1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
|
R FAQ
Frequently Asked Questions on R
Version 3.1.2014-07-03
Kurt Hornik
Table of Contents
*****************
R FAQ
1 Introduction
1.1 Legalese
1.2 Obtaining this document
1.3 Citing this document
1.4 Notation
1.5 Feedback
2 R Basics
2.1 What is R?
2.2 What machines does R run on?
2.3 What is the current version of R?
2.4 How can R be obtained?
2.5 How can R be installed?
2.5.1 How can R be installed (Unix-like)
2.5.2 How can R be installed (Windows)
2.5.3 How can R be installed (Macintosh)
2.6 Are there Unix-like binaries for R?
2.7 What documentation exists for R?
2.8 Citing R
2.9 What mailing lists exist for R?
2.10 What is CRAN?
2.11 Can I use R for commercial purposes?
2.12 Why is R named R?
2.13 What is the R Foundation?
2.14 What is R-Forge?
3 R and S
3.1 What is S?
3.2 What is S-PLUS?
3.3 What are the differences between R and S?
3.3.1 Lexical scoping
3.3.2 Models
3.3.3 Others
3.4 Is there anything R can do that S-PLUS cannot?
3.5 What is R-plus?
4 R Web Interfaces
5 R Add-On Packages
5.1 Which add-on packages exist for R?
5.1.1 Add-on packages in R
5.1.2 Add-on packages from CRAN
5.1.3 Add-on packages from Omegahat
5.1.4 Add-on packages from Bioconductor
5.1.5 Other add-on packages
5.2 How can add-on packages be installed?
5.3 How can add-on packages be used?
5.4 How can add-on packages be removed?
5.5 How can I create an R package?
5.6 How can I contribute to R?
6 R and Emacs
6.1 Is there Emacs support for R?
6.2 Should I run R from within Emacs?
6.3 Debugging R from within Emacs
7 R Miscellanea
7.1 How can I set components of a list to NULL?
7.2 How can I save my workspace?
7.3 How can I clean up my workspace?
7.4 How can I get eval() and D() to work?
7.5 Why do my matrices lose dimensions?
7.6 How does autoloading work?
7.7 How should I set options?
7.8 How do file names work in Windows?
7.9 Why does plotting give a color allocation error?
7.10 How do I convert factors to numeric?
7.11 Are Trellis displays implemented in R?
7.12 What are the enclosing and parent environments?
7.13 How can I substitute into a plot label?
7.14 What are valid names?
7.15 Are GAMs implemented in R?
7.16 Why is the output not printed when I source() a file?
7.17 Why does outer() behave strangely with my function?
7.18 Why does the output from anova() depend on the order of factors in the model?
7.19 How do I produce PNG graphics in batch mode?
7.20 How can I get command line editing to work?
7.21 How can I turn a string into a variable?
7.22 Why do lattice/trellis graphics not work?
7.23 How can I sort the rows of a data frame?
7.24 Why does the help.start() search engine not work?
7.25 Why did my .Rprofile stop working when I updated R?
7.26 Where have all the methods gone?
7.27 How can I create rotated axis labels?
7.28 Why is read.table() so inefficient?
7.29 What is the difference between package and library?
7.30 I installed a package but the functions are not there
7.31 Why doesn't R think these numbers are equal?
7.32 How can I capture or ignore errors in a long simulation?
7.33 Why are powers of negative numbers wrong?
7.34 How can I save the result of each iteration in a loop into a separate file?
7.35 Why are p-values not displayed when using lmer()?
7.36 Why are there unwanted borders, lines or grid-like artifacts when viewing a plot saved to a PS or PDF file?
7.37 Why does backslash behave strangely inside strings?
7.38 How can I put error bars or confidence bands on my plot?
7.39 How do I create a plot with two y-axes?
7.40 How do I access the source code for a function?
7.41 Why does summary() report strange results for the R^2 estimate when I fit a linear model with no intercept?
7.42 Why is R apparently not releasing memory?
8 R Programming
8.1 How should I write summary methods?
8.2 How can I debug dynamically loaded code?
8.3 How can I inspect R objects when debugging?
8.4 How can I change compilation flags?
8.5 How can I debug S4 methods?
9 R Bugs
9.1 What is a bug?
9.2 How to report a bug
10 Acknowledgments
R FAQ
*****
1 Introduction
**************
This document contains answers to some of the most frequently asked
questions about R.
1.1 Legalese
============
This document is copyright (C) 1998-2014 by Kurt Hornik.
