>
/// <returns>The item at the particular index.</returns>
public T GetItemByIndex(int index)
{
if (index < 0 || index >= count)
throw new ArgumentOutOfRangeException("index");
Node current = root; // current search location in the tree
for (; ; ) {
int leftCount;
if (current.left != null)
leftCount = current.left.Count;
else
leftCount = 0;
if (leftCount > index)
current = current.left;
else if (leftCount == index)
return current.item;
else {
index -= leftCount + 1;
current = current.right;
}
}
}
/// <summary>
/// Insert a new node into the tree, maintaining the red-black invariants.
/// </summary>
/// <remarks>Algorithm from Sedgewick, "Algorithms".</remarks>
/// <param name="item">The new item to insert</param>
/// <param name="dupPolicy">What to do if equal item is already present.</param>
/// <param name="previous">If false, returned, the previous item.</param>
/// <returns>false if duplicate exists, otherwise true.</returns>
public bool Insert(T item, DuplicatePolicy dupPolicy, out T previous) {
Node node = root;
Node parent = null, gparent = null, ggparent = null; // parent, grand, a great-grantparent of node.
bool wentLeft = false, wentRight = false; // direction from parent to node.
bool rotated;
Node duplicateFound = null;
// The tree may be changed.
StopEnumerations();
// We increment counts on the way down the tree. If we end up not inserting an items due
// to a duplicate, we need a stack to adjust the counts back. We don't need the stack if the duplicate
// policy means that we will always do an insertion.
bool needStack = !((dupPolicy == DuplicatePolicy.InsertFirst) || (dupPolicy == DuplicatePolicy.InsertLast));
Node[] nodeStack = null;
int nodeStackPtr = 0; // first free item on the stack.
if (needStack)
nodeStack = GetNodeStack();
while (node != null) {
// If we find a node with two red children, split it so it doesn't cause problems
// when inserting a node.
if (node.left != null && node.left.IsRed && node.right != null && node.right.IsRed) {
node = InsertSplit(ggparent, gparent, parent, node, out rotated);
if (needStack && rotated) {
nodeStackPtr -= 2;
if (nodeStackPtr < 0)
nodeStackPtr = 0;
}
}
// Keep track of parent, grandparent, great-grand parent.
ggparent = gparent; gparent = parent; parent = node;
// Compare the key and the node.
int compare = comparer.Compare(item, node.item);
if (compare == 0) {
// Found a node with the data already. Check duplicate policy.
if (dupPolicy == DuplicatePolicy.DoNothing) {
previous = node.item;
// Didn't insert after all. Return counts back to their previous value.
for (int i = 0; i < nodeStackPtr; ++i)
nodeStack[i].DecrementCount();
return false;
}
else if (dupPolicy == DuplicatePolicy.InsertFirst || dupPolicy == DuplicatePolicy.ReplaceFirst) {
// Insert first by treating the key as less than nodes in the tree.
duplicateFound = node;
compare = -1;
}
else {
Debug.Assert(dupPolicy == DuplicatePolicy.InsertLast || dupPolicy == DuplicatePolicy.ReplaceLast);
// Insert last by treating the key as greater than nodes in the tree.
duplicateFound = node;
compare = 1;
}
}
Debug.Assert(compare != 0);
node.IncrementCount();
if (needStack)
nodeStack[nodeStackPtr++] = node;
// Move to the left or right as needed to find the insertion point.
if (compare < 0) {
node = node.left;
wentLeft = true; wentRight = false;
}
else {
node = node.right;
wentRight = true; wentLeft = false;
}
}
if (duplicateFound != null) {
previous = duplicateFound.item;
// Are we replacing instread of inserting?
if (dupPolicy == DuplicatePolicy.ReplaceFirst || dupPolicy == DuplicatePolicy.ReplaceLast) {
duplicateFound.item = item;
// Didn't insert after all. Return counts back to their previous value.
for (int i = 0; i < nodeStackPtr; ++i)
nodeStack[i].DecrementCount();
return false;
}
}
else {
previous = default(T);
}
// Create a new node.
node = new Node();
node.item = item;
node.Count = 1;
// Link the node into the tree.
if (wentLeft)
parent.left = node;
else if (wentRight)
parent.right = node;
else {
Debug.Assert(root == null);
root = node;
}
// Maintain the red-black policy.
