1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
|
#!/usr/bin/env python
# Author: corbett@caltech.edu
import numpy as np
import unittest
import re
import random
import itertools
from functools import reduce
from math import sqrt,pi,e,log
import time
####
## Gates
####
class Gate(object):
i_=complex(0,1)
## One qubit gates
# Hadamard gate
H=1./sqrt(2)*np.matrix('1 1; 1 -1')
# Pauli gates
X=np.matrix('0 1; 1 0')
Y=np.matrix([[0, -i_],[i_, 0]])
Z=np.matrix([[1,0],[0,-1]])
# Defined as part of the Bell state experiment
W=1/sqrt(2)*(X+Z)
V=1/sqrt(2)*(-X+Z)
# Other useful gates
eye=np.eye(2,2)
S=np.matrix([[1,0],[0,i_]])
Sdagger=np.matrix([[1,0],[0,-i_]]) # convenience Sdagger = S.conjugate().transpose()
T=np.matrix([[1,0],[0, e**(i_*pi/4.)]])
Tdagger=np.matrix([[1,0],[0, e**(-i_*pi/4.)]]) # convenience Tdagger= T.conjugate().transpose()
# TODO: for CNOT gates define programatically instead of the more manual way below
## Two qubit gates
# CNOT Gate (control is qubit 0, target qubit 1), this is the default CNOT gate
CNOT2_01=np.matrix('1 0 0 0; 0 1 0 0; 0 0 0 1; 0 0 1 0')
# control is qubit 1 target is qubit 0
CNOT2_10=np.kron(H,H)*CNOT2_01*np.kron(H,H) #=np.matrix('1 0 0 0; 0 0 0 1; 0 0 1 0; 0 1 0 0')
# operates on 2 out of 3 entangled qubits, control is first subscript, target second
CNOT3_01=np.kron(CNOT2_01,eye)
CNOT3_10=np.kron(CNOT2_10,eye)
CNOT3_12=np.kron(eye,CNOT2_01)
CNOT3_21=np.kron(eye,CNOT2_10)
CNOT3_02=np.matrix('1 0 0 0 0 0 0 0; 0 1 0 0 0 0 0 0; 0 0 1 0 0 0 0 0; 0 0 0 1 0 0 0 0; 0 0 0 0 0 1 0 0; 0 0 0 0 1 0 0 0; 0 0 0 0 0 0 0 1; 0 0 0 0 0 0 1 0')
CNOT3_20=np.matrix('1 0 0 0 0 0 0 0; 0 0 0 0 0 1 0 0; 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 1; 0 0 0 0 1 0 0 0; 0 1 0 0 0 0 0 0; 0 0 0 0 0 0 1 0; 0 0 0 1 0 0 0 0')
# operates on 2 out of 4 entangled qubits, control is first subscript, target second
CNOT4_01=np.kron(CNOT3_01,eye)
CNOT4_10=np.kron(CNOT3_10,eye)
CNOT4_12=np.kron(CNOT3_12,eye)
CNOT4_21=np.kron(CNOT3_21,eye)
CNOT4_13=np.kron(eye,CNOT3_02)
CNOT4_31=np.kron(eye,CNOT3_20)
CNOT4_02=np.kron(CNOT3_02,eye)
CNOT4_20=np.kron(CNOT3_20,eye)
CNOT4_23=np.kron(eye,CNOT3_12)
CNOT4_32=np.kron(eye,CNOT3_21)
CNOT4_03=np.eye(16,16)
CNOT4_03[np.array([8,9])]=CNOT4_03[np.array([9,8])]
CNOT4_03[np.array([10,11])]=CNOT4_03[np.array([11,10])]
CNOT4_03[np.array([12,13])]=CNOT4_03[np.array([13,12])]
CNOT4_03[np.array([14,15])]=CNOT4_03[np.array([15,14])]
CNOT4_30=np.eye(16,16)
CNOT4_30[np.array([1,9])]=CNOT4_30[np.array([9,1])]
CNOT4_30[np.array([3,11])]=CNOT4_30[np.array([11,3])]
CNOT4_30[np.array([5,13])]=CNOT4_30[np.array([13,5])]
CNOT4_30[np.array([7,15])]=CNOT4_30[np.array([15,7])]
# operates on 2 out of 5 entangled qubits, control is first subscript, target second
CNOT5_01=np.kron(CNOT4_01,eye)
CNOT5_10=np.kron(CNOT4_10,eye)
CNOT5_02=np.kron(CNOT4_02,eye)
CNOT5_20=np.kron(CNOT4_20,eye)
CNOT5_03=np.kron(CNOT4_03,eye)
CNOT5_30=np.kron(CNOT4_30,eye)
CNOT5_12=np.kron(CNOT4_12,eye)
CNOT5_21=np.kron(CNOT4_21,eye)
CNOT5_13=np.kron(CNOT4_13,eye)
CNOT5_31=np.kron(CNOT4_31,eye)
CNOT5_14=np.kron(eye,CNOT4_03)
CNOT5_41=np.kron(eye,CNOT4_30)
CNOT5_23=np.kron(CNOT4_23,eye)
CNOT5_32=np.kron(CNOT4_32,eye)
CNOT5_24=np.kron(eye,CNOT4_13)
CNOT5_42=np.kron(eye,CNOT4_31)
CNOT5_34=np.kron(eye,CNOT4_23)
CNOT5_43=np.kron(eye,CNOT4_32)
CNOT5_04=np.eye(32,32)
CNOT5_04[np.array([16,17])]=CNOT5_04[np.array([17,16])]
CNOT5_04[np.array([18,19])]=CNOT5_04[np.array([19,18])]
CNOT5_04[np.array([20,21])]=CNOT5_04[np.array([21,20])]
CNOT5_04[np.array([22,23])]=CNOT5_04[np.array([23,22])]
CNOT5_04[np.array([24,25])]=CNOT5_04[np.array([25,24])]
CNOT5_04[np.array([26,27])]=CNOT5_04[np.array([27,26])]
CNOT5_04[np.array([28,29])]=CNOT5_04[np.array([29,28])]
CNOT5_04[np.array([30,31])]=CNOT5_04[np.array([31,30])]
CNOT5_40=np.eye(32,32)
CNOT5_40[np.array([1,17])]=CNOT5_40[np.array([17,1])]
CNOT5_40[np.array([3,19])]=CNOT5_40[np.array([19,3])]
CNOT5_40[np.array([5,21])]=CNOT5_40[np.array([21,5])]
CNOT5_40[np.array([7,23])]=CNOT5_40[np.array([23,7])]
CNOT5_40[np.array([9,25])]=CNOT5_40[np.array([25,9])]
CNOT5_40[np.array([11,27])]=CNOT5_40[np.array([27,11])]
CNOT5_40[np.array([13,29])]=CNOT5_40[np.array([29,13])]
CNOT5_40[np.array([15,31])]=CNOT5_40[np.array([31,15])]
####
## States
####
class State(object):
i_=complex(0,1)
## One qubit states (basis)
# standard basis (z)
zero_state=np.matrix('1; 0')
one_state=np.matrix('0; 1')
# diagonal basis (x)
plus_state=1/sqrt(2)*np.matrix('1; 1')
minus_state=1/sqrt(2)*np.matrix('1; -1')
# circular basis (y)
plusi_state=1/sqrt(2)*np.matrix([[1],[i_]]) # also known as clockwise arrow state
minusi_state=1/sqrt(2)*np.matrix([[1],[-i_]]) # also known as counterclockwise arrow state
# 2-qubit states
bell_state=1/sqrt(2)*np.matrix('1; 0; 0; 1')
@staticmethod
def change_to_x_basis(state):
return Gate.H*state
@staticmethod
def change_to_y_basis(state):
return Gate.H*Gate.Sdagger*state
@staticmethod
def change_to_w_basis(state):
# W=1/sqrt(2)*(X+Z)
return Gate.H*Gate.T*Gate.H*Gate.S*state
@staticmethod
def change_to_v_basis(state):
# V=1/sqrt(2)*(-X+Z)
return Gate.H*Gate.Tdagger*Gate.H*Gate.S*state
@staticmethod
def is_fully_separable(qubit_state):
try:
separated_state=State.separate_state(qubit_state)
for state in separated_state:
State.string_from_state(state)
return True
except StateNotSeparableException as e:
return False
@staticmethod
def get_first_qubit(qubit_state):
return State.separate_state(qubit_state)[0]
@staticmethod
def get_second_qubit(qubit_state):
return State.separate_state(qubit_state)[1]
@staticmethod
def get_third_qubit(qubit_state):
return State.separate_state(qubit_state)[2]
@staticmethod
def get_fourth_qubit(qubit_state):
return State.separate_state(qubit_state)[3]
@staticmethod
def get_fifth_qubit(qubit_state):
return State.separate_state(qubit_state)[4]
@staticmethod
def all_state_strings(n_qubits):
return [''.join(map(str,state_desc)) for state_desc in itertools.product([0, 1], repeat=n_qubits)]
@staticmethod
def state_from_string(qubit_state_string):
if not all(x in '01' for x in qubit_state_string):
raise Exception("Description must be a string in binary")
state=None
for qubit in qubit_state_string:
if qubit=='0':
new_contrib=State.zero_state
elif qubit=='1':
new_contrib=State.one_state
if state is None:
state=new_contrib
else:
state=np.kron(state,new_contrib)
return state
@staticmethod
def string_from_state(qubit_state):
separated=State.separate_state(qubit_state)
desc=''
for state in separated:
if np.allclose(state,State.zero_state):
desc+='0'
elif np.allclose(state,State.one_state):
desc+='1'
else:
raise StateNotSeparableException("State is not separable")
return desc
@staticmethod
def separate_state(qubit_state):
"""This only works if the state is fully separable at present
Throws exception if not a separable state"""
n_entangled=QuantumRegister.num_qubits(qubit_state)
if list(qubit_state.flat).count(1)==1:
separated_state=[]
idx_state=list(qubit_state.flat).index(1)
add_factor=0
size=qubit_state.shape[0]
while(len(separated_state)<n_entangled):
size=size/2
if idx_state<(add_factor+size):
separated_state+=[State.zero_state]
add_factor+=0
else:
separated_state+=[State.one_state]
add_factor+=size
return separated_state
else:
# Try a few naive separations before giving up
cardinal_states=[State.zero_state,State.one_state,State.plus_state,State.minus_state,State.plusi_state,State.minusi_state]
for separated_state in itertools.product(cardinal_states, repeat=n_entangled):
candidate_state=reduce(lambda x,y:np.kron(x,y),separated_state)
if np.allclose(candidate_state,qubit_state):
return separated_state
# TODO: more general separation methods
raise StateNotSeparableException("TODO: Entangled qubits not represented yet in quantum computer implementation. Can currently do manual calculations; see TestBellState for Examples")
@staticmethod
def measure(state):
"""finally some probabilities, whee. To properly use, set the qubit you measure to the result of this function
to collapse it. state=measure(state). Currently supports only up to three entangled qubits """
state_z=state
n_qubits=QuantumRegister.num_qubits(state)
probs=Probability.get_probabilities(state_z)
rand=random.random()
for idx,state_desc in enumerate(State.all_state_strings(n_qubits)):
if rand < sum(probs[0:(idx+1)]):
return State.state_from_string(state_desc)
@staticmethod
def get_bloch(state):
return np.array((Probability.expectation_x(state),Probability.expectation_y(state),Probability.expectation_z(state)))
@staticmethod
def pretty_print_gate_action(gate,n_qubits):
for s in list(itertools.product([0,1], repeat=n_qubits)):
sname=('%d'*n_qubits)%s
state=State.state_from_string(sname)
print(sname,'->',State.string_from_state(gate*state))
class StateNotSeparableException(Exception):
def __init__(self,args=None):
self.args=args
class Probability(object):
@staticmethod
def get_probability(coeff):
return (coeff*coeff.conjugate()).real
@staticmethod
def get_probabilities(state):
return [Probability.get_probability(x) for x in state.flat]
@staticmethod
def get_correlated_expectation(state):
probs=Probability.get_probabilities(state)
return probs[0]+probs[3]-probs[1]-probs[2]
@staticmethod
def pretty_print_probabilities(state):
