File: sesolve.py

package info (click to toggle)
qutip 4.5.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,764 kB
  • sloc: python: 38,325; cpp: 344; makefile: 36; sh: 12
file content (402 lines) | stat: -rw-r--r-- 14,228 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# This file is part of QuTiP: Quantum Toolbox in Python.
#
#    Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
#    All rights reserved.
#
#    Redistribution and use in source and binary forms, with or without
#    modification, are permitted provided that the following conditions are
#    met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#    3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
#       of its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
#    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
#    PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
#    HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
#    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
#    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
#    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
#    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
#    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
"""
This module provides solvers for the unitary Schrodinger equation.
"""

__all__ = ['sesolve']

import os
import types
import numpy as np
import scipy.integrate
from scipy.linalg import norm as la_norm
from qutip.cy.stochastic import normalize_inplace
import qutip.settings as qset
from qutip.qobj import Qobj
from qutip.qobjevo import QobjEvo
from qutip.cy.spconvert import dense1D_to_fastcsr_ket, dense2D_to_fastcsr_fmode
from qutip.cy.spmatfuncs import (cy_expect_psi, cy_ode_psi_func_td,
                                cy_ode_psi_func_td_with_state)
from qutip.solver import Result, Options, config, solver_safe, SolverSystem
from qutip.superoperator import vec2mat
from qutip.ui.progressbar import (BaseProgressBar, TextProgressBar)
from qutip.cy.openmp.utilities import check_use_openmp, openmp_components

def sesolve(H, psi0, tlist, e_ops=None, args=None, options=None,
            progress_bar=None, _safe_mode=True):
    """
    Schrodinger equation evolution of a state vector or unitary matrix
    for a given Hamiltonian.

    Evolve the state vector (`psi0`) using a given
    Hamiltonian (`H`), by integrating the set of ordinary differential
    equations that define the system. Alternatively evolve a unitary matrix in
    solving the Schrodinger operator equation.

    The output is either the state vector or unitary matrix at arbitrary points
    in time (`tlist`), or the expectation values of the supplied operators
    (`e_ops`). If e_ops is a callback function, it is invoked for each
    time in `tlist` with time and the state as arguments, and the function
    does not use any return values. e_ops cannot be used in conjunction
    with solving the Schrodinger operator equation

    Parameters
    ----------

    H : :class:`qutip.qobj`, :class:`qutip.qobjevo`, *list*, *callable*
        system Hamiltonian as a Qobj, list of Qobj and coefficient, QobjEvo,
        or a callback function for time-dependent Hamiltonians.
        list format and options can be found in QobjEvo's description.

    psi0 : :class:`qutip.qobj`
        initial state vector (ket)
        or initial unitary operator `psi0 = U`

    tlist : *list* / *array*
        list of times for :math:`t`.

    e_ops : None / list of :class:`qutip.qobj` / callback function
        single operator or list of operators for which to evaluate
        expectation values.
        For list operator evolution, the overlapse is computed:
            tr(e_ops[i].dag()*op(t))

    args : None / *dictionary*
        dictionary of parameters for time-dependent Hamiltonians

    options : None / :class:`qutip.Qdeoptions`
        with options for the ODE solver.

    progress_bar : None / BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation.

    Returns
    -------

    output: :class:`qutip.solver`

        An instance of the class :class:`qutip.solver`, which contains either
        an *array* of expectation values for the times specified by `tlist`, or
        an *array* or state vectors corresponding to the
        times in `tlist` [if `e_ops` is an empty list], or
        nothing if a callback function was given inplace of operators for
        which to calculate the expectation values.

    """
    if e_ops is None:
        e_ops = []
    if isinstance(e_ops, Qobj):
        e_ops = [e_ops]
    elif isinstance(e_ops, dict):
        e_ops_dict = e_ops
        e_ops = [e for e in e_ops.values()]
    else:
        e_ops_dict = None

    if progress_bar is None:
        progress_bar = BaseProgressBar()
    if progress_bar is True:
        progress_bar = TextProgressBar()

    if not (psi0.isket or psi0.isunitary):
        raise TypeError("The unitary solver requires psi0 to be"
                        " a ket as initial state"
                        " or a unitary as initial operator.")

    if options is None:
        options = Options()
    if options.rhs_reuse and not isinstance(H, SolverSystem):
        # TODO: deprecate when going to class based solver.
        if "sesolve" in solver_safe:
            # print(" ")
            H = solver_safe["sesolve"]
        else:
            pass
            # raise Exception("Could not find the Hamiltonian to reuse.")

    if args is None:
        args = {}

    check_use_openmp(options)

    if isinstance(H, SolverSystem):
        ss = H
    elif isinstance(H, (list, Qobj, QobjEvo)):
        ss = _sesolve_QobjEvo(H, tlist, args, options)
    elif callable(H):
        ss = _sesolve_func_td(H, args, options)
    else:
        raise Exception("Invalid H type")

    func, ode_args = ss.makefunc(ss, psi0, args, e_ops, options)

    if _safe_mode:
        v = psi0.full().ravel('F')
        func(0., v, *ode_args) + v

    res = _generic_ode_solve(func, ode_args, psi0, tlist, e_ops, options,
                             progress_bar, dims=psi0.dims)
    if e_ops_dict:
        res.expect = {e: res.expect[n]
                      for n, e in enumerate(e_ops_dict.keys())}
    res.SolverSystem = ss
    return res


