File: remote.c

package info (click to toggle)
quisk 4.2.32-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,064 kB
  • sloc: python: 22,219; ansic: 19,027; makefile: 38; sh: 2
file content (748 lines) | stat: -rwxr-xr-x 23,621 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
/*
  This software is Copyright (C) 2021-2022 by Ben Cahill and 2006-2022 by James C. Ahlstrom,
  and is licensed for use under the GNU General Public License (GPL).
  See http://www.opensource.org.
  Note that there is NO WARRANTY AT ALL.  USE AT YOUR OWN RISK!!
*/

#define PY_SSIZE_T_CLEAN
#include <Python.h>
#include <complex.h>
#include <math.h>
#include <sys/time.h>
#include <time.h>
#include <errno.h>

#ifdef MS_WINDOWS
#include <winsock2.h>
#include <stdint.h>
#else

#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#include <sys/param.h>
#if defined(BSD)
#include <netinet/in.h>
#endif
#endif

#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/ip.h>
#include <fcntl.h>
#endif

#include "../quisk.h"
#include "../filter.h"

#define GRAPH_DATA_SCALE	163
#define MAX_UDP_INT16_T		600
#define UDP_SEND_INT16		200

#define REMOTE_DEBUG 0  //BMC TODO:  Make this a configuration option

static SOCKET remote_radio_sound_socket = INVALID_SOCKET;		// send radio sound to control_head, receive mic samples
static SOCKET control_head_sound_socket = INVALID_SOCKET;		// receive radio sound from remote_radio, send mic samples
static SOCKET remote_radio_graph_socket = INVALID_SOCKET;		// send graph data to control_head
static SOCKET control_head_graph_socket = INVALID_SOCKET;		// receive graph data from remote_radio
static int control_head_sound_socket_started = 0;			// sound stream started on the control head
static int remote_radio_sound_socket_started = 0;			// sound stream started on the remote radio
static int control_head_graph_socket_started = 0;			// graph data stream started on the control head
static int remote_radio_graph_socket_started = 0;			// graph data stream started on the remote radio
static int control_head_data_width;					// app.data_width of control head for graph data
static int packets_sent;
static int packets_recd;

// Receive stereo 16-bit pcm radio speaker sound on the control head via UDP
int read_remote_radio_sound_socket(complex double * cSamples)
{
	int i, bytes, nInt16, nSamples;
	int16_t buf[UDP_SEND_INT16];
	double samp_r, samp_l;
	struct timeval tm_wait;
	fd_set fds;
	static struct quisk_cHB45Filter HalfBand;
	static struct quisk_cFilter cFiltInterp3;
	static int init_filters=1;

	if (control_head_sound_socket == INVALID_SOCKET)
		return 0;
	if (init_filters) {
		init_filters = 0;
		memset(&HalfBand, 0, sizeof(struct quisk_cHB45Filter));
		quisk_filt_cInit(&cFiltInterp3, quiskAudio24p3Coefs, sizeof(quiskAudio24p3Coefs)/sizeof(double));
	}
	// Signal far end (server) that we're ready (this sends our address/port to far end)
	if (!control_head_sound_socket_started) {
		QuiskPrintf("read_remote_radio_sound_socket() sending 'rr'\n");
		bytes = send(control_head_sound_socket, "rr\n", 3, 0);
		if (bytes != 3)
			QuiskPrintf("read_remote_radio_sound_socket(), sendto(): %s\n", strerror(errno));
	}

	// read all available packets, one per loop
	nSamples = 0;
	while (1) {
		tm_wait.tv_sec = 0;
		tm_wait.tv_usec = 0;
		FD_ZERO (&fds);
		FD_SET (control_head_sound_socket, &fds);
		if (select(control_head_sound_socket + 1, &fds, NULL, NULL, &tm_wait) != 1) {
			//BMC QuiskPrintf("read_remote_radio_sound_socket(): select returned %i\n", retval);
			break;
		}
		bytes = recv(control_head_sound_socket, (char *)buf, UDP_SEND_INT16 * 2, 0);
		if (bytes < 0) {
			if (errno != EAGAIN && errno != EWOULDBLOCK)
				QuiskPrintf("read_remote_radio_sound_socket(), recv(): %s\n", strerror(errno));
			break;
		}
		if (bytes > 0) {
			control_head_sound_socket_started = 1;
			nInt16 = bytes / 2;
			for (i = 0; i < nInt16; i += 2) {
				samp_r = buf[i];
				samp_l = buf[i + 1];
				cSamples[nSamples++] = (samp_r + I * samp_l) / CLIP16 * CLIP32;
			}
		}
	} // while(1)