probs=Probability.get_probabilities(state)
am_desc='|psi>='
pr_desc=''
for am,pr,state_desc in zip(state.flat,probs,State.all_state_strings(QuantumRegister.num_qubits(state))):
if am!=0:
if am!=1:
am_desc+='%r|%s>+'%(am,state_desc)
else:
am_desc+='|%s>+'%(state_desc)
if pr!=0:
pr_desc+='Pr(|%s>)=%f; '%(state_desc,pr)
print(am_desc[0:-1])
print(pr_desc)
if state.shape==(4,1):
print("<state>=%f" % float(probs[0]+probs[3]-probs[1]-probs[2]))
@staticmethod
def expectation_x(state):
state_x=State.change_to_x_basis(state)
prob_zero_state=(state_x.item(0)*state_x.item(0).conjugate()).real
prob_one_state=(state_x.item(1)*state_x.item(1).conjugate()).real
return prob_zero_state-prob_one_state
@staticmethod
def expectation_y(state):
state_y=State.change_to_y_basis(state)
prob_zero_state=(state_y.item(0)*state_y.item(0).conjugate()).real
prob_one_state=(state_y.item(1)*state_y.item(1).conjugate()).real
return prob_zero_state-prob_one_state
@staticmethod
def expectation_z(state):
state_z=state
prob_zero_state=(state_z.item(0)*state_z.item(0).conjugate()).real
prob_one_state=(state_z.item(1)*state_z.item(1).conjugate()).real
return prob_zero_state-prob_one_state
class QuantumRegister(object):
def __init__(self,name,state=State.zero_state,entangled=None):
self._entangled=[self]
self._state=state
self.name = name
self.idx=None
self._noop = [] # after a measurement set this so that we can allow no further operations. Set to Bloch coords if bloch operation performed
@staticmethod
def num_qubits(state):
num_qubits=log(state.shape[0],2)
if state.shape[1]!=1 or num_qubits not in [1,2,3,4,5]:
raise Exception("unrecognized state shape")
else:
return int(num_qubits)
def get_entangled(self):
return self._entangled
def set_entangled(self,entangled):
self._entangled=entangled
for qb in self._entangled:
qb._state=self._state
qb._entangled=self._entangled
def get_state(self):
return self._state
def set_state(self,state):
self._state=state
for qb in self._entangled:
qb._state=state
qb._entangled=self._entangled
qb._noop=self._noop
def get_noop(self):
return self._noop
def set_noop(self,noop):
self._noop=noop
for qb in self._entangled:
qb._noop=noop
def is_entangled(self):
return len(self._entangled)>1
def is_entangled_with(self,qubit):
return qubit in self._entangled
def get_indices(self,target_qubit):
if not self.is_entangled_with(target_qubit):
search=self._entangled+target_qubit.get_entangled()
else:
search=self._entangled
return search.index(self),search.index(target_qubit)
def get_num_qubits(self):
return QuantumRegister.num_qubits(self._state)
def __eq__(self,other):
if not isinstance(other, type(self)): return NotImplemented
return self.name==other.name and np.array(self._noop).shape==np.array(other._noop).shape and np.allclose(self._noop,other._noop) and np.array(self.get_state()).shape== np.array(other.get_state()).shape and np.allclose(self.get_state(),other.get_state()) and QuantumRegisterCollection.orderings_equal(self._entangled,other._entangled)
class QuantumRegisterSet(object):
"""Created this so I could have some set like features for use, even though QuantumRegisters are mutable"""
registers=[]
def __init__(self,registers):
for r in registers:
if r not in self.registers:
self.registers+=[r]
def intersection(self,quantumregisterset):
intersection=[]
if self.size()>=quantumregisterset:
qrs1=self
qrs2=quantumregisterset
else:
qrs1=quantumregisterset
qrs2=self
# now qrs2 is the smaller set
intersection=[qr for qr in qrs1 if qr in qrs2]
return QuantumRegisterSet(intersection)
def size(self):
return len(self.registers)
class QuantumRegisterCollection(object):
def __init__(self,qubits):
self._qubits=qubits
for idx,qb in enumerate(self._qubits):
qb.idx = idx
self.num_qubits=len(qubits)
def get_quantum_register_containing(self,name):
for qb in self._qubits:
if qb.name == name:
return qb
else:
for entqb in qb.get_entangled():
if entqb.name==name:
return entqb
raise Exception("qubit %s not found in %s" % (name,repr(self._qubits)))
def get_quantum_registers(self):
return self._qubits
def entangle_quantum_registers(self,first_qubit,second_qubit):
new_entangle=first_qubit.get_entangled()+second_qubit.get_entangled()
if len(first_qubit.get_entangled()) >= len(second_qubit.get_entangled()):
self._remove_quantum_register_named(second_qubit.name)
first_qubit.set_entangled(new_entangle)
else:
self._remove_quantum_register_named(first_qubit.name)
second_qubit.set_entangled(new_entangle)
def _remove_quantum_register_named(self,name):
self._qubits=[qb for qb in self._qubits if qb.name!=name]
def is_in_canonical_ordering(self):
return self.get_qubit_order()==list(range(self.num_qubits))
@staticmethod
def is_in_increasing_order(qb_list):
for a,b in zip(qb_list,qb_list[1:]):
if not a.idx<b.idx:
return False
return True
def get_entangled_qubit_order(self):
ordering=[]
for qb in self._qubits:
ent_order=[]
for ent in qb.get_entangled():
ent_order+=[ent]
ordering+=[ent_order]
return ordering
def get_qubit_order(self):
ordering=[]
for qb in self._qubits:
for ent in qb.get_entangled():
ordering+=[ent.idx]
return ordering
def add_quantum_register(self,qubit):
qubit.idx=self.num_qubits
self._qubits+=[qubit]
self.num_qubits+=1
@staticmethod
def orderings_equal(order_one,order_two):
return [qb.idx for qb in order_one] == [qb.idx for qb in order_two]
class QuantumComputer(object):
"""This class is meant to simulate the 5-qubit IBM quantum computer,
and be able to interpret the auto generated programs on the site.
For entangled states, qubits are always reported in alphanumerical order
"""
def __init__(self):
self.qubits=QuantumRegisterCollection([QuantumRegister("q0"),QuantumRegister("q1"),QuantumRegister("q2"),QuantumRegister("q3"),QuantumRegister("q4")])
def reset(self):
self.qubits=QuantumRegisterCollection([QuantumRegister("q0"),QuantumRegister("q1"),QuantumRegister("q2"),QuantumRegister("q3"),QuantumRegister("q4")])
def get_ordering(self):
return self.qubits.get_qubit_order()
def is_in_canonical_ordering(self):
return self.qubits.is_in_canonical_ordering()
def get_requested_state_order(self,name):
get_states_for=[self.qubits.get_quantum_register_containing(x.strip()) for x in name.split(',')]
if not QuantumRegisterCollection.is_in_increasing_order(get_states_for):
raise Exception("at this time, requested qubits must be in increasing order")
entangled_qubit_order=self.qubits.get_entangled_qubit_order()
# # We know the idxs run range(5)
# # We know if the idxs are contiguous, increasing we are good
for get_state_for_qb in get_states_for:
for eqb in entangled_qubit_order:
eqo=[q.idx for q in eqb]
# We know if the idxs are missing a number AND we want to find an idx that lies in there, we must entangle those states
if not get_state_for_qb.idx in eqo and get_state_for_qb.idx in range(min(eqo),max(eqo)+1):
print("We'll have to entangle the two")
# We'll have to entangle the two
qb1=self.qubits.get_quantum_register_containing(eqo[0].name)
get_state_for_qb.set_state(np.kron(qb.get_state(),qb1.get_state()))
self.qubits.entangle_quantum_registers(get_state_for_qb,qb1)
return self.qubit_states_equal(name,state)
# OK, if we reach here, we have all the entanglement we need, and we just need to sort the individual entangled states to match the output order
for qubit in self.qubits.get_quantum_registers():
if not QuantumRegisterCollection.is_in_increasing_order(qubit.get_entangled()): # all one apart
# We're not in order
# We need to assert that the full return can be comprised of concatenating states from beginning to end without extras
if not QuantumRegisterSet(qubit.get_entangled()).size()<=QuantumRegisterSet(get_states_for).size() and QuantumRegisterSet(qubit.get_entangled()).intersection(QuantumRegisterSet(get_states_for)).size():
raise Exception("With this entanglement setup we can't fully separate out just the qubits of iterest. Try measuring more bits")
# We only care if we actually want to return something from this state Put eqo in order then
# We want a sorting algorithm that easily maps to matrix operations, since we only have 5 elements max
# we'll use bubble sort
swapped=True
n=len(qubit.get_entangled())
while(swapped):
swapped=False
current_entangled=qubit.get_entangled()
for idx in range(len(current_entangled)-1):
first_qubit=current_entangled[idx]
second_qubit=current_entangled[idx+1]
if first_qubit.idx > second_qubit.idx:
current_entangled[idx]=second_qubit
current_entangled[idx+1]=first_qubit
permute=np.eye(2**n,2**n)
all_combos=list(itertools.product([0,1],repeat=n))
already_swapped=[]
for icombo,combo in enumerate(all_combos[:len(all_combos)]):
new_combo=list(combo)
new_combo[idx]=combo[idx+1]
new_combo[idx+1]=combo[idx]
new_combo=tuple(new_combo)
if combo!=new_combo:
inew_combo=all_combos.index(new_combo)
swapset=set([icombo,inew_combo])
if not swapset in already_swapped:
already_swapped+=[swapset]
permute[np.array([icombo,inew_combo])]=permute[np.array([inew_combo,icombo])]
first_qubit.set_entangled(current_entangled)
first_qubit.set_state(permute*first_qubit.get_state())
swapped=True
# OK, if we reach here, everything is in order, and entangled states are either all of interest or none are of interest we just need to return it!