This document is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
This document is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Copies of the GNU General Public License versions are available at
`http://www.R-project.org/Licenses/'
1.2 Obtaining this document
===========================
The latest version of this document is always available from
`http://CRAN.R-project.org/doc/FAQ/'
From there, you can obtain versions converted to plain ASCII text, GNU
info, HTML, PDF, as well as the Texinfo source used for creating all these
formats using the GNU Texinfo system (http://texinfo.org/).
You can also obtain the R FAQ from the `doc/FAQ' subdirectory of a CRAN
site (*note What is CRAN?::).
1.3 Citing this document
========================
In publications, please refer to this FAQ as Hornik (2014), "The R FAQ",
and give the above, _official_ URL:
@Misc{,
author = {Kurt Hornik},
title = {{R} {FAQ}},
year = {2014},
url = {http://CRAN.R-project.org/doc/FAQ/R-FAQ.html}
}
1.4 Notation
============
Everything should be pretty standard. `R>' is used for the R prompt, and a
`$' for the shell prompt (where applicable).
1.5 Feedback
============
Feedback via email to <Kurt.Hornik@R-project.org> is of course most welcome.
In particular, note that I do not have access to Windows or Macintosh
systems. Features specific to the Windows and Mac OS X ports of R are
described in the "R for Windows FAQ"
(http://CRAN.R-project.org/bin/windows/base/rw-FAQ.html) and the "R for Mac
OS X FAQ" (http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html). If you
have information on Macintosh or Windows systems that you think should be
added to this document, please let me know.
2 R Basics
**********
2.1 What is R?
==============
R is a system for statistical computation and graphics. It consists of a
language plus a run-time environment with graphics, a debugger, access to
certain system functions, and the ability to run programs stored in script
files.
The design of R has been heavily influenced by two existing languages:
Becker, Chambers & Wilks' S (*note What is S?::) and Sussman's Scheme
(http://www.cs.indiana.edu/scheme-repository/home.html). Whereas the
resulting language is very similar in appearance to S, the underlying
implementation and semantics are derived from Scheme. *Note What are the
differences between R and S?::, for further details.
The core of R is an interpreted computer language which allows branching
and looping as well as modular programming using functions. Most of the
user-visible functions in R are written in R. It is possible for the user
to interface to procedures written in the C, C++, or FORTRAN languages for
efficiency. The R distribution contains functionality for a large number
of statistical procedures. Among these are: linear and generalized linear
models, nonlinear regression models, time series analysis, classical
parametric and nonparametric tests, clustering and smoothing. There is
also a large set of functions which provide a flexible graphical
environment for creating various kinds of data presentations. Additional
modules ("add-on packages") are available for a variety of specific
purposes (*note R Add-On Packages::).
R was initially written by Ross Ihaka <Ross.Ihaka@R-project.org> and
Robert Gentleman <Robert.Gentleman@R-project.org> at the Department of
Statistics of the University of Auckland in Auckland, New Zealand. In
addition, a large group of individuals has contributed to R by sending code
and bug reports.
Since mid-1997 there has been a core group (the "R Core Team") who can
modify the R source code archive. The group currently consists of Doug
Bates, John Chambers, Peter Dalgaard, Seth Falcon, Robert Gentleman, Kurt
Hornik, Stefano Iacus, Ross Ihaka, Friedrich Leisch, Uwe Ligges, Thomas
Lumley, Martin Maechler, Duncan Murdoch, Paul Murrell, Martyn Plummer,
Brian Ripley, Deepayan Sarkar, Duncan Temple Lang, Luke Tierney, and Simon
Urbanek.
R has a home page at `http://www.R-project.org/'. It is free software
(http://www.gnu.org/philosophy/free-sw.html) distributed under a GNU-style
copyleft (http://www.gnu.org/copyleft/copyleft.html), and an official part
of the GNU (http://www.gnu.org/) project ("GNU S").
2.2 What machines does R run on?
================================
R is being developed for the Unix-like, Windows and Mac families of
operating systems. Support for Mac OS Classic ended with R 1.7.1.
The current version of R will configure and build under a number of
common Unix-like (e.g., `http://en.wikipedia.org/wiki/Unix-like') platforms
including CPU-linux-gnu for the i386, amd64, alpha, arm/armel, hppa, ia64,
m68k, mips/mipsel, powerpc, s390 and sparc CPUs (e.g.,
`http://buildd.debian.org/build.php?&pkg=r-base'), i386-hurd-gnu,
CPU-kfreebsd-gnu for i386 and amd64, powerpc-apple-darwin, mips-sgi-irix,
i386-freebsd, rs6000-ibm-aix, and sparc-sun-solaris.