InsertSplit(ggparent, gparent, parent, node, out rotated);
// We've added a node to the tree, so update the count.
count += 1;
return (duplicateFound == null);
}
/// <summary>
/// Split a node with two red children (a 4-node in the 2-3-4 tree formalism), as
/// part of an insert operation.
/// </summary>
/// <param name="ggparent">great grand-parent of "node", can be null near root</param>
/// <param name="gparent">grand-parent of "node", can be null near root</param>
/// <param name="parent">parent of "node", can be null near root</param>
/// <param name="node">Node to split, can't be null</param>
/// <param name="rotated">Indicates that rotation(s) occurred in the tree.</param>
/// <returns>Node to continue searching from.</returns>
private Node InsertSplit(Node ggparent, Node gparent, Node parent, Node node, out bool rotated) {
if (node != root)
node.IsRed = true;
if (node.left != null)
node.left.IsRed = false;
if (node.right != null)
node.right.IsRed = false;
if (parent != null && parent.IsRed) {
// Since parent is red, gparent can't be null (root is always black). ggparent
// might be null, however.
Debug.Assert(gparent != null);
// if links from gparent and parent are opposite (left/right or right/left),
// then rotate.
if ((gparent.left == parent) != (parent.left == node)) {
Rotate(gparent, parent, node);
parent = node;
}
gparent.IsRed = true;
// Do a rotate to prevent two red links in a row.
Rotate(ggparent, gparent, parent);
parent.IsRed = false;
rotated = true;
return parent;
}
else {
rotated = false;
return node;
}
}
/// <summary>
/// Performs a rotation involving the node, it's child and grandchild. The counts of
/// childs and grand-child are set the correct values from their children; this is important
/// if they have been adjusted on the way down the try as part of an insert/delete.
/// </summary>
/// <param name="node">Top node of the rotation. Can be null if child==root.</param>
/// <param name="child">One child of "node". Not null.</param>
/// <param name="gchild">One child of "child". Not null.</param>
private void Rotate(Node node, Node child, Node gchild) {
if (gchild == child.left) {
child.left = gchild.right;
gchild.right = child;
}
else {
Debug.Assert(gchild == child.right);
child.right = gchild.left;
gchild.left = child;
}
// Restore the counts.
child.Count = (child.left != null ? child.left.Count : 0) + (child.right != null ? child.right.Count : 0) + 1;
gchild.Count = (gchild.left != null ? gchild.left.Count : 0) + (gchild.right != null ? gchild.right.Count : 0) + 1;
if (node == null) {
Debug.Assert(child == root);
root = gchild;
}
else if (child == node.left) {
node.left = gchild;
}
else {
Debug.Assert(child == node.right);
node.right = gchild;
}
}
/// <summary>
/// Deletes a key from the tree. If multiple elements are equal to key,
/// deletes the first or last. If no element is equal to the key,
/// returns false.
/// </summary>
/// <remarks>Top-down algorithm from Weiss. Basic plan is to move down in the tree,
/// rotating and recoloring along the way to always keep the current node red, which
/// ensures that the node we delete is red. The details are quite complex, however! </remarks>
/// <param name="key">Key to delete.</param>
/// <param name="deleteFirst">Which item to delete if multiple are equal to key. True to delete the first, false to delete last.</param>
/// <param name="item">Returns the item that was deleted, if true returned.</param>
/// <returns>True if an element was deleted, false if no element had
/// specified key.</returns>
public bool Delete(T key, bool deleteFirst, out T item)
{
return DeleteItemFromRange(EqualRangeTester(key), deleteFirst, out item);
}
///
/// <summary>
/// Enumerate all the items in-order
/// </summary>
/// <returns>An enumerator for all the items, in order.</returns>
/// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
public IEnumerator<T> GetEnumerator()
{
return EnumerateRange(EntireRangeTester).GetEnumerator();
}
/// <summary>
/// Enumerate all the items in-order
/// </summary>
/// <returns>An enumerator for all the items, in order.</returns>
/// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
#region Ranges
/// <summary>
/// A delegate that tests if an item is within a custom range. The range must be a contiguous
/// range of items with the ordering of this tree. The range test function must test
/// if an item is before, withing, or after the range.