answer_state=None
for qb in self.qubits.get_quantum_registers():
if QuantumRegisterSet(qb.get_entangled()).size() <= QuantumRegisterSet(get_states_for).size():
if answer_state is None:
answer_state=qb.get_state()
else:
answer_state=np.kron(answer_state,qb.get_state())
return answer_state
def probabilities_equal(self,name,prob):
get_states_for=[self.qubits.get_quantum_register_containing(x.strip()) for x in name.split(',')]
if not QuantumRegisterCollection.is_in_increasing_order(get_states_for):
raise Exception("at this time, requested qubits must be in increasing order")
entangled_qubit_order=self.qubits.get_entangled_qubit_order()
if (len(get_states_for)==1 and self.is_in_canonical_ordering()) or ([x.name for x in get_states_for] in [[x.name for x in l] for l in entangled_qubit_order]):
return np.allclose(Probability.get_probabilities(get_states_for[0].get_state()),prob)
else:
answer_state=self.get_requested_state_order(name)
return np.allclose(Probability.get_probabilities(answer_state),prob,atol=1e-2)
def qubit_states_equal(self,name,state):
get_states_for=[self.qubits.get_quantum_register_containing(x.strip()) for x in name.split(',')]
if not QuantumRegisterCollection.is_in_increasing_order(get_states_for):
raise Exception("at this time, requested qubits must be in increasing order")
entangled_qubit_order=self.qubits.get_entangled_qubit_order()
if (len(get_states_for)==1 and self.is_in_canonical_ordering()) or (get_states_for in entangled_qubit_order):
return np.allclose(get_states_for[0].get_state(),state)
else:
answer_state=self.get_requested_state_order(name)
return np.allclose(answer_state,state)
def bloch_coords_equal(self,name,coords):
on_qubit=self.qubits.get_quantum_register_containing(name)
if self.is_in_canonical_ordering() and not on_qubit.is_entangled():
return np.allclose(on_qubit.get_noop(),coords,atol=1e-3)
else:
try:
separated_qubit=State.separate_state(on_qubit.get_state())
on_qubit_idx=(on_qubit.get_entangled()).index(on_qubit)
return np.allclose(State.get_bloch(separated_qubit[on_qubit_idx]),coords,atol=1e-3)
except StateNotSeparableException as e:
raise Exception("Entangled measurements that cannot be separatednot yet implemented for bloch sphere")
def apply_gate(self,gate,on_qubit_name):
on_qubit=self.qubits.get_quantum_register_containing(on_qubit_name)
if len(on_qubit.get_noop()) > 0:
print("NOTE this qubit has been measured previously, there should be no more gates allowed but we are reverting that measurement for consistency with IBM's language")
on_qubit.set_state(on_qubit.get_noop())
on_qubit.set_noop([])
if not on_qubit.is_entangled():
if on_qubit.get_num_qubits()!=1:
raise Exception("This qubit is not marked as entangled but it has an entangled state")
on_qubit.set_state(gate*on_qubit.get_state())
else:
if not on_qubit.get_num_qubits()>1:
raise Exception("This qubit is marked as entangled but it does not have an entangled state")
n_entangled=len(on_qubit.get_entangled())
apply_gate_to_qubit_idx=[qb.name for qb in on_qubit.get_entangled()].index(on_qubit_name)
if apply_gate_to_qubit_idx==0:
entangled_gate=gate
else:
entangled_gate=Gate.eye
for i in range(1,n_entangled):
if apply_gate_to_qubit_idx==i:
entangled_gate=np.kron(entangled_gate,gate)
else:
entangled_gate=np.kron(entangled_gate,Gate.eye)
on_qubit.set_state(entangled_gate*on_qubit.get_state())
def apply_two_qubit_gate_CNOT(self,first_qubit_name,second_qubit_name):
""" Should work for all combination of qubits"""
first_qubit=self.qubits.get_quantum_register_containing(first_qubit_name)
second_qubit=self.qubits.get_quantum_register_containing(second_qubit_name)
if len(first_qubit.get_noop())>0 or len(second_qubit.get_noop())>0:
raise Exception("Control or target qubit has been measured previously, no more gates allowed")
if not first_qubit.is_entangled() and not second_qubit.is_entangled():
combined_state=np.kron(first_qubit.get_state(),second_qubit.get_state())
if first_qubit.get_num_qubits()!=1 or second_qubit.get_num_qubits()!=1:
raise Exception("Both qubits are marked as not entangled but one or the other has an entangled state")
new_state=Gate.CNOT2_01*combined_state
if State.is_fully_separable(new_state):
second_qubit.set_state(State.get_second_qubit(new_state))
else:
self.qubits.entangle_quantum_registers(first_qubit,second_qubit)
first_qubit.set_state(new_state)
else:
if not first_qubit.is_entangled_with(second_qubit):
# Entangle the state
combined_state=np.kron(first_qubit.get_state(),second_qubit.get_state())
self.qubits.entangle_quantum_registers(first_qubit,second_qubit)
else:
# We are ready to do the operation
combined_state=first_qubit.get_state()
# Time for more meta programming!
# Select gate based on indices
control_qubit_idx,target_qubit_idx=first_qubit.get_indices(second_qubit)
gate_size=QuantumRegister.num_qubits(combined_state)
try:
namespace=locals()
exec('gate=Gate.CNOT%d_%d%d' %(gate_size,control_qubit_idx,target_qubit_idx),globals(),namespace)
gate=namespace['gate']
except:
print('gate=Gate.CNOT%d_%d%d' %(gate_size,control_qubit_idx,target_qubit_idx))
raise Exception("Unrecognized combination of number of qubits")
first_qubit.set_state(gate*combined_state)
def bloch(self,qubit_name):
on_qubit=self.qubits.get_quantum_register_containing(qubit_name)
if len(on_qubit.get_noop())==0:
if not on_qubit.is_entangled():
on_qubit.set_noop(State.get_bloch(on_qubit.get_state()))
else:
on_qubit.set_noop([1])
def measure(self,qubit_name):
on_qubit=self.qubits.get_quantum_register_containing(qubit_name)
if len(on_qubit.get_noop())==0:
on_qubit.set_noop(on_qubit.get_state()) # state before measurement for testing
on_qubit.set_state(State.measure(on_qubit.get_state()))
def execute(self,program):
"""Time for some very lazy meta programming!
"""
# Transforming IBM's language to my variables
lines=program.split(';')
translation=[
['q[0]','"q0"'],
['q[1]','"q1"'],
['q[2]','"q2"'],
['q[3]','"q3"'],
['q[4]','"q4"'],
['bloch ',r'self.bloch('],
['measure ',r'self.measure('],
['id ','self.apply_gate(Gate.eye,'],
['sdg ','self.apply_gate(Gate.Sdagger,'],
['tdg ','self.apply_gate(Gate.Tdagger,'],
['h ','self.apply_gate(Gate.H,'],
['t ','self.apply_gate(Gate.T,'],
['s ','self.apply_gate(Gate.S,'],
['x ','self.apply_gate(Gate.X,'],
['y ','self.apply_gate(Gate.Y,'],
['z ','self.apply_gate(Gate.Z,'],
]
cnot_re=re.compile('^cx (q\[[0-4]\]), (q\[[0-4]\])$')
for l in lines:
l=l.strip()
if not l: continue
# CNOT operates on two qubits so gets special processing
cnot=cnot_re.match(l)
if cnot:
control_qubit=cnot.group(1)
target_qubit=cnot.group(2)
l='self.apply_two_qubit_gate_CNOT(%s,%s'%(control_qubit,target_qubit)
for k,v in translation:
l=l.replace(k,v)
l=l+')'
# Now running the code
exec(l,globals(),locals())
class Program(object):
def __init__(self,code,result_probability=[],bloch_vals=()):
self.code=code
self.result_probability=result_probability
self.bloch_vals=bloch_vals
class Programs(object):
"""Some useful programs collected in one place for running on the quantum computer class"""
program_blue_state=Program("""h q[1];
t q[1];
h q[1];
t q[1];
h q[1];
t q[1];
s q[1];
h q[1];
t q[1];
h q[1];
t q[1];
s q[1];
h q[1];
bloch q[1];""")
program_test_XYZMeasureIdSdagTdag=Program("""sdg q[0];
x q[1];
x q[2];
id q[3];
z q[4];
tdg q[0];
y q[4];
measure q[0];
measure q[1];
measure q[2];
measure q[3];
measure q[4];""")
program_test_cnot=Program("""x q[1];
cx q[1], q[2];""")
program_test_many=Program("""sdg q[0];
x q[1];
x q[2];
id q[3];
z q[4];
tdg q[0];
cx q[1], q[2];
y q[4];
measure q[0];
measure q[1];
measure q[2];
measure q[3];
measure q[4];""")
# IBM Tutorial Section III, Page 4
program_zz=Program("""h q[1];
cx q[1], q[2];
measure q[1];
measure q[2];""") # "00",0.5; "11",0.5 # <zz> = 2
program_zw=Program("""h q[1];
cx q[1], q[2];
s q[2];
h q[2];
t q[2];
h q[2];
measure q[1];
measure q[2]""") # "00",0.426777; "01",0.073223; "10",0.073223; "11",0.426777 # <zw> = 1/sqrt(2)
program_zv=Program("""h q[1];
cx q[1], q[2];
s q[2];
h q[2];
tdg q[2];
h q[2];
measure q[1];
measure q[2];""") #"00",0.426777; "01",0.073223; "10",0.073223; "11",0.426777 # <zv> = 1/sqrt(2)
program_xw=Program("""h q[1];
cx q[1], q[2];
h q[1];
s q[2];
h q[2];
t q[2];
h q[2];
measure q[1];
measure q[2];""") # "00",0.426777; "01",0.073223; "10",0.073223; "11",0.426777 # <xw> =
program_xv=Program("""h q[1];
cx q[1], q[2];
h q[1];
s q[2];
h q[2];
tdg q[2];
h q[2];
measure q[1];
measure q[2];""") #"00",0.073223; "01",0.426777; "10",0.426777; "11",0.073223; # <xv> =
# Currently not used, but creats a superposition of 00 and 01
program_00_01_super=Program("""sdg q[1];
t q[1];
t q[1];
s q[1];
h q[1];
h q[0];
h q[1];
h q[0];
h q[1];
cx q[0], q[1];
measure q[0];
measure q[1];""")
# IBM Tutorial Section III, Page 5
program_ghz=Program("""h q[0];
h q[1];
x q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[2];
measure q[0];
measure q[1];
measure q[2];""",result_probability=[0.5,0,0,0,0,0,0,0.5])# "000":0.5; "111":0.5
program_ghz_measure_yyx=Program("""h q[0];
h q[1];
x q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[2];
sdg q[0];
sdg q[1];
h q[2];
h q[0];
h q[1];
measure q[2];
measure q[0];
measure q[1];""",result_probability=[0.25,0,0,0.25,0,0.25,0.25,0]) # "000":0.25; "011": 0.25; "101": 0.25; "110":0.25
program_ghz_measure_yxy=Program("""h q[0];
h q[1];
x q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[2];
sdg q[0];
h q[1];
sdg q[2];
h q[0];
measure q[1];
h q[2];
measure q[0];
measure q[2];""",result_probability=[0.25,0,0,0.25,0,0.25,0.25,0]) # "000":0.25; "011": 0.25; "101": 0.25; "110":0.25
program_ghz_measure_xyy=Program("""h q[0];
h q[1];
x q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[2];
h q[0];
sdg q[1];
sdg q[2];
measure q[0];
h q[1];
h q[2];
measure q[1];
measure q[2];""",result_probability=[0.25,0,0,0.25,0,0.25,0.25,0]) # "000":0.25; "011": 0.25; "101": 0.25; "110":0.25
program_ghz_measure_xxx=Program("""h q[0];
h q[1];
x q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[2];
h q[0];
h q[1];
h q[2];
measure q[0];
measure q[1];
measure q[2];""",result_probability=[0,0.25,0.25,0,0.25,0,0,0.25]) #"001":0.25; "010": 0.25; "100": 0.25; "111":0.25