	nSamples = quisk_cInterpolate(cSamples, nSamples, &cFiltInterp3, 3);
	nSamples = quisk_cInterp2HB45(cSamples, nSamples, &HalfBand);

	return nSamples;
}

// Receive stereo 16-bit pcm microphone samples at the remote radio via UDP
int read_remote_mic_sound_socket(complex double * cSamples)
{
	int i, bytes, nInt16, nSamples;
	int16_t buf[UDP_SEND_INT16];
	double samp_r, samp_l;
	struct timeval tm_wait;
	fd_set fds;
	static struct quisk_cHB45Filter HalfBand;
	static struct quisk_cFilter cFiltInterp3;
	static int init_filters=1;

	if (remote_radio_sound_socket == INVALID_SOCKET)
		return 0;
	if (init_filters) {
		init_filters = 0;
		memset(&HalfBand, 0, sizeof(struct quisk_cHB45Filter));
		quisk_filt_cInit(&cFiltInterp3, quiskAudio24p3Coefs, sizeof(quiskAudio24p3Coefs)/sizeof(double));
	}

	// read all available packets, one per loop
	nSamples = 0;
	while (1) {
		tm_wait.tv_sec = 0;
		tm_wait.tv_usec = 0;
		FD_ZERO (&fds);
		FD_SET (remote_radio_sound_socket, &fds);
		if (select(remote_radio_sound_socket + 1, &fds, NULL, NULL, &tm_wait) != 1) {
			//BMC QuiskPrintf("read_remote_mic_sound_socket(): select returned %i\n", retval);
			break;
		}
		bytes = recv(remote_radio_sound_socket, (char *)buf, UDP_SEND_INT16 * 2, 0);
		if (bytes < 0) {
			if (errno != EAGAIN && errno != EWOULDBLOCK)
				QuiskPrintf("read_remote_mic_sound_socket(), recv(): %s\n", strerror(errno));
			break;
		}
		if (bytes > 0) {
			nInt16 = bytes / 2;
			for (i = 0; i < nInt16; i += 2) {
				samp_r = buf[i];
				samp_l = buf[i + 1];
				cSamples[nSamples++] = (samp_r + I * samp_l) / CLIP16 * CLIP32;
			}
		}
	} // while(1)

	nSamples = quisk_cInterpolate(cSamples, nSamples, &cFiltInterp3, 3);
	nSamples = quisk_cInterp2HB45(cSamples, nSamples, &HalfBand);

	return nSamples;
}
// Send stereo 16-bit pcm sound via UDP
// This code acts as UDP server for radio sound (on remote radio) or mic sound (on control head)
#define MAX_SAMPLES_FOR_REMOTE_SOUND 15000
#define RX_BUFFER_SIZE 64

// Send microphone samples from the control head to the remote radio
void send_remote_mic_sound_socket(complex double * cSamples, int nSamples)
{
	int i;
	ssize_t sent;
	static int buffer_index=0;
	static int16_t buffer[UDP_SEND_INT16];
	static struct quisk_cHB45Filter HalfBand;
	static struct quisk_cFilter cFiltDecim3;
	static int init_filters=1, size_cBuf=0;
	static complex double * cBuf=NULL;

	if (init_filters) {
		init_filters = 0;
		memset(&HalfBand, 0, sizeof(struct quisk_cHB45Filter));
		quisk_filt_cInit(&cFiltDecim3, quiskAudio24p3Coefs, sizeof(quiskAudio24p3Coefs)/sizeof(double));
	}
	if (nSamples > size_cBuf) {
		size_cBuf = nSamples;
		cBuf = (complex double *)realloc(cBuf, size_cBuf * sizeof(complex double));
	}
	if (control_head_sound_socket == INVALID_SOCKET)
		return;