/// </summary>
/// <param name="item">Item to test against the range.</param>
/// <returns>Returns negative if item is before the range, zero if item is withing the range,
/// and positive if item is after the range.</returns>
public delegate int RangeTester(T item);
/// <summary>
/// Gets a range tester that defines a range by first and last items.
/// </summary>
/// <param name="useFirst">If true, bound the range on the bottom by first.</param>
/// <param name="first">If useFirst is true, the inclusive lower bound.</param>
/// <param name="useLast">If true, bound the range on the top by last.</param>
/// <param name="last">If useLast is true, the exclusive upper bound.</param>
/// <returns>A RangeTester delegate that tests for an item in the given range.</returns>
public RangeTester BoundedRangeTester(bool useFirst, T first, bool useLast, T last)
{
return delegate(T item) {
if (useFirst && comparer.Compare(first, item) > 0)
return -1; // item is before first.
else if (useLast && comparer.Compare(last, item) <= 0)
return 1; // item is after or equal to last.
else
return 0; // item is greater or equal to first, and less than last.
};
}
/// <summary>
/// Gets a range tester that defines a range by first and last items.
/// </summary>
/// <param name="first">The lower bound.</param>
/// <param name="firstInclusive">True if the lower bound is inclusive, false if exclusive.</param>
/// <param name="last">The upper bound.</param>
/// <param name="lastInclusive">True if the upper bound is inclusive, false if exclusive.</param>
/// <returns>A RangeTester delegate that tests for an item in the given range.</returns>
public RangeTester DoubleBoundedRangeTester(T first, bool firstInclusive, T last, bool lastInclusive)
{
return delegate(T item) {
if (firstInclusive) {
if (comparer.Compare(first, item) > 0)
return -1; // item is before first.
}
else {
if (comparer.Compare(first, item) >= 0)
return -1; // item is before or equal to first.
}
if (lastInclusive) {
if (comparer.Compare(last, item) < 0)
return 1; // item is after last.
}
else {
if (comparer.Compare(last, item) <= 0)
return 1; // item is after or equal to last
}
return 0; // item is between first and last.
};
}
/// <summary>
/// Gets a range tester that defines a range by a lower bound.
/// </summary>
/// <param name="first">The lower bound.</param>
/// <param name="inclusive">True if the lower bound is inclusive, false if exclusive.</param>
/// <returns>A RangeTester delegate that tests for an item in the given range.</returns>
public RangeTester LowerBoundedRangeTester(T first, bool inclusive)
{
return delegate(T item) {
if (inclusive) {
if (comparer.Compare(first, item) > 0)
return -1; // item is before first.
else
return 0; // item is after or equal to first
}
else {
if (comparer.Compare(first, item) >= 0)
return -1; // item is before or equal to first.
else
return 0; // item is after first
}
};
}
/// <summary>
/// Gets a range tester that defines a range by upper bound.
/// </summary>
/// <param name="last">The upper bound.</param>
/// <param name="inclusive">True if the upper bound is inclusive, false if exclusive.</param>
/// <returns>A RangeTester delegate that tests for an item in the given range.</returns>
public RangeTester UpperBoundedRangeTester(T last, bool inclusive)
{
return delegate(T item) {
if (inclusive) {
if (comparer.Compare(last, item) < 0)
return 1; // item is after last.
else
return 0; // item is before or equal to last.
}
else {
if (comparer.Compare(last, item) <= 0)
return 1; // item is after or equal to last
else
return 0; // item is before last.
}
};
}
/// <summary>
/// Gets a range tester that defines a range by all items equal to an item.
/// </summary>
/// <param name="equalTo">The item that is contained in the range.</param>
/// <returns>A RangeTester delegate that tests for an item equal to <paramref name="equalTo"/>.</returns>
public RangeTester EqualRangeTester(T equalTo)
{
return delegate(T item) {
return comparer.Compare(item, equalTo);
};
}
/// <summary>
/// A range tester that defines a range that is the entire tree.