# -----------------------------------------------------------------------------
# A time-dependent unitary wavefunction equation on the list-function format
#
def _sesolve_QobjEvo(H, tlist, args, opt):
    """
    Prepare the system for the solver, H can be an QobjEvo.
    """
    H_td = -1.0j * QobjEvo(H, args, tlist=tlist)
    if opt.rhs_with_state:
        H_td._check_old_with_state()
    nthread = opt.openmp_threads if opt.use_openmp else 0
    H_td.compile(omp=nthread)

    ss = SolverSystem()
    ss.H = H_td
    ss.makefunc = _qobjevo_set
    solver_safe["sesolve"] = ss
    return ss

def _qobjevo_set(HS, psi, args, e_ops, opt):
    """
    From the system, get the ode function and args
    """
    H_td = HS.H
    H_td.solver_set_args(args, psi, e_ops)
    if psi.isunitary:
        func = H_td.compiled_qobjevo.ode_mul_mat_f_vec
    elif psi.isket:
        func = H_td.compiled_qobjevo.mul_vec
    else:
        raise TypeError("The unitary solver requires psi0 to be"
                        " a ket as initial state"
                        " or a unitary as initial operator.")
    return func, ()


# -----------------------------------------------------------------------------
# Wave function evolution using a ODE solver (unitary quantum evolution), for
# time dependent hamiltonians.
#
def _sesolve_func_td(H_func, args, opt):
    """
    Prepare the system for the solver, H is a function.
    """
    ss = SolverSystem()
    ss.H = H_func
    ss.makefunc = _Hfunc_set
    solver_safe["sesolve"] = ss
    return ss

def _Hfunc_set(HS, psi, args, e_ops, opt):
    """
    From the system, get the ode function and args
    """
    H_func = HS.H
    if psi.isunitary:
        if not opt.rhs_with_state:
            func = _ode_oper_func_td
        else:
            func = _ode_oper_func_td_with_state
    else:
        if not opt.rhs_with_state:
            func = cy_ode_psi_func_td
        else:
            func = cy_ode_psi_func_td_with_state

    return func, (H_func, args)


# -----------------------------------------------------------------------------
# evaluate dU(t)/dt according to the schrodinger equation
#
def _ode_oper_func_td(t, y, H_func, args):
    H = H_func(t, args).data * -1j
    ym = vec2mat(y)
    return (H * ym).ravel("F")

def _ode_oper_func_td_with_state(t, y, H_func, args):
    H = H_func(t, y, args).data * -1j
    ym = vec2mat(y)
    return (H * ym).ravel("F")


# -----------------------------------------------------------------------------
# Solve an ODE for func.
# Calculate the required expectation values or invoke callback
# function at each time step.
def _generic_ode_solve(func, ode_args, psi0, tlist, e_ops, opt,
                       progress_bar, dims=None):
    """
    Internal function for solving ODEs.
    """
    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    # This function is made similar to mesolve's one for futur merging in a
    # solver class
    # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    # prepare output array
    n_tsteps = len(tlist)
    output = Result()
    output.solver = "sesolve"
    output.times = tlist

    if psi0.isunitary:
        initial_vector = psi0.full().ravel('F')
        oper_evo = True
        size = psi0.shape[0]
        # oper_n = dims[0][0]
        # norm_dim_factor = np.sqrt(oper_n)
    elif psi0.isket:
        initial_vector = psi0.full().ravel()
        oper_evo = False
        # norm_dim_factor = 1.0

    r = scipy.integrate.ode(func)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    if ode_args:
        r.set_f_params(*ode_args)
    r.set_initial_value(initial_vector, tlist[0])

    e_ops_data = []
    output.expect = []
    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True
        output.num_expect = 1
    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False
        output.num_expect = n_expt_op
        if n_expt_op == 0:
            # fallback on storing states
            opt.store_states = True
        else:
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))
        if oper_evo:
            for e in e_ops:
                e_ops_data.append(e.dag().data)
        else:
            for e in e_ops:
                e_ops_data.append(e.data)
    else:
        raise TypeError("Expectation parameter must be a list or a function")

    if opt.store_states:
        output.states = []

    if oper_evo:
        def get_curr_state_data(r):
            return vec2mat(r.y)
    else:
        def get_curr_state_data(r):
            return r.y

    #
    # start evolution
    #
    dt = np.diff(tlist)
    cdata = None
    progress_bar.start(n_tsteps)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)
        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")
        # get the current state / oper data if needed
        if opt.store_states or opt.normalize_output or n_expt_op > 0 or expt_callback:
            cdata = get_curr_state_data(r)

        if opt.normalize_output:
            # normalize per column
            if oper_evo:
                cdata /= la_norm(cdata, axis=0)
                #cdata *= norm_dim_factor / la_norm(cdata)
                r.set_initial_value(cdata.ravel('F'), r.t)
            else:
                #cdata /= la_norm(cdata)
                norm = normalize_inplace(cdata)
                if norm > 1e-12:
                    # only reset the solver if state changed
                    r.set_initial_value(cdata, r.t)
                else:
                    r._y = cdata

        if opt.store_states:
            if oper_evo:
                fdata = dense2D_to_fastcsr_fmode(cdata, size, size)
                output.states.append(Qobj(fdata, dims=dims))
            else:
                fdata = dense1D_to_fastcsr_ket(cdata)
                output.states.append(Qobj(fdata, dims=dims, fast='mc'))

        if expt_callback:
            # use callback method
            output.expect.append(e_ops(t, Qobj(cdata, dims=dims)))

        if oper_evo:
            for m in range(n_expt_op):
                output.expect[m][t_idx] = (e_ops_data[m] * cdata).trace()
        else:
            for m in range(n_expt_op):
                output.expect[m][t_idx] = cy_expect_psi(e_ops_data[m], cdata,
                                                        e_ops[m].isherm)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if opt.store_final_state:
        cdata = get_curr_state_data(r)
        if opt.normalize_output:
            cdata /= la_norm(cdata, axis=0)
            # cdata *= norm_dim_factor / la_norm(cdata)
        output.final_state = Qobj(cdata, dims=dims)

    return output