	if (!control_head_sound_socket_started)
		return;
	memcpy(cBuf, cSamples, nSamples * sizeof(complex double));	// Do not alter cSamples
	// Reduce sample rate from 48 to 8 ksps
	nSamples = quisk_cDecim2HB45(cBuf, nSamples, &HalfBand);
	nSamples = quisk_cDecimate(cBuf, nSamples, &cFiltDecim3, 3);
	// Convert format from complex double to stereo pairs of 16-bit PCM samples.
	// Buffer samples until UDP_SEND_INT16 are available, and then send the block.
	for (i = 0; i < nSamples; i++) {
		buffer[buffer_index++] = (int16_t)(creal(cBuf[i]) * (double)CLIP16 / CLIP32);
		buffer[buffer_index++] = (int16_t)(cimag(cBuf[i]) * (double)CLIP16 / CLIP32);
		if (buffer_index >= UDP_SEND_INT16) {
			sent = send(control_head_sound_socket, (const char *)buffer, buffer_index * 2, 0);
			if (sent != buffer_index * 2)
				QuiskPrintf("send_remote_mic_sound_socket(), send(): %s\n", strerror(errno));
			buffer_index = 0;
		}
	}
}

// Send radio speaker sound from the remote radio to the control head
void send_remote_radio_sound_socket(complex double * cSamples, int nSamples)
{	// Send nSamples samples.  Each sample is sent as two shorts (4 bytes) of L/R audio data.
	int i, N, sent;
	static int16_t sound_lr[UDP_SEND_INT16];
	static int udp_size = 0;	// Keep track of UDP payload size, in shorts
	char buf[RX_BUFFER_SIZE];	// For startup message
	int recv_len;
	int retval;
	SOCKET * sock = &remote_radio_sound_socket;
	static struct quisk_cHB45Filter HalfBand;
	static struct quisk_cFilter cFiltDecim3;
	static int init_filters=1, size_cBuf=0;
	static complex double * cBuf=NULL;

#if REMOTE_DEBUG > 0 //BMC debug
	// measure/monitor tools:
	static float callcount = 0;
	static float sampcount = 0;
	static uint64_t bunchcount = 0;
	static float callcount_total = 0;
	static float sampcount_total = 0;
	static double prior_ts = 0;
	static double delta_total = 0;
#if REMOTE_DEBUG > 1 //BMC debug
	static double prior_packet_ts = 0.0;
	double now;
#endif
#endif

	if (*sock == INVALID_SOCKET)
		return;

	if (init_filters) {
		init_filters = 0;
		memset(&HalfBand, 0, sizeof(struct quisk_cHB45Filter));
		quisk_filt_cInit(&cFiltDecim3, quiskAudio24p3Coefs, sizeof(quiskAudio24p3Coefs)/sizeof(double));
	}
	if (nSamples > size_cBuf) {
		size_cBuf = nSamples;
		cBuf = (complex double *)realloc(cBuf, size_cBuf * sizeof(complex double));
	}

#if REMOTE_DEBUG > 0 //BMC debug
	callcount++;
#endif
	// Wait for far end (client) to send its opening greetings, so we can grab its network address/port
	if (!remote_radio_sound_socket_started) {
		struct sockaddr_in far_addr;
#ifdef MS_WINDOWS
		int addr_len = sizeof(struct sockaddr_in);
#else
		socklen_t addr_len = sizeof(struct sockaddr_in);
#endif
		struct timeval tm_wait;
		fd_set fds;
		tm_wait.tv_sec = 0;
		tm_wait.tv_usec = 0;
		FD_ZERO (&fds);
		FD_SET (*sock, &fds);
		if ((retval = select(*sock + 1, &fds, NULL, NULL, &tm_wait)) != 1) {
			//BMC QuiskPrintf("send_remote_sound_socket(): select returned %i\n", retval);
			return;
		}
		// Receive short msg, grab far end address
		if ((recv_len = recvfrom(*sock, buf, RX_BUFFER_SIZE, 0, (struct sockaddr *) &far_addr, &addr_len)) == -1) {
			QuiskPrintf("send_remote_sound_socket(), recvfrom(): %s\n", strerror(errno));
			return;
		}
		else if(recv_len > 0) {
			if (recv_len >= RX_BUFFER_SIZE)
				buf[RX_BUFFER_SIZE - 1] = '\n';
			else
				buf[recv_len] = '\n';
			QuiskPrintf("send_remote_sound_socket(): recv_len = %i, %s", recv_len, buf);
			if (connect(*sock, (const struct sockaddr *)&far_addr, sizeof(far_addr)) != 0) {
				QuiskPrintf("send_remote_sound_socket), connect(): %s\n", strerror(errno));
				close(*sock);
				*sock = INVALID_SOCKET;
			}
			else
				remote_radio_sound_socket_started = 1;
		}
	}