/// </summary>
/// <param name="item">Item to test.</param>
/// <returns>Always returns 0.</returns>
public int EntireRangeTester(T item)
{
return 0;
}
/// <summary>
/// Enumerate the items in a custom range in the tree. The range is determined by
/// a RangeTest delegate.
/// </summary>
/// <param name="rangeTester">Tests an item against the custom range.</param>
/// <returns>An IEnumerable<T> that enumerates the custom range in order.</returns>
/// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
public IEnumerable<T> EnumerateRange(RangeTester rangeTester)
{
return EnumerateRangeInOrder(rangeTester, root);
}
/// <summary>
/// Enumerate all the items in a custom range, under and including node, in-order.
/// </summary>
/// <param name="rangeTester">Tests an item against the custom range.</param>
/// <param name="node">Node to begin enumeration. May be null.</param>
/// <returns>An enumerable of the items.</returns>
/// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
private IEnumerable<T> EnumerateRangeInOrder(RangeTester rangeTester, Node node)
{
int startStamp = changeStamp;
if (node != null) {
int compare = rangeTester(node.item);
if (compare >= 0) {
// At least part of the range may lie to the left.
foreach (T item in EnumerateRangeInOrder(rangeTester, node.left)) {
yield return item;
CheckEnumerationStamp(startStamp);
}
}
if (compare == 0) {
// The item is within the range.
yield return node.item;
CheckEnumerationStamp(startStamp);
}
if (compare <= 0) {
// At least part of the range lies to the right.
foreach (T item in EnumerateRangeInOrder(rangeTester, node.right)) {
yield return item;
CheckEnumerationStamp(startStamp);
}
}
}
}
/// <summary>
/// Enumerate the items in a custom range in the tree, in reversed order. The range is determined by
/// a RangeTest delegate.
/// </summary>
/// <param name="rangeTester">Tests an item against the custom range.</param>
/// <returns>An IEnumerable<T> that enumerates the custom range in reversed order.</returns>
/// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
public IEnumerable<T> EnumerateRangeReversed(RangeTester rangeTester)
{
return EnumerateRangeInReversedOrder(rangeTester, root);
}
/// <summary>
/// Enumerate all the items in a custom range, under and including node, in reversed order.
/// </summary>
/// <param name="rangeTester">Tests an item against the custom range.</param>
/// <param name="node">Node to begin enumeration. May be null.</param>
/// <returns>An enumerable of the items, in reversed oreder.</returns>
/// <exception cref="InvalidOperationException">The tree has an item added or deleted during the enumeration.</exception>
private IEnumerable<T> EnumerateRangeInReversedOrder(RangeTester rangeTester, Node node)
{
int startStamp = changeStamp;
if (node != null) {
int compare = rangeTester(node.item);
if (compare <= 0) {
// At least part of the range lies to the right.
foreach (T item in EnumerateRangeInReversedOrder(rangeTester, node.right)) {
yield return item;
CheckEnumerationStamp(startStamp);
}
}
if (compare == 0) {
// The item is within the range.
yield return node.item;
CheckEnumerationStamp(startStamp);
}
if (compare >= 0) {
// At least part of the range may lie to the left.
foreach (T item in EnumerateRangeInReversedOrder(rangeTester, node.left)) {
yield return item;
CheckEnumerationStamp(startStamp);
}
}
}
}
/// <summary>
/// Deletes either the first or last item from a range, as identified by a RangeTester
/// delegate. If the range is empty, returns false.
/// </summary>
/// <remarks>Top-down algorithm from Weiss. Basic plan is to move down in the tree,
/// rotating and recoloring along the way to always keep the current node red, which
/// ensures that the node we delete is red. The details are quite complex, however! </remarks>
/// <param name="rangeTester">Range to delete from.</param>
/// <param name="deleteFirst">If true, delete the first item from the range, else the last.</param>
/// <param name="item">Returns the item that was deleted, if true returned.</param>
/// <returns>True if an element was deleted, false if the range is empty.</returns>
public bool DeleteItemFromRange(RangeTester rangeTester, bool deleteFirst, out T item)
{
Node node; // The current node.