# IBM Tutorial Section IV, Page 1
program_reverse_cnot=Program("""x q[2];
h q[1];
h q[2];
cx q[1], q[2];
h q[1];
h q[2];
measure q[1];
measure q[2];""",result_probability=(0.0,0.0,0.0,1.0))# "11": 1.0
program_swap=Program("""x q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
measure q[1];
measure q[2];""",result_probability=(0.0,0.0,1.0,0.0)) # "10": 1.0
program_swap_q0_q1=Program("""h q[0];
cx q[0], q[2];
h q[0];
h q[2];
cx q[0], q[2];
h q[0];
h q[2];
cx q[0], q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[2];
cx q[0], q[2];
h q[0];
h q[2];
cx q[0], q[2];
bloch q[0];
bloch q[1];
bloch q[2];""",bloch_vals=((0,0,1),(1,0,0),(0,0,1),None,None)) # Bloch q0: (0,0,1); #q1: (1,0,0) q2: (0,0,1)
program_controlled_hadamard=Program("""h q[1];
s q[1];
h q[2];
sdg q[2];
cx q[1], q[2];
h q[2];
t q[2];
cx q[1], q[2];
t q[2];
h q[2];
s q[2];
x q[2];
measure q[1];
measure q[2];""",result_probability=[0.5,0.0,0.25,0.25]) # "00": 0.5; "10": 0.25; "11":0.25
program_approximate_sqrtT=Program("""h q[0];
h q[1];
h q[2];
h q[3];
h q[4];
bloch q[0];
h q[1];
t q[2];
s q[3];
z q[4];
t q[1];
bloch q[2];
bloch q[3];
bloch q[4];
h q[1];
t q[1];
h q[1];
t q[1];
s q[1];
h q[1];
t q[1];
h q[1];
t q[1];
s q[1];
h q[1];
t q[1];
h q[1];
t q[1];
h q[1];
bloch q[1];""",bloch_vals=((1,0,0),(0.927, 0.375, 0.021), (0.707, 0.707, 0.000),(0.000, 1.000, 0.000), (-1.000, 0.000, 0.000))) #Bloch coords q0: (1.000, 0.000, 0.000) q1: (0.927, 0.375, 0.021) q2: (0.707, 0.707, 0.000) q3: (0.000, 1.000, 0.000) q4: (-1.000, 0.000, 0.000) # checks out when we manually get_bloch
program_toffoli_state=Program("""h q[0];
h q[1];
h q[2];
cx q[1], q[2];
tdg q[2];
cx q[0], q[2];
t q[2];
cx q[1], q[2];
tdg q[2];
cx q[0], q[2];
t q[1];
t q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
cx q[0], q[2];
t q[0];
h q[1];
tdg q[2];
cx q[0], q[2];
measure q[0];
measure q[1];
measure q[2];""",result_probability=(0.25,0.25,0,0,0.25,0,0,0.25)) #000, 001, 100, 111 all 0.25
program_toffoli_with_flips=Program("""x q[0];
x q[1];
id q[2];
h q[2];
cx q[1], q[2];
tdg q[2];
cx q[0], q[2];
t q[2];
cx q[1], q[2];
tdg q[2];
cx q[0], q[2];
t q[1];
t q[2];
h q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
h q[1];
h q[2];
cx q[1], q[2];
cx q[0], q[2];
t q[0];
tdg q[2];
cx q[0], q[2];
measure q[0];
measure q[1];
measure q[2];""",result_probability=(0,0,0,0,0,0,0,1.0)) #111: 1.0
all_multi_gate_tests=[program_reverse_cnot,program_swap,program_swap_q0_q1,program_controlled_hadamard,program_approximate_sqrtT,program_toffoli_state,program_toffoli_with_flips]
# IBM Section IV, page 3 Grover's algorithm
program_grover_n2_a00=Program("""h q[1];
h q[2];
s q[1];
s q[2];
h q[2];
cx q[1], q[2];
h q[2];
s q[1];
s q[2];
h q[1];
h q[2];
x q[1];
x q[2];
h q[2];
cx q[1], q[2];
h q[2];
x q[1];
x q[2];
h q[1];
h q[2];
measure q[1];
measure q[2];""",result_probability=(1.0,0,0,0)) # 00: 1.0
program_grover_n2_a01=Program("""h q[1];
h q[2];
s q[2];
h q[2];
cx q[1], q[2];
h q[2];
s q[2];
h q[1];
h q[2];
x q[1];
x q[2];
h q[2];
cx q[1], q[2];
h q[2];
x q[1];
x q[2];
h q[1];
h q[2];
measure q[1];
measure q[2];""",result_probability=(0.0,1.0,0.0,0.0)) # 01: 1.0
program_grover_n2_a10=Program("""h q[1];
h q[2];
s q[1];
h q[2];
cx q[1], q[2];
h q[2];
s q[1];
h q[1];
h q[2];
x q[1];
x q[2];
h q[2];
cx q[1], q[2];
h q[2];
x q[1];
x q[2];
h q[1];
h q[2];
measure q[1];
measure q[2];""",result_probability=(0,0,1.0,0)) # 10: 1.0
program_grover_n2_a11=Program("""h q[1];
h q[2];
h q[2];
cx q[1], q[2];
h q[2];
h q[1];
h q[2];
x q[1];
x q[2];
h q[2];
cx q[1], q[2];
h q[2];
x q[1];
x q[2];
h q[1];
h q[2];
measure q[1];
measure q[2];""",result_probability=(0,0,0,1.0)) # 10: 1.0
all_grover_tests=[program_grover_n2_a00,program_grover_n2_a01,program_grover_n2_a10,program_grover_n2_a11]
# IBM Section IV, page 4 Deutsch-Jozsa Algorithm
program_deutschjozsa_n3=Program("""h q[0];
h q[1];
h q[2];
h q[2];
z q[0];
cx q[1], q[2];
h q[2];
h q[0];
h q[1];
h q[2];
measure q[0];
measure q[1];
measure q[2];""",result_probability=(0.25,0.25,0.25,0.25))
program_deutschjozsa_constant_n3=Program("""h q[0];
h q[1];
h q[2];
h q[0];
h q[1];
h q[2];
measure q[0];
measure q[1];
measure q[2];""",result_probability=(1.0,0,0,0))
# IBM Section V, page 2 Quantum Repetition Code
program_encoder_into_bitflip_code=Program("""h q[2];
t q[2];
h q[2];
h q[1];
h q[2];
h q[3];
cx q[1], q[2];
cx q[3], q[2];
h q[1];
h q[2];
h q[3];
measure q[1];
measure q[2];
measure q[3];""",result_probability=(0.854,0,0,0,0,0,0,0.146))
program_encoder_and_decoder_tomography=Program("""h q[2];
h q[1];
h q[2];
h q[3];
cx q[1], q[2];
cx q[3], q[2];
h q[1];
h q[2];
h q[3];
id q[1];
id q[2];
id q[3];
id q[1];
id q[2];
id q[3];
id q[1];
id q[2];
id q[3];
h q[1];
h q[2];
h q[3];
cx q[3], q[2];
cx q[1], q[2];
h q[1];
h q[3];
cx q[3], q[2];
tdg q[2];
cx q[1], q[2];
t q[2];
cx q[3], q[2];
tdg q[2];
cx q[1], q[2];
t q[2];
h q[2];
bloch q[2];""",bloch_vals=(None,None,(1,0,0),None,None)) # Bloch q2: (1,0,0)
program_encoder_into_bitflip_code_parity_checks=Program("""h q[2];
t q[2];
h q[2];
h q[0];
h q[1];
h q[2];
cx q[1], q[2];
cx q[0], q[2];
h q[0];
h q[1];
h q[3];
cx q[3], q[2];
h q[2];
h q[3];
cx q[3], q[2];
cx q[0], q[2];
cx q[1], q[2];
h q[2];
h q[4];
cx q[4], q[2];
h q[2];
h q[4];
cx q[4], q[2];
cx q[1], q[2];
cx q[3], q[2];
measure q[2];
measure q[4];
measure q[0];
measure q[1];
measure q[3];""",result_probability=(0.852,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.146,0,0,0,0,0)) # 00000: 0.854; 11010: 0.146
# IBM Section V, page 3 Stabilizer measurements
program_plaquette_z0000=Program("""id q[0];
id q[1];
id q[3];
id q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(1.0,0))
program_plaquette_z0001=Program("""id q[0];
id q[1];
id q[3];
x q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(0,1.0))
program_plaquette_z0010=Program("""id q[0];
id q[1];
x q[3];
id q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(0,1.0))
program_plaquette_z0011=Program("""id q[0];
id q[1];
x q[3];
x q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(1.0,0))
program_plaquette_z0100=Program("""id q[0];
x q[1];
id q[3];
id q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(0,1.0))
program_plaquette_z0101=Program("""id q[0];
x q[1];
id q[3];
x q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(1.0,0))
program_plaquette_z0110=Program("""id q[0];
x q[1];
x q[3];
id q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(1.0,0))
program_plaquette_z0111=Program("""id q[0];
x q[1];
x q[3];
x q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(0,1.0))
program_plaquette_z1000=Program("""x q[0];
id q[1];
id q[3];
id q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(0,1.0))
program_plaquette_z1001=Program("""x q[0];
id q[1];
id q[3];
x q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(1.0,0))
program_plaquette_z1010=Program("""x q[0];
id q[1];
x q[3];
id q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(1.0,0))
program_plaquette_z1011=Program("""x q[0];
id q[1];
x q[3];
x q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(0,1.0))
program_plaquette_z1100=Program("""x q[0];
x q[1];
id q[3];
id q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(1.0,0))
program_plaquette_z1101=Program("""x q[0];
x q[1];
id q[3];
x q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(0,1.0))
program_plaquette_z1110=Program("""x q[0];
x q[1];
x q[3];
id q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(0,1.0))
program_plaquette_z1111=Program("""x q[0];
x q[1];
x q[3];
x q[4];
cx q[4], q[2];
cx q[0], q[2];
cx q[3], q[2];
cx q[1], q[2];
measure q[2];""",result_probability=(1.0,0))
program_plaquette_zXplusminusplusminus=Program("""h q[0];
h q[1];
h q[3];
h q[4];
z q[1];
z q[4];
id q[0];
id q[1];
id q[3];
id q[4];
h q[0];
h q[1];
h q[3];
h q[4];
cx q[4], q[2];
cx q[3], q[2];
cx q[0], q[2];
cx q[1], q[2];
h q[0];
h q[1];
measure q[2];
h q[3];
h q[4];""",result_probability=(1.0,0))
# Convenience for testing
all_normal_plaquette_programs=[program_plaquette_z0000,program_plaquette_z0001,program_plaquette_z0010,program_plaquette_z0011,program_plaquette_z0100,program_plaquette_z0101,program_plaquette_z0110,program_plaquette_z0111,program_plaquette_z1000,program_plaquette_z1001,program_plaquette_z1010,program_plaquette_z1011,program_plaquette_z1100,program_plaquette_z1101,program_plaquette_z1110,program_plaquette_z1111]
#########################################################################################
# All test code below
#########################################################################################
class TestQuantumRegister(unittest.TestCase):
def setUp(self):
self.startTime = time.time()
self.q0 = QuantumRegister("q0")
self.q1 = QuantumRegister("q1")
def tearDown(self):
print(self._testMethodName, "%.3f" % (time.time() - self.startTime))
self.q0=None
self.q1=None
def test_get_num_qubits(self):
self.assertTrue(self.q0.get_num_qubits()==self.q0.get_num_qubits()==1)
def test_equality(self):
self.assertEqual(self.q0,self.q0)
self.assertNotEqual(self.q0,self.q1)
class TestMeasure(unittest.TestCase):
def setUp(self):
self.startTime = time.time()
def tearDown(self):
print(self._testMethodName, "%.3f" % (time.time() - self.startTime))
def test_measure_probs_plus(self):
measurements=[]
for i in range(100000):
measurements+=[State.measure(State.plus_state)]
result=(1.*sum(measurements))/len(measurements)
self.assertTrue(np.allclose(list(result.flat),np.array((0.5,0.5)),rtol=1e-2))
def test_measure_probs_minus(self):
measurements=[]
for i in range(100000):
measurements+=[State.measure(State.minus_state)]
result=(1.*sum(measurements))/len(measurements)
self.assertTrue(np.allclose(list(result.flat),np.array((0.5,0.5)),rtol=1e-2))
def test_collapse(self):
result=State.measure(State.minus_state)
for i in range(100):
new_measure=State.measure(result)
self.assertTrue(np.allclose(result,new_measure))
result=new_measure
def test_measure_bell(self):
""" Tests the measurement of a 2 qubit entangled system"""
measurements=[]
for i in range(100000):
measurements+=[State.measure(State.bell_state)]
result=(1.*sum(measurements))/len(measurements)
self.assertTrue(np.allclose(list(result.flat),np.array((0.5,0.0,0.0,0.5)),rtol=1e-2))