	memcpy(cBuf, cSamples, nSamples * sizeof(complex double));	// Do not alter cSamples
	// Reduce sample rate from 48 to 8 ksps
	nSamples = quisk_cDecim2HB45(cBuf, nSamples, &HalfBand);
	nSamples = quisk_cDecimate(cBuf, nSamples, &cFiltDecim3, 3);
	// Convert format from complex double to stereo pairs of 16-bit PCM samples, send to client
	for (i = 0; i < nSamples; i++) {
		sound_lr[udp_size++] = (int16_t)(creal(cBuf[i]) * (double)CLIP16 / CLIP32);
		sound_lr[udp_size++] = (int16_t)(cimag(cBuf[i]) * (double)CLIP16 / CLIP32);
		if (udp_size >= UDP_SEND_INT16) {
			N = UDP_SEND_INT16;
			udp_size = 0;
			sent = send(*sock, (char *)sound_lr, N * 2, 0);
			if (sent != N * 2)
				QuiskPrintf("send_remote_sound_socket(), send(): %s\n", strerror(errno));
#if REMOTE_DEBUG > 0 //BMC debug
			else {
				sampcount += sent/4;
				packets_sent++;
#if REMOTE_DEBUG > 1 //BMC debug
				now = QuiskTimeSec();
				QuiskPrintf("%f, send_remote_sound_socket(): now - prior = %f, samples = %u, sampcount = %lu\n",
					now, now - prior_packet_ts, sent / 4, sampcount);
				prior_packet_ts = now;
#endif
			}
#endif
		}
#if REMOTE_DEBUG > 1 //BMC debug
		else {
			now = QuiskTimeSec();
			QuiskPrintf("%f, send_remote_sound_socket(): nSamples = %i\n", now, nSamples);
		}
#endif
	}
#if REMOTE_DEBUG > 0 //BMC debug
	if (callcount >= 200) {
		double new_ts = QuiskTimeSec();
		double delta = new_ts - prior_ts;
		prior_ts = new_ts;
#if REMOTE_DEBUG > 1 //BMC every 200
		QuiskPrintf("send_remote_sound_socket CURRENT calls: %lu, samples %lu, deltasec %f\n", callcount, sampcount, delta);
		QuiskPrintf("%f: send_remote_sound_socket CURRENT RATES (HZ): calls %f, samples %f\n", new_ts, callcount / delta, sampcount / delta);
#endif
		if (bunchcount > 0) {	// skip the initial bunch; prebuf may distort some numbers(?)
			callcount_total += callcount;
			sampcount_total += sampcount;
			delta_total += delta;
		}
		if (bunchcount % 10 == 0 && bunchcount > 0) {
			QuiskPrintf("%f: send_remote_sound_socket SUMMARY calls: %f, samples %f, deltasec %f\n",
				new_ts, callcount_total, sampcount_total, delta_total);
			QuiskPrintf("%f: send_remote_sound_socket SUMMARY RATES (HZ): calls %f, samples %f\n",
				new_ts, callcount_total / delta_total, sampcount_total / delta_total);
		}
		bunchcount++;
		callcount = 0;
		sampcount = 0;
	}
#endif
}

// Send graph data via UDP from the remote radio to the control head
void send_graph_data(double * fft_avg, int fft_size, double zoom, double deltaf, int fft_sample_rate, double scale)
{
	static double * pixels = NULL;
	static int n_pixels = 0;
	static uint8_t sequence = 0;
	uint8_t flags;
	int16_t buffer[MAX_UDP_INT16_T];
	int16_t block;
	int pixel_index, buffer_index;
	double d1, d2;
	ssize_t sent;
	char buf[RX_BUFFER_SIZE];	// For startup message
	int recv_len;
	struct sockaddr_in far_addr;
#ifdef MS_WINDOWS
	int addr_len = sizeof(struct sockaddr_in);
#else
	socklen_t addr_len = sizeof(struct sockaddr_in);
#endif