Node parent; // Parent of the current node.
Node gparent; // Grandparent of the current node.
Node sib; // Sibling of the current node.
Node keyNode; // Node with the key that is being removed.
// The tree may be changed.
StopEnumerations();
if (root == null) {
// Nothing in the tree. Go home now.
item = default(T);
return false;
}
// We decrement counts on the way down the tree. If we end up not finding an item to delete
// we need a stack to adjust the counts back.
Node[] nodeStack = GetNodeStack();
int nodeStackPtr = 0; // first free item on the stack.
// Start at the root.
node = root;
sib = parent = gparent = null;
keyNode = null;
// Proceed down the tree, making the current node red so it can be removed.
for (; ; ) {
Debug.Assert(parent == null || parent.IsRed);
Debug.Assert(sib == null || !sib.IsRed);
Debug.Assert(!node.IsRed);
if ((node.left == null || !node.left.IsRed) && (node.right == null || !node.right.IsRed)) {
// node has two black children (null children are considered black).
if (parent == null) {
// Special case for the root.
Debug.Assert(node == root);
node.IsRed = true;
}
else if ((sib.left == null || !sib.left.IsRed) && (sib.right == null || !sib.right.IsRed)) {
// sib has two black children.
node.IsRed = true;
sib.IsRed = true;
parent.IsRed = false;
}
else {
if (parent.left == node && (sib.right == null || !sib.right.IsRed)) {
// sib has a black child on the opposite side as node.
Node tleft = sib.left;
Rotate(parent, sib, tleft);
sib = tleft;
}
else if (parent.right == node && (sib.left == null || !sib.left.IsRed)) {
// sib has a black child on the opposite side as node.
Node tright = sib.right;
Rotate(parent, sib, tright);
sib = tright;
}
// sib has a red child.
Rotate(gparent, parent, sib);
node.IsRed = true;
sib.IsRed = true;
sib.left.IsRed = false;
sib.right.IsRed = false;
sib.DecrementCount();
nodeStack[nodeStackPtr - 1] = sib;
parent.DecrementCount();
nodeStack[nodeStackPtr++] = parent;
}
}
// Compare the key and move down the tree to the correct child.
do {
Node nextNode, nextSib; // Node we've moving to, and it's sibling.
node.DecrementCount();
nodeStack[nodeStackPtr++] = node;
// Determine which way to move in the tree by comparing the
// current item to what we're looking for.
int compare = rangeTester(node.item);
if (compare == 0) {
// We've found the node to remove. Remember it, then keep traversing the
// tree to either find the first/last of equal keys, and if needed, the predecessor
// or successor (the actual node to be removed).
keyNode = node;
if (deleteFirst) {
nextNode = node.left; nextSib = node.right;
}
else {
nextNode = node.right; nextSib = node.left;
}
}
else if (compare > 0) {
nextNode = node.left; nextSib = node.right;
}
else {
nextNode = node.right; nextSib = node.left;
}
// Have we reached the end of our tree walk?
if (nextNode == null)
goto FINISHED;
// Move down the tree.
gparent = parent;
parent = node;
node = nextNode;
sib = nextSib;
} while (!parent.IsRed && node.IsRed);
if (!parent.IsRed) {
Debug.Assert(!node.IsRed);
// moved to a black child.
Rotate(gparent, parent, sib);
sib.DecrementCount();
nodeStack[nodeStackPtr - 1] = sib;
parent.DecrementCount();
nodeStack[nodeStackPtr++] = parent;
sib.IsRed = false;
parent.IsRed = true;
gparent = sib;
sib = (parent.left == node) ? parent.right : parent.left;
}
}
FINISHED:
if (keyNode == null) {
// We never found a node to delete.
// Return counts back to their previous value.
for (int i = 0; i < nodeStackPtr; ++i)
nodeStack[i].IncrementCount();
// Color the root black, in case it was colored red above.
if (root != null)
root.IsRed = false;
item = default(T);
return false;
}
// Return the item from the node we're deleting.
item = keyNode.item;
// At a leaf or a node with one child which is a leaf. Remove the node.
if (keyNode != node) {
// The node we want to delete is interior. Move the item from the
// node we're actually deleting to the key node.
keyNode.item = node.item;
}
// If we have one child, replace the current with the child, otherwise,
// replace the current node with null.