class TestGetBloch(unittest.TestCase):
def setUp(self):
self.startTime = time.time()
def tearDown(self):
print(self._testMethodName, "%.3f" % (time.time() - self.startTime))
def test_get_bloch(self):
self.assertTrue(np.allclose(State.get_bloch(State.zero_state),np.array((0,0,1))))
self.assertTrue(np.allclose(State.get_bloch(State.one_state),np.array((0,0,-1))))
self.assertTrue(np.allclose(State.get_bloch(State.plusi_state),np.array((0,1,0))))
self.assertTrue(np.allclose(State.get_bloch(State.minusi_state),np.array((0,-1,0))))
self.assertTrue(np.allclose(State.get_bloch(Gate.Z*State.plus_state),np.array((-1,0,0))))
self.assertTrue(np.allclose(State.get_bloch(Gate.Z*State.minus_state),np.array((1,0,0))))
# assert the norms are 1 for cardinal points (obviously) but also for a few other points at higher T depth on the Bloch Sphere
for state in [State.zero_state,State.one_state,State.plusi_state,State.minusi_state,Gate.Z*State.plus_state,Gate.H*Gate.T*Gate.Z*State.plus_state,Gate.H*Gate.T*Gate.H*Gate.T*Gate.H*Gate.T*Gate.Z*State.plus_state]:
self.assertAlmostEqual(np.linalg.norm(state),1.0)
class TestGetBloch2(unittest.TestCase):
def setUp(self):
self.startTime = time.time()
def tearDown(self):
print(self._testMethodName, "%.3f" % (time.time() - self.startTime))
def get_bloch_2(self,state):
""" equal to get_bloch just a different way of calculating things. Used for testing get_bloch. """
return np.array((((state*state.conjugate().transpose()*Gate.X).trace()).item(0),((state*state.conjugate().transpose()*Gate.Y).trace()).item(0),((state*state.conjugate().transpose()*Gate.Z).trace()).item(0)))
def test_get_bloch_2(self):
self.assertTrue(np.allclose(self.get_bloch_2(State.zero_state),State.get_bloch(State.zero_state)))
self.assertTrue(np.allclose(self.get_bloch_2(State.one_state),State.get_bloch(State.one_state)))
self.assertTrue(np.allclose(self.get_bloch_2(State.plusi_state),State.get_bloch(State.plusi_state)))
self.assertTrue(np.allclose(self.get_bloch_2(State.minusi_state),State.get_bloch(State.minusi_state)))
self.assertTrue(np.allclose(self.get_bloch_2(Gate.Z*State.plus_state),State.get_bloch(Gate.Z*State.plus_state)))
self.assertTrue(np.allclose(self.get_bloch_2(Gate.H*Gate.T*Gate.Z*State.plus_state),State.get_bloch(Gate.H*Gate.T*Gate.Z*State.plus_state))) # test for arbitrary gates
class TestCNOTGate(unittest.TestCase):
def setUp(self):
self.startTime = time.time()
def tearDown(self):
print(self._testMethodName, "%.3f" % (time.time() - self.startTime))
def test_CNOT(self):
self.assertTrue(np.allclose(Gate.CNOT2_01*State.state_from_string('00'),State.state_from_string('00')))
self.assertTrue(np.allclose(Gate.CNOT2_01*State.state_from_string('01'),State.state_from_string('01')))
self.assertTrue(np.allclose(Gate.CNOT2_01*State.state_from_string('10'),State.state_from_string('11')))
self.assertTrue(np.allclose(Gate.CNOT2_01*State.state_from_string('11'),State.state_from_string('10')))
class TestTGate(unittest.TestCase):
def setUp(self):
self.startTime = time.time()
def tearDown(self):
print(self._testMethodName, "%.3f" % (time.time() - self.startTime))
def test_T(self):
# This is useful to check some of the exercises on IBM's quantum experience.
# "Ground truth" answers from IBM's calculations which unfortunately are not reported to high precision.
red_state=Gate.S*Gate.T*Gate.H*Gate.T*Gate.H*State.zero_state
green_state=Gate.S*Gate.H*Gate.T*Gate.H*Gate.T*Gate.H*Gate.T*Gate.H*Gate.S*Gate.T*Gate.H*Gate.T*Gate.H*State.zero_state
blue_state=Gate.H*Gate.S*Gate.T*Gate.H*Gate.T*Gate.H*Gate.S*Gate.T*Gate.H*Gate.T*Gate.H*Gate.T*Gate.H*State.zero_state
self.assertTrue(np.allclose(State.get_bloch(red_state),np.array((0.5,0.5,0.707)),rtol=1e-3))
self.assertTrue(np.allclose(State.get_bloch(green_state),np.array((0.427,0.457,0.780)),rtol=1e-3))
self.assertTrue(np.allclose(State.get_bloch(blue_state),np.array((0.457,0.427,0.780)),rtol=1e-3))
# Checking norms
for state in [red_state,green_state,blue_state]:
self.assertAlmostEqual(np.linalg.norm(state),1.0)
class TestMultiQuantumRegisterStates(unittest.TestCase):
def setUp(self):
self.startTime = time.time()
## Two qubit states (basis)
# To derive the ordering you do ((+) is outer product):
# Symbolically: |00> = |0> (+) |0>; gives 4x1
# In Python: np.kron(zero_state,zero_state)
self.two_qubits_00=np.kron(State.zero_state,State.zero_state)
self.two_qubits_01=np.kron(State.zero_state,State.one_state)
self.two_qubits_10=np.kron(State.one_state,State.zero_state)
self.two_qubits_11=np.kron(State.one_state,State.one_state)
## Three qubit states (basis)
self.three_qubits_000=np.kron(self.two_qubits_00,State.zero_state)
self.three_qubits_001=np.kron(self.two_qubits_00,State.one_state)
self.three_qubits_010=np.kron(self.two_qubits_01,State.zero_state)
self.three_qubits_011=np.kron(self.two_qubits_01,State.one_state)
self.three_qubits_100=np.kron(self.two_qubits_10,State.zero_state)
self.three_qubits_101=np.kron(self.two_qubits_10,State.one_state)
self.three_qubits_110=np.kron(self.two_qubits_11,State.zero_state)
self.three_qubits_111=np.kron(self.two_qubits_11,State.one_state)
# Four qubit states (basis)
self.four_qubits_0000=np.kron(self.three_qubits_000,State.zero_state)
self.four_qubits_0001=np.kron(self.three_qubits_000,State.one_state)
self.four_qubits_0010=np.kron(self.three_qubits_001,State.zero_state)
self.four_qubits_0011=np.kron(self.three_qubits_001,State.one_state)
self.four_qubits_0100=np.kron(self.three_qubits_010,State.zero_state)
self.four_qubits_0101=np.kron(self.three_qubits_010,State.one_state)
self.four_qubits_0110=np.kron(self.three_qubits_011,State.zero_state)
self.four_qubits_0111=np.kron(self.three_qubits_011,State.one_state)
self.four_qubits_1000=np.kron(self.three_qubits_100,State.zero_state)
self.four_qubits_1001=np.kron(self.three_qubits_100,State.one_state)
self.four_qubits_1010=np.kron(self.three_qubits_101,State.zero_state)
self.four_qubits_1011=np.kron(self.three_qubits_101,State.one_state)
self.four_qubits_1100=np.kron(self.three_qubits_110,State.zero_state)
self.four_qubits_1101=np.kron(self.three_qubits_110,State.one_state)
self.four_qubits_1110=np.kron(self.three_qubits_111,State.zero_state)
self.four_qubits_1111=np.kron(self.three_qubits_111,State.one_state)
# Five qubit states (basis)
self.five_qubits_00000=np.kron(self.four_qubits_0000,State.zero_state)
self.five_qubits_00001=np.kron(self.four_qubits_0000,State.one_state)
self.five_qubits_00010=np.kron(self.four_qubits_0001,State.zero_state)
self.five_qubits_00011=np.kron(self.four_qubits_0001,State.one_state)
self.five_qubits_00100=np.kron(self.four_qubits_0010,State.zero_state)
self.five_qubits_00101=np.kron(self.four_qubits_0010,State.one_state)
self.five_qubits_00110=np.kron(self.four_qubits_0011,State.zero_state)
self.five_qubits_00111=np.kron(self.four_qubits_0011,State.one_state)
self.five_qubits_01000=np.kron(self.four_qubits_0100,State.zero_state)
self.five_qubits_01001=np.kron(self.four_qubits_0100,State.one_state)
self.five_qubits_01010=np.kron(self.four_qubits_0101,State.zero_state)
self.five_qubits_01011=np.kron(self.four_qubits_0101,State.one_state)
self.five_qubits_01100=np.kron(self.four_qubits_0110,State.zero_state)
self.five_qubits_01101=np.kron(self.four_qubits_0110,State.one_state)
self.five_qubits_01110=np.kron(self.four_qubits_0111,State.zero_state)
self.five_qubits_01111=np.kron(self.four_qubits_0111,State.one_state)
self.five_qubits_10000=np.kron(self.four_qubits_1000,State.zero_state)
self.five_qubits_10001=np.kron(self.four_qubits_1000,State.one_state)
self.five_qubits_10010=np.kron(self.four_qubits_1001,State.zero_state)
self.five_qubits_10011=np.kron(self.four_qubits_1001,State.one_state)
self.five_qubits_10100=np.kron(self.four_qubits_1010,State.zero_state)
self.five_qubits_10101=np.kron(self.four_qubits_1010,State.one_state)
self.five_qubits_10110=np.kron(self.four_qubits_1011,State.zero_state)
self.five_qubits_10111=np.kron(self.four_qubits_1011,State.one_state)
self.five_qubits_11000=np.kron(self.four_qubits_1100,State.zero_state)
self.five_qubits_11001=np.kron(self.four_qubits_1100,State.one_state)
self.five_qubits_11010=np.kron(self.four_qubits_1101,State.zero_state)
self.five_qubits_11011=np.kron(self.four_qubits_1101,State.one_state)
self.five_qubits_11100=np.kron(self.four_qubits_1110,State.zero_state)
self.five_qubits_11101=np.kron(self.four_qubits_1110,State.one_state)
self.five_qubits_11110=np.kron(self.four_qubits_1111,State.zero_state)
self.five_qubits_11111=np.kron(self.four_qubits_1111,State.one_state)
def tearDown(self):
print(self._testMethodName, "%.3f" % (time.time() - self.startTime))
def test_basis(self):
# Sanity checks
# 1-qubit
self.assertTrue(np.allclose(State.zero_state+State.one_state,np.matrix('1; 1')))
eye=np.eye(2,2)
for row,state in enumerate([State.zero_state,State.one_state]):
self.assertTrue(np.allclose(state.transpose(),eye[row]))
# 2-qubit
self.assertTrue(np.allclose(self.two_qubits_00+self.two_qubits_01+self.two_qubits_10+self.two_qubits_11,np.matrix('1; 1; 1; 1')))
eye=np.eye(4,4)
for row,state in enumerate([self.two_qubits_00,self.two_qubits_01,self.two_qubits_10,self.two_qubits_11]):
self.assertTrue(np.allclose(state.transpose(),eye[row]))
# 3-qubit
self.assertTrue(np.allclose(self.three_qubits_000+self.three_qubits_001+self.three_qubits_010+self.three_qubits_011+self.three_qubits_100+self.three_qubits_101+self.three_qubits_110+self.three_qubits_111,np.matrix('1; 1; 1; 1; 1; 1; 1; 1')))
eye=np.eye(8,8)
for row,state in enumerate([self.three_qubits_000,self.three_qubits_001,self.three_qubits_010,self.three_qubits_011,self.three_qubits_100,self.three_qubits_101,self.three_qubits_110,self.three_qubits_111]):
self.assertTrue(np.allclose(state.transpose(),eye[row]))
# 4-qubit
self.assertTrue(np.allclose(self.four_qubits_0000+self.four_qubits_0001+self.four_qubits_0010+self.four_qubits_0011+self.four_qubits_0100+self.four_qubits_0101+self.four_qubits_0110+self.four_qubits_0111+self.four_qubits_1000+self.four_qubits_1001+self.four_qubits_1010+self.four_qubits_1011+self.four_qubits_1100+self.four_qubits_1101+self.four_qubits_1110+self.four_qubits_1111,np.matrix('1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1')))