	if (remote_radio_graph_socket == INVALID_SOCKET)
		return;
	if ( !control_head_data_width)
		return;
	if ( !remote_radio_graph_socket_started) {
		// Receive short msg, grab far end address
		// Receive from control head is necessary to establish a path through NAT
		if ((recv_len = recvfrom(remote_radio_graph_socket, buf, RX_BUFFER_SIZE, 0, (struct sockaddr *) &far_addr, &addr_len)) < 2) {
			return;
		}
		else {
			if (connect(remote_radio_graph_socket, (const struct sockaddr *)&far_addr, sizeof(far_addr)) != 0) {
				QuiskPrintf("send_remote_graph_socket), connect(): %s\n", strerror(errno));
				close(remote_radio_graph_socket);
				remote_radio_graph_socket = INVALID_SOCKET;
				return;
			}
			else {
				remote_radio_graph_socket_started = 1;
			}
		}
	}
	if (control_head_data_width > n_pixels) {
		n_pixels = control_head_data_width;
		if (pixels)
			free(pixels);
		pixels = (double *)malloc(n_pixels * sizeof(double));
	}
	if ( ! fft_avg) {	// send dummy graph data
		send(remote_radio_graph_socket, "dum", 3, 0);
		return;
	}
	copy2pixels(pixels, control_head_data_width, fft_avg, fft_size, zoom, deltaf, fft_sample_rate);
	// Send multiple 16-bit data blocks: {flags, sequence}, block number, 16-bit graph data
	// 8-bit flags:
	//	bit 0: clip indicator
	// 8-bit sequence: 0, 1, 2, ..., 255
	block = 0;
	pixel_index = 0;
	while (pixel_index < control_head_data_width) {
		if (quisk_get_overrange())
			flags = 0x01;
		else
			flags = 0x00;
		buffer[0] = flags << 8 | sequence;
		buffer[1] = block;
		buffer_index = 2;
		while (buffer_index < MAX_UDP_INT16_T && pixel_index < control_head_data_width) {
			d1 = pixels[pixel_index++];
			if (fabs(d1) < 1e-40)	// avoid log10(0)
				d1 = 1E-40;
			d2 = 20.0 * log10(d1) - scale;
			if (d2 < -200)
				d2 = -200;
			else if (d2 > 0)
				d2 = 0;
			buffer[buffer_index++] = (int16_t)lround(d2 * GRAPH_DATA_SCALE);
		}
		sent = send(remote_radio_graph_socket, (const char *)buffer, buffer_index * 2, 0);
		if (sent != buffer_index * 2)
			QuiskPrintf("send_graph_data(), send(): %s\n", strerror(errno));
		block++;
	}
	sequence += 1;
}

// Receive graph data via UDP on the control head
int receive_graph_data(double * fft_avg)
{ 
	int i, i1, i2;
	ssize_t count;
	uint8_t seq, flags;
	int16_t buffer[MAX_UDP_INT16_T];
	int16_t block;
	static int16_t * pixels = NULL;
	static int n_pixels = 0;
	static int total = 0;
	static int16_t sequence = 0;

	if (control_head_graph_socket == INVALID_SOCKET)
		return 0;
	// Signal far end (server) that we're ready (this sends our address/port to far end)
	if ( !control_head_graph_socket_started) {
		i = send(control_head_graph_socket, "rr\n", 3, 0);
		if (i != 3)
			QuiskPrintf("receive_graph_data(), send(): %s\n", strerror(errno));
	}
	if (n_pixels < data_width) {
		n_pixels = data_width;
		if (pixels)
			free(pixels);
		pixels = (int16_t *)malloc(n_pixels * sizeof(int16_t));
	}
	count = recv(control_head_graph_socket, (char *)buffer, MAX_UDP_INT16_T * 2, 0);
	count /= 2;	// convert to int16_t
	if (count > 2) {
		control_head_graph_socket_started = 1;
		flags = buffer[0] >> 8;
		if (flags & 0x01)	// Clip
			quisk_sound_state.overrange++;
		seq = buffer[0] & 0xFF;
		if (seq != sequence) {	// new graph data
			sequence = seq;
			total = 0;
		}
		block = buffer[1];
		count -= 2;	// number of 16-bit graph data items
		i1 = block * (MAX_UDP_INT16_T - 2);
		i2 = i1 + count;
		if (i1 >= 0 && i2 <= data_width) {
			memcpy(pixels + i1, buffer + 2, count * 2);
			total += count;
			if (total == data_width) {
				for (i = 0; i < data_width; i++)
					fft_avg[i] = (double)pixels[i] / GRAPH_DATA_SCALE;
				return data_width;
			}
		}
	}
	return 0;
}