Node replacement;
if (node.left != null) {
replacement = node.left;
Debug.Assert(!node.IsRed && replacement.IsRed);
replacement.IsRed = false;
}
else if (node.right != null) {
replacement = node.right;
Debug.Assert(!node.IsRed && replacement.IsRed);
replacement.IsRed = false;
}
else
replacement = null;
if (parent == null) {
Debug.Assert(root == node);
root = replacement;
}
else if (parent.left == node)
parent.left = replacement;
else {
Debug.Assert(parent.right == node);
parent.right = replacement;
}
// Color the root black, in case it was colored red above.
if (root != null)
root.IsRed = false;
// Update item count.
count -= 1;
// And we're done.
return true;
}
/// <summary>
/// Delete all the items in a range, identified by a RangeTester delegate.
/// </summary>
/// <param name="rangeTester">The delegate that defines the range to delete.</param>
/// <returns>The number of items deleted.</returns>
public int DeleteRange(RangeTester rangeTester)
{
bool deleted;
int counter = 0;
T dummy;
do {
deleted = DeleteItemFromRange(rangeTester, true, out dummy);
if (deleted)
++counter;
} while (deleted);
return counter;
}
/// <summary>
/// Count the items in a custom range in the tree. The range is determined by
/// a RangeTester delegate.
/// </summary>
/// <param name="rangeTester">The delegate that defines the range.</param>
/// <returns>The number of items in the range.</returns>
public int CountRange(RangeTester rangeTester)
{
return CountRangeUnderNode(rangeTester, root, false, false);
}
/// <summary>
/// Count all the items in a custom range, under and including node.
/// </summary>
/// <param name="rangeTester">The delegate that defines the range.</param>
/// <param name="node">Node to begin enumeration. May be null.</param>
/// <param name="belowRangeTop">This node and all under it are either in the range or below it.</param>
/// <param name="aboveRangeBottom">This node and all under it are either in the range or above it.</param>
/// <returns>The number of items in the range, under and include node.</returns>
private int CountRangeUnderNode(RangeTester rangeTester, Node node, bool belowRangeTop, bool aboveRangeBottom)
{
if (node != null) {
if (belowRangeTop && aboveRangeBottom) {
// This node and all below it must be in the range. Use the predefined count.
return node.Count;
}
int compare = rangeTester(node.item);
int counter;
if (compare == 0) {
counter = 1; // the node itself
counter += CountRangeUnderNode(rangeTester, node.left, true, aboveRangeBottom);
counter += CountRangeUnderNode(rangeTester, node.right, belowRangeTop, true);
}
else if (compare < 0) {
counter = CountRangeUnderNode(rangeTester, node.right, belowRangeTop, aboveRangeBottom);
}
else { // compare > 0
counter = CountRangeUnderNode(rangeTester, node.left, belowRangeTop, aboveRangeBottom);
}
return counter;
}
else {
return 0;
}
}
/// <summary>
/// Find the first item in a custom range in the tree, and it's index. The range is determined
/// by a RangeTester delegate.
/// </summary>
/// <param name="rangeTester">The delegate that defines the range.</param>
/// <param name="item">Returns the item found, if true was returned.</param>
/// <returns>Index of first item in range if range is non-empty, -1 otherwise.</returns>
public int FirstItemInRange(RangeTester rangeTester, out T item)
{
Node node = root, found = null;
int curCount = 0, foundIndex = -1;
while (node != null) {
int compare = rangeTester(node.item);
if (compare == 0) {
found = node;
if (node.left != null)
foundIndex = curCount + node.left.Count;
else
foundIndex = curCount;
}
if (compare >= 0)
node = node.left;
else {
if (node.left != null)
curCount += node.left.Count + 1;
else
curCount += 1;
node = node.right;
}
}
if (found != null) {
item = found.item;
return foundIndex;
}
else {
item = default(T);
return -1;
}
}
/// <summary>
/// Find the last item in a custom range in the tree, and it's index. The range is determined
/// by a RangeTester delegate.