eye=np.eye(16,16)
for row,state in enumerate([self.four_qubits_0000,self.four_qubits_0001,self.four_qubits_0010,self.four_qubits_0011,self.four_qubits_0100,self.four_qubits_0101,self.four_qubits_0110,self.four_qubits_0111,self.four_qubits_1000,self.four_qubits_1001,self.four_qubits_1010,self.four_qubits_1011,self.four_qubits_1100,self.four_qubits_1101,self.four_qubits_1110,self.four_qubits_1111]):
self.assertTrue(np.allclose(state.transpose(),eye[row]))
# 5-qubit
self.assertTrue(np.allclose(self.five_qubits_00000+self.five_qubits_00001+self.five_qubits_00010+self.five_qubits_00011+self.five_qubits_00100+self.five_qubits_00101+self.five_qubits_00110+self.five_qubits_00111+self.five_qubits_01000+self.five_qubits_01001+self.five_qubits_01010+self.five_qubits_01011+self.five_qubits_01100+self.five_qubits_01101+self.five_qubits_01110+self.five_qubits_01111+self.five_qubits_10000+self.five_qubits_10001+self.five_qubits_10010+self.five_qubits_10011+self.five_qubits_10100+self.five_qubits_10101+self.five_qubits_10110+self.five_qubits_10111+self.five_qubits_11000+self.five_qubits_11001+self.five_qubits_11010+self.five_qubits_11011+self.five_qubits_11100+self.five_qubits_11101+self.five_qubits_11110+self.five_qubits_11111,np.matrix('1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1')))
eye=np.eye(32,32)
for row,state in enumerate([self.five_qubits_00000,self.five_qubits_00001,self.five_qubits_00010,self.five_qubits_00011,self.five_qubits_00100,self.five_qubits_00101,self.five_qubits_00110,self.five_qubits_00111,self.five_qubits_01000,self.five_qubits_01001,self.five_qubits_01010,self.five_qubits_01011,self.five_qubits_01100,self.five_qubits_01101,self.five_qubits_01110,self.five_qubits_01111,self.five_qubits_10000,self.five_qubits_10001,self.five_qubits_10010,self.five_qubits_10011,self.five_qubits_10100,self.five_qubits_10101,self.five_qubits_10110,self.five_qubits_10111,self.five_qubits_11000,self.five_qubits_11001,self.five_qubits_11010,self.five_qubits_11011,self.five_qubits_11100,self.five_qubits_11101,self.five_qubits_11110,self.five_qubits_11111]):
self.assertTrue(np.allclose(state.transpose(),eye[row]))
def test_separate_state(self):
value_groups=[State.separate_state(self.five_qubits_11010),
State.separate_state(self.four_qubits_0101),
State.separate_state(self.three_qubits_000),
State.separate_state(self.three_qubits_111),
State.separate_state(self.three_qubits_101),
State.separate_state(self.two_qubits_00),
State.separate_state(self.two_qubits_01),
State.separate_state(self.two_qubits_10),
State.separate_state(self.two_qubits_11),
State.separate_state(State.zero_state),
State.separate_state(State.one_state)]
target_groups=[(State.one_state,State.one_state,State.zero_state,State.one_state,State.zero_state),
(State.zero_state,State.one_state,State.zero_state,State.one_state),
(State.zero_state,State.zero_state,State.zero_state),
(State.one_state,State.one_state,State.one_state),
(State.one_state,State.zero_state,State.one_state),
(State.zero_state,State.zero_state),
(State.zero_state,State.one_state),
(State.one_state,State.zero_state),
(State.one_state,State.one_state),
(State.zero_state),
(State.one_state)]
for vg,tg in zip(value_groups,target_groups):
for value_state,target_state in zip(value_groups,target_groups):
self.assertTrue(np.allclose(np.array(value_state),np.array(target_state)))
def test_string_from_state(self):
self.assertEqual(State.string_from_state(State.zero_state),'0')
self.assertEqual(State.string_from_state(State.one_state),'1')
self.assertEqual(State.string_from_state(self.two_qubits_00),'00')
self.assertEqual(State.string_from_state(self.two_qubits_01),'01')
self.assertEqual(State.string_from_state(self.two_qubits_10),'10')
self.assertEqual(State.string_from_state(self.two_qubits_11),'11')
self.assertEqual(State.string_from_state(self.three_qubits_110),'110')
self.assertEqual(State.string_from_state(self.four_qubits_1101),'1101')
self.assertEqual(State.string_from_state(self.five_qubits_11010),'11010')
def test_state_from_string(self):
for value_group,target_group in zip(['0','1','00','01','10','11','110','1101','11010'],
[[State.zero_state],[State.one_state],[State.zero_state,State.zero_state],[State.zero_state,State.one_state],[State.one_state,State.zero_state],[State.one_state,State.one_state],[State.one_state,State.one_state,State.zero_state],[State.one_state,State.one_state,State.zero_state,State.one_state],[State.one_state,State.one_state,State.zero_state,State.one_state,State.zero_state]]):
self.assertEqual(value_group,State.string_from_state(State.state_from_string(value_group)))
value_group=State.separate_state(State.state_from_string(value_group))
self.assertEqual(len(value_group),len(target_group))
for value_state,target_state in zip(value_group,target_group):
self.assertTrue(np.allclose(value_state,target_state))
class TestQuantumComputer(unittest.TestCase):
def setUp(self):
self.startTime = time.time()
self.qc=QuantumComputer()
def test_apply_gate(self):
self.qc.apply_gate(Gate.H*Gate.T*Gate.Sdagger*Gate.Tdagger*Gate.X*Gate.Y,"q0")
self.assertTrue(self.qc.qubit_states_equal("q0",Gate.H*Gate.T*Gate.Sdagger*Gate.Tdagger*Gate.X*Gate.Y*State.zero_state))
# Some tests on entangled gates, breaking abstraction but will improve testing soon
self.qc.reset()
q0=self.qc.qubits.get_quantum_register_containing("q0")
q1=self.qc.qubits.get_quantum_register_containing("q1")
q0.set_state(np.kron(State.zero_state,State.zero_state))
self.qc.qubits.entangle_quantum_registers(q0,q1)
# We will test applying the gate to qubits one and two
self.qc.apply_gate(Gate.X,"q0")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'10')
self.qc.apply_gate(Gate.X,"q0")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'00')
self.assertEqual(self.qc.qubits.get_quantum_register_containing("q1").name,"q1")
self.qc.apply_gate(Gate.X,"q1")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'01')
self.qc.apply_gate(Gate.X,"q1")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'00')
self.qc.apply_gate(Gate.X,"q0")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'10')
self.qc.apply_gate(Gate.X,"q1")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'11')
# Now testing on 3 qubits
q3=self.qc.qubits.get_quantum_register_containing("q3")
q0.set_state(np.kron(np.kron(State.zero_state,State.zero_state),State.zero_state))
self.qc.qubits.entangle_quantum_registers(q0,q3)
self.assertEqual(self.qc.qubits.get_quantum_register_containing("q1").name,"q1")
self.assertEqual(self.qc.qubits.get_quantum_register_containing("q3").name,"q3")
self.assertEqual(self.qc.qubits.get_quantum_register_containing("q0").name,"q0")
self.assertEqual(self.qc.qubits.get_quantum_register_containing("q2").name,"q2")
self.assertEqual(self.qc.qubits.get_quantum_register_containing("q4").name,"q4")
self.qc.apply_gate(Gate.X,"q0")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'100')
self.qc.apply_gate(Gate.X,"q0")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'000')
self.assertEqual(self.qc.qubits.get_quantum_register_containing("q1").name,"q1")
self.qc.apply_gate(Gate.X,"q1")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'010')
self.qc.apply_gate(Gate.X,"q1")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'000')
self.qc.apply_gate(Gate.X,"q0")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'100')
self.qc.apply_gate(Gate.X,"q1")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'110')
self.qc.apply_gate(Gate.X,"q3")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'111')
self.qc.apply_gate(Gate.X,"q1")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q0").get_state()),'101')
self.qc.apply_gate(Gate.X,"q4")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q4").get_state()),'1')
self.qc.apply_gate(Gate.X,"q4")
self.assertEqual(State.string_from_state(self.qc.qubits.get_quantum_register_containing("q4").get_state()),'0')
def test_apply_two_qubit_gate_CNOT_target(self):
self.assertTrue(self.qc.qubit_states_equal("q0",State.zero_state))
self.assertTrue(self.qc.qubit_states_equal("q1",State.zero_state))
self.qc.apply_two_qubit_gate_CNOT("q0","q1")
self.assertTrue(self.qc.qubit_states_equal("q0",State.zero_state))
self.assertTrue(self.qc.qubit_states_equal("q1",State.zero_state))
self.qc.apply_gate(Gate.X,"q0")
self.qc.apply_two_qubit_gate_CNOT("q0","q1")
self.assertTrue(self.qc.qubit_states_equal("q0",State.one_state))
self.assertTrue(self.qc.qubit_states_equal("q1",State.one_state))
self.qc.apply_two_qubit_gate_CNOT("q0","q1")
self.assertTrue(self.qc.qubit_states_equal("q0",State.one_state))
self.assertTrue(self.qc.qubit_states_equal("q1",State.zero_state))
def test_apply_two_qubit_gate_CNOT_two_entangled_target(self):
# We'll put qubit0 in state |10> and qubit1 is in state |0>
q0=self.qc.qubits.get_quantum_register_containing("q0")
q1=self.qc.qubits.get_quantum_register_containing("q1")
q0.set_state(State.state_from_string("10"))
self.qc.qubits.entangle_quantum_registers(q0,q1)
self.qc.apply_two_qubit_gate_CNOT("q0","q2") # Before: 100 After: 101
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('101')))
self.qc.reset()
q0=self.qc.qubits.get_quantum_register_containing("q0")
q1=self.qc.qubits.get_quantum_register_containing("q1")
q0.set_state(State.state_from_string("10"))
self.qc.qubits.entangle_quantum_registers(q0,q1)
self.qc.apply_two_qubit_gate_CNOT("q2","q0") # Before: 100 After: 100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('10000')))
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 100 After: 110
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('110')))
def test_apply_two_qubit_gate_CNOT_three_entangled_target(self):
#Entangled already
# Put q0 in an entangled state: |000>
for target,control in itertools.product(["q0","q1","q2"],repeat=2):
if target!=control:
self.qc.reset()
q0=self.qc.qubits.get_quantum_register_containing("q0")
q1=self.qc.qubits.get_quantum_register_containing("q1")
q2=self.qc.qubits.get_quantum_register_containing("q2")
q0.set_state(State.state_from_string("000"))