static int start_winsock()
{
#ifdef MS_WINDOWS
	WORD wVersionRequested = MAKEWORD(2, 2);
	WSADATA wsaData;

	if (WSAStartup(wVersionRequested, &wsaData) != 0) {
		QuiskPrintf("start_winsock(): %s\n", strerror(errno));
		return 0;		// failure to start winsock
	}
#endif
	return 1;
}





static void open_and_bind_socket(SOCKET * sock, char * ip, int port, int sndsize, char * name, int non_block)
{
	struct sockaddr_in bind_addr;
	const char enable = 1;	// for sockopt
#ifndef MS_WINDOWS
	int tos = 184;	// DSCP "Expedite" (46)
#endif

	if (!start_winsock()) {
		QuiskPrintf("open_and_bind_socket for %s: Failure to start WinSock\n", name);
		return;
	}

	*sock = socket(PF_INET, SOCK_DGRAM, 0);
	if (*sock != INVALID_SOCKET) {
		setsockopt(*sock, SOL_SOCKET, SO_SNDBUF, (char *)&sndsize, sizeof(sndsize));
		setsockopt(*sock, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable));
#ifndef MS_WINDOWS
		setsockopt(*sock, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
#endif

		// bind to this computer for receiving (and reading far-end address from client)
		memset((char *) &bind_addr, 0, sizeof(bind_addr));
		bind_addr.sin_family = AF_INET;
		bind_addr.sin_port = htons(port);
		bind_addr.sin_addr.s_addr = htonl(INADDR_ANY);
		if (bind(*sock, (const struct sockaddr *)&bind_addr, sizeof(bind_addr)) != 0) {
			QuiskPrintf("open_and_bind_socket(), bind(): %s\n", strerror(errno));
			close(*sock);
			*sock = INVALID_SOCKET;
		}
		else if (non_block) {
#ifdef MS_WINDOWS
       			unsigned long one = 1;
			ioctlsocket(*sock, FIONBIO, &one);	// set non-blocking
#else
			int flags;
			flags = fcntl(*sock, F_GETFL, 0);	// set non-blocking
			fcntl(*sock, F_SETFL, flags | O_NONBLOCK);
#endif
		}
	}
	if (*sock == INVALID_SOCKET) {
		QuiskPrintf("open server %s: Failure to open socket\n", name);
	}
	else {
		QuiskPrintf("open server %s: opened socket %s port %i\n", name, ip, port);
	}
}


static void open_and_connect_socket(SOCKET * sock, char * ip, int port, int sndsize, char * name, int non_block)
{
	struct sockaddr_in Addr;
	const char enable = 1;	// for sockopt

	if (!start_winsock()) {
		QuiskPrintf("open_and_connect_socket for %s: Failure to start WinSock\n", name);
		return;
	}

	*sock = socket(PF_INET, SOCK_DGRAM, 0);
	if (*sock != INVALID_SOCKET) {
		setsockopt(*sock, SOL_SOCKET, SO_RCVBUF, (char *)&sndsize, sizeof(sndsize));
		setsockopt(*sock, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable));

		// set far-end address structure to enable sending initial packet to get things started
		Addr.sin_family = AF_INET;
		Addr.sin_port = htons(port);
#ifdef MS_WINDOWS
		Addr.sin_addr.S_un.S_addr = inet_addr(ip);
#else
		inet_aton(ip, &Addr.sin_addr);
#endif
		if (connect(*sock, (const struct sockaddr *)&Addr, sizeof(Addr)) != 0) {
			close(*sock);
			*sock = INVALID_SOCKET;
		}
		else if (non_block) {
#ifdef MS_WINDOWS
       			unsigned long one = 1;
			ioctlsocket(*sock, FIONBIO, &one);	// set non-blocking
#else
			int flags;
			flags = fcntl(*sock, F_GETFL, 0);	// set non-blocking
			fcntl(*sock, F_SETFL, flags | O_NONBLOCK);
#endif
		}
	}
	if (*sock == INVALID_SOCKET) {
		QuiskPrintf("open client %s: Failure to open socket\n", name);
	}
	else {
		QuiskPrintf("open client %s: opened socket %s port %i\n", name, ip, port);
	}
}