/// </summary>
/// <param name="rangeTester">The delegate that defines the range.</param>
/// <param name="item">Returns the item found, if true was returned.</param>
/// <returns>Index of the item if range is non-empty, -1 otherwise.</returns>
public int LastItemInRange(RangeTester rangeTester, out T item)
{
Node node = root, found = null;
int curCount = 0, foundIndex = -1;
while (node != null) {
int compare = rangeTester(node.item);
if (compare == 0) {
found = node;
if (node.left != null)
foundIndex = curCount + node.left.Count;
else
foundIndex = curCount;
}
if (compare <= 0) {
if (node.left != null)
curCount += node.left.Count + 1;
else
curCount += 1;
node = node.right;
}
else
node = node.left;
}
if (found != null) {
item = found.item;
return foundIndex;
}
else {
item = default(T);
return foundIndex;
}
}
#endregion Ranges
#if DEBUG
/// <summary>
/// Prints out the tree.
/// </summary>
public void Print() {
PrintSubTree(root, "", "");
Console.WriteLine();
}
/// <summary>
/// Prints a sub-tree.
/// </summary>
/// <param name="node">Node to print from</param>
/// <param name="prefixNode">Prefix for the node</param>
/// <param name="prefixChildren">Prefix for the node's children</param>
private void PrintSubTree(Node node, string prefixNode, string prefixChildren) {
if (node == null)
return;
// Red nodes marked as "@@", black nodes as "..".
Console.WriteLine("{0}{1} {2,4} {3}", prefixNode, node.IsRed ? "@@" : "..", node.Count, node.item);
PrintSubTree(node.left, prefixChildren + "|-L-", prefixChildren + "| ");
PrintSubTree(node.right, prefixChildren + "|-R-", prefixChildren + " ");
}
/// <summary>
/// Validates that the tree is correctly sorted, and meets the red-black tree
/// axioms.
/// </summary>
public void Validate() {
Debug.Assert(comparer != null, "Comparer should not be null");
if (root == null) {
Debug.Assert(0 == count, "Count in empty tree should be 0.");
}
else {
Debug.Assert(! root.IsRed, "Root is not black");
int blackHeight;
int nodeCount = ValidateSubTree(root, out blackHeight);
Debug.Assert(nodeCount == this.count, "Node count of tree is not correct.");
}
}
/// <summary>
/// Validates a sub-tree and returns the count and black height.
/// </summary>
/// <param name="node">Sub-tree to validate. May be null.</param>
/// <param name="blackHeight">Returns the black height of the tree.</param>
/// <returns>Returns the number of nodes in the sub-tree. 0 if node is null.</returns>
private int ValidateSubTree(Node node, out int blackHeight) {
if (node == null) {
blackHeight = 0;
return 0;
}
// Check that this node is sorted with respect to any children.
if (node.left != null)
Debug.Assert(comparer.Compare(node.left.item, node.item) <= 0, "Left child is not less than or equal to node");
if (node.right != null)
Debug.Assert(comparer.Compare(node.right.item, node.item) >= 0, "Right child is not greater than or equal to node");
// Check that the two-red rule is not violated.
if (node.IsRed) {
if (node.left != null)
Debug.Assert(! node.left.IsRed, "Node and left child both red");
if (node.right != null)
Debug.Assert(! node.right.IsRed, "Node and right child both red");
}
// Validate sub-trees and get their size and heights.
int leftCount, leftBlackHeight;
int rightCount, rightBlackHeight;
int ourCount;
leftCount = ValidateSubTree(node.left, out leftBlackHeight);
rightCount = ValidateSubTree(node.right, out rightBlackHeight);
ourCount = leftCount + rightCount + 1;
Debug.Assert(ourCount == node.Count);
// Validate the equal black-height rule.
Debug.Assert(leftBlackHeight == rightBlackHeight, "Black heights are not equal");
// Calculate our black height and return the count
blackHeight = leftBlackHeight;
if (! node.IsRed)
blackHeight += 1;
return ourCount;
}
#endif //DEBUG
}
}
|