self.qc.qubits.entangle_quantum_registers(q0,q1)
self.qc.qubits.entangle_quantum_registers(q0,q2)
self.assertEqual(QuantumRegister.num_qubits(q0.get_state()),3)
self.qc.apply_two_qubit_gate_CNOT(target,control)
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('000')))
self.qc.reset()
q0=self.qc.qubits.get_quantum_register_containing("q0")
q1=self.qc.qubits.get_quantum_register_containing("q1")
q2=self.qc.qubits.get_quantum_register_containing("q2")
q0.set_state(State.state_from_string("100"))
self.qc.qubits.entangle_quantum_registers(q0,q1)
self.qc.qubits.entangle_quantum_registers(q0,q2)
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 100 After: 110
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('110')))
self.qc.apply_two_qubit_gate_CNOT("q1","q0") # Before: 110 After: 010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('010')))
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 010 After: 010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('010')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 010 After: 010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('010')))
self.qc.apply_two_qubit_gate_CNOT("q1","q2") # Before: 010 After: 011
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('011')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 011 After: 001
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('001')))
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 001 After: 001
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('001')))
self.qc.apply_two_qubit_gate_CNOT("q1","q0") # Before: 001 After: 001
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('001')))
self.qc.apply_two_qubit_gate_CNOT("q1","q2") # Before: 001 After: 001
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('001')))
self.qc.apply_two_qubit_gate_CNOT("q0","q2") # Before: 001 After: 001
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('001')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 001 After: 011
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('011')))
self.qc.apply_two_qubit_gate_CNOT("q2","q0") # Before: 011 After: 111
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('111')))
self.qc.apply_two_qubit_gate_CNOT("q0","q2") # Before: 111 After: 110
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('110')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 110 After: 110
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('110')))
self.qc.apply_two_qubit_gate_CNOT("q2","q0") # Before: 110 After: 110
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2",State.state_from_string('110')))
def test_apply_two_qubit_gate_CNOT_four_entangled_target(self):
#Entangled already
# Put q0 in an entangled state: |0000>
for target,control in itertools.product(["q0","q1","q2","q3"],repeat=2):
if target!=control:
self.qc.reset()
q0=self.qc.qubits.get_quantum_register_containing("q0")
q1=self.qc.qubits.get_quantum_register_containing("q1")
q2=self.qc.qubits.get_quantum_register_containing("q2")
q3=self.qc.qubits.get_quantum_register_containing("q3")
q0.set_state(State.state_from_string("0000"))
self.qc.qubits.entangle_quantum_registers(q0,q1)
self.qc.qubits.entangle_quantum_registers(q0,q2)
self.qc.qubits.entangle_quantum_registers(q0,q3)
self.assertEqual(QuantumRegister.num_qubits(q0.get_state()),4)
self.qc.apply_two_qubit_gate_CNOT(target,control)
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0000')))
self.qc.reset()
q0=self.qc.qubits.get_quantum_register_containing("q0")
q1=self.qc.qubits.get_quantum_register_containing("q1")
q2=self.qc.qubits.get_quantum_register_containing("q2")
q3=self.qc.qubits.get_quantum_register_containing("q3")
q0.set_state(State.state_from_string("1000"))
self.qc.qubits.entangle_quantum_registers(q0,q1)
self.qc.qubits.entangle_quantum_registers(q0,q2)
self.qc.qubits.entangle_quantum_registers(q0,q3)
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 1000 After: 1100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1100')))
self.qc.apply_two_qubit_gate_CNOT("q1","q0") # Before: 1100 After: 0100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0100')))
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 0100 After: 0100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0100')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 0100 After: 0100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0100')))
self.qc.apply_two_qubit_gate_CNOT("q1","q2") # Before: 0100 After: 0110
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0110')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 0110 After: 0010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0010')))
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 0010 After: 0010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0010')))
self.qc.apply_two_qubit_gate_CNOT("q1","q0") # Before: 0010 After: 0010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0010')))
self.qc.apply_two_qubit_gate_CNOT("q1","q2") # Before: 0010 After: 0010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0010')))
self.qc.apply_two_qubit_gate_CNOT("q0","q2") # Before: 0010 After: 0010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0010')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 0010 After: 0110
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('0110')))
self.qc.apply_two_qubit_gate_CNOT("q2","q0") # Before: 0110 After: 1110
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1110')))
self.qc.apply_two_qubit_gate_CNOT("q0","q2") # Before: 1110 After: 1100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1100')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 1100 After: 1100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1100')))
self.qc.apply_two_qubit_gate_CNOT("q2","q0") # Before: 1100 After: 1100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1100')))
self.qc.apply_two_qubit_gate_CNOT("q0","q3") # Before: 1100 After: 1101
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1101')))
self.qc.apply_two_qubit_gate_CNOT("q3","q2") # Before: 1101 After: 1111
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1111')))
self.qc.apply_two_qubit_gate_CNOT("q1","q3") # Before: 1111 After: 1110
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1110')))
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 1110 After: 1010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1010')))
self.qc.apply_two_qubit_gate_CNOT("q1","q3") # Before: 1010 After: 1010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1010')))
self.qc.apply_two_qubit_gate_CNOT("q3","q1") # Before: 1010 After: 1010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3",State.state_from_string('1010')))
def test_apply_two_qubit_gate_CNOT_five_entangled_target(self):
#Entangled already
# Put q0 in an entangled state: |00000>
for target,control in itertools.product(["q0","q1","q2","q3","q4"],repeat=2):
if target!=control:
self.qc.reset()
q0=self.qc.qubits.get_quantum_register_containing("q0")
q1=self.qc.qubits.get_quantum_register_containing("q1")
q2=self.qc.qubits.get_quantum_register_containing("q2")
q3=self.qc.qubits.get_quantum_register_containing("q3")
q4=self.qc.qubits.get_quantum_register_containing("q4")
q0.set_state(State.state_from_string("00000"))
self.qc.qubits.entangle_quantum_registers(q0,q1)
self.qc.qubits.entangle_quantum_registers(q0,q2)
self.qc.qubits.entangle_quantum_registers(q0,q3)
self.qc.qubits.entangle_quantum_registers(q0,q4)
self.assertEqual(QuantumRegister.num_qubits(q0.get_state()),5)
self.qc.apply_two_qubit_gate_CNOT(target,control)
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('00000')))
self.qc.reset()
q0=self.qc.qubits.get_quantum_register_containing("q0")
q1=self.qc.qubits.get_quantum_register_containing("q1")
q2=self.qc.qubits.get_quantum_register_containing("q2")
q3=self.qc.qubits.get_quantum_register_containing("q3")
q4=self.qc.qubits.get_quantum_register_containing("q4")
q0.set_state(State.state_from_string("10000"))
self.qc.qubits.entangle_quantum_registers(q0,q1)
self.qc.qubits.entangle_quantum_registers(q0,q2)
self.qc.qubits.entangle_quantum_registers(q0,q3)
self.qc.qubits.entangle_quantum_registers(q0,q4)
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 10000 After: 11000
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11000')))
self.qc.apply_two_qubit_gate_CNOT("q1","q0") # Before: 11000 After: 01000
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('01000')))
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 01000 After: 01000
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('01000')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 01000 After: 01000
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('01000')))
self.qc.apply_two_qubit_gate_CNOT("q1","q2") # Before: 01000 After: 01100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('01100')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 01100 After: 00100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('00100')))
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 00100 After: 00100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('00100')))
self.qc.apply_two_qubit_gate_CNOT("q1","q0") # Before: 00100 After: 00100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('00100')))
self.qc.apply_two_qubit_gate_CNOT("q1","q2") # Before: 00100 After: 00100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('00100')))
self.qc.apply_two_qubit_gate_CNOT("q0","q2") # Before: 00100 After: 00100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('00100')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 00100 After: 01100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('01100')))
self.qc.apply_two_qubit_gate_CNOT("q2","q0") # Before: 01100 After: 11100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11100')))
self.qc.apply_two_qubit_gate_CNOT("q0","q2") # Before: 11100 After: 11000
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11000')))
self.qc.apply_two_qubit_gate_CNOT("q2","q1") # Before: 11000 After: 11000
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11000')))
self.qc.apply_two_qubit_gate_CNOT("q2","q0") # Before: 11000 After: 11000