static void close_socket(SOCKET * sock, char * name)
{
	if (*sock != INVALID_SOCKET) {
		close(*sock);
		*sock = INVALID_SOCKET;
#ifdef MS_WINDOWS
		WSACleanup();
#endif
		QuiskPrintf("%s: closed socket\n", name);
	}
	else {
		QuiskPrintf("%s: socket already closed\n", name);
	}
}

// start running UDP remote sound on control_head ...
// ... receive radio sound from remote_radio, send mic sound to remote_radio
PyObject * quisk_start_control_head_remote_sound(PyObject * self, PyObject * args)
{
	int radio_sound_port;
	int graph_data_port;
	int sndsize = 48000;
	char * remote_radio_ip;	// IP address of far end
	char * name;
	SOCKET * sock;

	if (!PyArg_ParseTuple (args, "sii", &remote_radio_ip, &radio_sound_port, &graph_data_port))
		return NULL;

	name = "radio sound from remote_radio";
	sock = &control_head_sound_socket;
	open_and_connect_socket(sock, remote_radio_ip, radio_sound_port, sndsize, name, 0);

	name = "graph data from remote_radio";
	sock = &control_head_graph_socket;
	open_and_connect_socket(sock, remote_radio_ip, graph_data_port, 1024 * 8, name, 1);

	packets_sent = 0;
	packets_recd = 0;

	return Py_None;
}

// stop running UDP remote sound on control_head
PyObject * quisk_stop_control_head_remote_sound(PyObject * self, PyObject * args)
{
	char * name;
	SOCKET * sock;

	if (!PyArg_ParseTuple (args, ""))
		return NULL;

	name = "radio sound from remote_radio";
	sock = &control_head_sound_socket;
	close_socket(sock, name);

	name = "graph data from remote_radio";
	sock = &control_head_graph_socket;
	close_socket(sock, name);

	control_head_sound_socket_started = 0;	// reset for next time
	remote_radio_sound_socket_started = 0;
	control_head_graph_socket_started = 0;
	remote_radio_graph_socket_started = 0;

	QuiskPrintf("total packets sent = %i, recd = %i\n", packets_sent, packets_recd);

	return Py_None;
}

// start running UDP remote sound on remote_radio ...
// ... send radio sound to control_head, receive mic sound from control_head
PyObject * quisk_start_remote_radio_remote_sound(PyObject * self, PyObject * args)
{
	int radio_sound_port;
	int graph_data_port;
	int sndsize = 48000;
	char * control_head_ip;	// IP address of far end
	char * name;
	SOCKET * sock;

	if (!PyArg_ParseTuple (args, "siii", &control_head_ip, &radio_sound_port,
                     &graph_data_port, &control_head_data_width))
		return NULL;

	name = "radio sound to control_head";
	sock = &remote_radio_sound_socket;
	open_and_bind_socket(sock, control_head_ip, radio_sound_port, sndsize, name, 0);

	name = "graph data to control_head";
	sock = &remote_radio_graph_socket;
	open_and_bind_socket(sock, control_head_ip, graph_data_port, 1024 * 8, name, 1);

	packets_sent = 0;
	packets_recd = 0;

	return Py_None;
}

// stop running UDP remote sound on remote_radio
PyObject * quisk_stop_remote_radio_remote_sound(PyObject * self, PyObject * args)
{
	char * name;
	SOCKET * sock;

	if (!PyArg_ParseTuple (args, ""))
		return NULL;

	name = "radio sound to control_head";
	sock = &remote_radio_sound_socket;
	close_socket(sock, name);

	name = "graph data to control_head";
	sock = &remote_radio_graph_socket;
	close_socket(sock, name);

	control_head_sound_socket_started = 0;	// reset for next time
	remote_radio_sound_socket_started = 0;
	control_head_graph_socket_started = 0;
	remote_radio_graph_socket_started = 0;
	control_head_data_width = 0;

	QuiskPrintf("total packets sent = %i, recd = %i\n", packets_sent, packets_recd);

	return Py_None;
}