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11000')))
self.qc.apply_two_qubit_gate_CNOT("q0","q3") # Before: 11000 After: 11010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11010')))
self.qc.apply_two_qubit_gate_CNOT("q3","q2") # Before: 11010 After: 11110
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11110')))
self.qc.apply_two_qubit_gate_CNOT("q1","q3") # Before: 11110 After: 11100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11100')))
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 11100 After: 10100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10100')))
self.qc.apply_two_qubit_gate_CNOT("q1","q3") # Before: 10100 After: 10100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10100')))
self.qc.apply_two_qubit_gate_CNOT("q3","q1") # Before: 10100 After: 10100
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10100')))
self.qc.apply_two_qubit_gate_CNOT("q0","q4") # Before: 10100 After: 10101
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10101')))
self.qc.apply_two_qubit_gate_CNOT("q4","q2") # Before: 10101 After: 10001
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10001')))
self.qc.apply_two_qubit_gate_CNOT("q1","q4") # Before: 10001 After: 10001
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10001')))
self.qc.apply_two_qubit_gate_CNOT("q0","q1") # Before: 10001 After: 11001
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11001')))
self.qc.apply_two_qubit_gate_CNOT("q1","q4") # Before: 11001 After: 11000
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11000')))
self.qc.apply_two_qubit_gate_CNOT("q1","q4") # Before: 11000 After: 11001
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('11001')))
self.qc.apply_two_qubit_gate_CNOT("q4","q1") # Before: 11001 After: 10001
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10001')))
self.qc.apply_two_qubit_gate_CNOT("q4","q3") # Before: 10001 After: 10011
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10011')))
self.qc.apply_two_qubit_gate_CNOT("q3","q4") # Before: 10011 After: 10010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10010')))
self.qc.apply_two_qubit_gate_CNOT("q2","q4") # Before: 10010 After: 10010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10010')))
self.qc.apply_two_qubit_gate_CNOT("q1","q4") # Before: 10010 After: 10010
self.assertTrue(self.qc.qubit_states_equal("q0,q1,q2,q3,q4",State.state_from_string('10010')))
def test_execute_bluestate(self):
"""Tests h,t,s,and bloch syntax on one qubit"""
# This is a program to generate the 'blue state' in IBM's exercise
self.qc.execute(Programs.program_blue_state.code)
# check if we are in the blue state
blue_state=Gate.H*Gate.S*Gate.T*Gate.H*Gate.T*Gate.H*Gate.S*Gate.T*Gate.H*Gate.T*Gate.H*Gate.T*Gate.H*State.zero_state
self.assertTrue(self.qc.bloch_coords_equal("q1",State.get_bloch(blue_state)))
# check to make sure we didn't change any other qubits in the QC
for unchanged_state in ["q0","q2","q3","q4"]:
self.assertTrue(self.qc.qubit_states_equal(unchanged_state,State.zero_state))
def test_execute_X_Y_Z_Measure_Id_Sdag_Tdag(self):
"""Tests z,y,measure,id,sdag,tdag syntax on all 5 qubits"""
self.qc.execute(Programs.program_test_XYZMeasureIdSdagTdag.code)
# result should be 01101
self.assertTrue(self.qc.qubit_states_equal("q0",State.zero_state))
self.assertTrue(self.qc.qubit_states_equal("q1",State.one_state))
self.assertTrue(self.qc.qubit_states_equal("q2",State.one_state))
self.assertTrue(self.qc.qubit_states_equal("q3",State.zero_state))
self.assertTrue(self.qc.qubit_states_equal("q4",State.one_state))
def test_execute_cnot(self):
"""Tests cnot"""
self.qc.execute(Programs.program_test_cnot.code)
# result should be 01100
self.assertTrue(self.qc.qubit_states_equal("q0",State.zero_state))
self.assertTrue(self.qc.qubit_states_equal("q1",State.one_state))
self.assertTrue(self.qc.qubit_states_equal("q2",State.one_state))
self.assertTrue(self.qc.qubit_states_equal("q3",State.zero_state))
self.assertTrue(self.qc.qubit_states_equal("q4",State.zero_state))
def test_execute_many(self):
"""Tests z,y,cnot,measure,id,sdag,tdag syntax on all 5 qubits"""
self.qc.execute(Programs.program_test_many.code)
# result should be 01001
self.assertTrue(self.qc.qubit_states_equal("q0",State.zero_state))
self.assertTrue(self.qc.qubit_states_equal("q1",State.one_state))
self.assertTrue(self.qc.qubit_states_equal("q2",State.zero_state))
self.assertTrue(self.qc.qubit_states_equal("q3",State.zero_state))
self.assertTrue(self.qc.qubit_states_equal("q4",State.one_state))
# These tests will be enabled after entanglement is supported properly
# # Bell state experiments
def test_bellstate_programs(self):
# This tests two qubit entanglement.
for program,result_probs,result_cor in zip([Programs.program_zz,Programs.program_zw,Programs.program_zv,Programs.program_xw,Programs.program_xv],
[(0.5,0,0,0.5),(0.426777,0.073223,0.073223,0.426777),(0.426777,0.073223,0.073223,0.426777),(0.426777,0.073223,0.073223,0.426777),(0.073223,0.426777,0.426777,0.073223)],
[1,1/sqrt(2),1/sqrt(2),1/sqrt(2),-1/sqrt(2)]):
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q1").get_noop()
probs=Probability.get_probabilities(state_before_measure)
corex=Probability.get_correlated_expectation(state_before_measure)
self.assertTrue(np.allclose(probs,result_probs))
self.assertAlmostEqual(corex,result_cor)
def test_ghz(self):
program=Programs.program_ghz
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q1").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_ghz_measure_xxx(self):
program=Programs.program_ghz_measure_xxx
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q1").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_ghz_measure_yyx(self):
program=Programs.program_ghz_measure_yyx
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q1").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_ghz_measure_yxy(self):
program=Programs.program_ghz_measure_yxy
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q0").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_ghz_measure_xyy(self):
program=Programs.program_ghz_measure_xyy
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q0").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_program_swap_q0_q1(self):
program=Programs.program_swap_q0_q1
self.qc.reset()
self.qc.execute(program.code)
for qubit,bloch in zip(["q0","q1","q2","q3","q4"],program.bloch_vals):
if bloch:
self.assertTrue(self.qc.bloch_coords_equal(qubit,bloch))
def test_program_controlled_hadamard(self):
program=Programs.program_controlled_hadamard
self.qc.reset()
self.qc.execute(program.code)
for qubit,bloch in zip(["q0","q1","q2","q3","q4"],program.bloch_vals):
if bloch:
self.assertTrue(self.qc.bloch_coords_equal(qubit,bloch))
def test_reverse_cnot(self):
program=Programs.program_reverse_cnot
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q2").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_program_swap(self):
program=Programs.program_swap
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q2").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_program_approximate_sqrtT(self):
program=Programs.program_approximate_sqrtT
self.qc.reset()
self.qc.execute(program.code)
for qubit,bloch in zip(["q0","q1","q2","q3","q4"],program.bloch_vals):
if bloch:
self.assertTrue(self.qc.bloch_coords_equal(qubit,bloch))
def test_program_toffoli_state_with_flips(self):
program=Programs.program_toffoli_with_flips
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q1").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_program_toffoli_state(self):
program=Programs.program_toffoli_state
self.qc.reset()
self.qc.execute(program.code)
# we are going to reset things back to before they were measured
on_qubit=self.qc.qubits.get_quantum_register_containing("q0")
on_qubit.set_state(on_qubit.get_noop())
self.assertTrue(self.qc.probabilities_equal("q0,q1,q2",np.array(program.result_probability)))
def test_grover(self):
for program in Programs.all_grover_tests:
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q1").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_program_encoder_into_bitflip_code(self):
# Simply fails
program=Programs.program_encoder_into_bitflip_code
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q1").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability,atol=1e-3))
def test_program_encoder_into_bitflip_code_parity_checks(self):
program=Programs.program_encoder_into_bitflip_code_parity_checks
self.qc.reset()
self.qc.execute(program.code)
# we are going to reset things back to before they were measured
on_qubit=self.qc.qubits.get_quantum_register_containing("q0")
on_qubit.set_state(on_qubit.get_noop())
self.assertTrue(self.qc.probabilities_equal("q0,q1,q2,q3,q4",np.array(program.result_probability)))
def test_program_deutschjozsa_constant_n3(self):
program=Programs.program_deutschjozsa_n3
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q1").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_program_deutschjozsa_n3(self):
program=Programs.program_deutschjozsa_n3
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q1").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_plaquette_code(self):
for program in Programs.all_normal_plaquette_programs:
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q2").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_plaquette_zXplusminusplusminus(self):
program=Programs.program_plaquette_zXplusminusplusminus
self.qc.reset()
self.qc.execute(program.code)
state_before_measure=self.qc.qubits.get_quantum_register_containing("q2").get_noop()
probs=Probability.get_probabilities(state_before_measure)
self.assertTrue(np.allclose(probs,program.result_probability))
def test_program_encoder_and_decoder_tomography(self):
program=Programs.program_encoder_and_decoder_tomography
self.qc.reset()
self.qc.execute(program.code)
for qubit_name,bloch in zip(["q0","q1","q2","q3","q4"],program.bloch_vals):
if bloch:
self.assertTrue(self.qc.bloch_coords_equal(qubit_name,bloch))
def tearDown(self):
print(self._testMethodName, "%.3f" % (time.time() - self.startTime))
self.qc=None
if __name__ == '__main__':
unittest.main()
|