If you know about other platforms, please drop us a note.
2.3 What is the current version of R?
=====================================
The current released version is 3.1.1. Based on this
`major.minor.patchlevel' numbering scheme, there are two development
versions of R, a patched version of the current release (`r-patched') and
one working towards the next minor or eventually major (`r-devel') releases
of R, respectively. Version r-patched is for bug fixes mostly. New
features are typically introduced in r-devel.
2.4 How can R be obtained?
==========================
Sources, binaries and documentation for R can be obtained via CRAN, the
"Comprehensive R Archive Network" (see *note What is CRAN?::).
Sources are also available via `https://svn.R-project.org/R/', the R
Subversion repository, but currently not via anonymous rsync (nor CVS).
Tarballs with daily snapshots of the r-devel and r-patched development
versions of R can be found at `ftp://ftp.stat.math.ethz.ch/Software/R'.
2.5 How can R be installed?
===========================
2.5.1 How can R be installed (Unix-like)
----------------------------------------
If R is already installed, it can be started by typing `R' at the shell
prompt (of course, provided that the executable is in your path).
If binaries are available for your platform (see *note Are there
Unix-like binaries for R?::), you can use these, following the instructions
that come with them.
Otherwise, you can compile and install R yourself, which can be done
very easily under a number of common Unix-like platforms (see *note What
machines does R run on?::). The file `INSTALL' that comes with the R
distribution contains a brief introduction, and the "R Installation and
Administration" guide (*note What documentation exists for R?::) has full
details.
Note that you need a FORTRAN compiler or perhaps `f2c' in addition to a
C compiler to build R.
In the simplest case, untar the R source code, change to the directory
thus created, and issue the following commands (at the shell prompt):
$ ./configure
$ make
If these commands execute successfully, the R binary and a shell script
front-end called `R' are created and copied to the `bin' directory. You
can copy the script to a place where users can invoke it, for example to
`/usr/local/bin'. In addition, plain text help pages as well as HTML and
LaTeX versions of the documentation are built.
Use `make dvi' to create DVI versions of the R manuals, such as
`refman.dvi' (an R object reference index) and `R-exts.dvi', the "R
Extension Writers Guide", in the `doc/manual' subdirectory. These files
can be previewed and printed using standard programs such as `xdvi' and
`dvips'. You can also use `make pdf' to build PDF (Portable Document
Format) version of the manuals, and view these using e.g. Acrobat. Manuals
written in the GNU Texinfo system can also be converted to info files
suitable for reading online with Emacs or stand-alone GNU Info; use `make
info' to create these versions (note that this requires Makeinfo version
4.5).
Finally, use `make check' to find out whether your R system works
correctly.
You can also perform a "system-wide" installation using `make install'.
By default, this will install to the following directories:
`${prefix}/bin'
the front-end shell script
`${prefix}/man/man1'
the man page
`${prefix}/lib/R'
all the rest (libraries, on-line help system, ...). This is the "R
Home Directory" (`R_HOME') of the installed system.
In the above, `prefix' is determined during configuration (typically
`/usr/local') and can be set by running `configure' with the option
$ ./configure --prefix=/where/you/want/R/to/go
(E.g., the R executable will then be installed into
`/where/you/want/R/to/go/bin'.)
To install DVI, info and PDF versions of the manuals, use `make
install-dvi', `make install-info' and `make install-pdf', respectively.
2.5.2 How can R be installed (Windows)
--------------------------------------
The `bin/windows' directory of a CRAN site contains binaries for a base
distribution and add-on packages from CRAN to run on Windows XP and later
(including 64-bit versions of Windows) on ix86 and x86_64 chips. The
Windows version of R was created by Robert Gentleman and Guido Masarotto,
and is now being developed and maintained by Duncan Murdoch
<murdoch@stats.uwo.ca> and Brian D. Ripley <Brian.Ripley@R-project.org>.
The same directory has links to snapshots of the r-patched and r-devel
versions of R.
See the "R for Windows FAQ"
(http://CRAN.R-project.org/bin/windows/base/rw-FAQ.html) for more details.
2.5.3 How can R be installed (Macintosh)
----------------------------------------
The `bin/macosx' directory of a CRAN site contains a standard Apple
installer package to run on OS X 10.6 (`Snow Leopard') and later. Once
downloaded and executed, the installer will install the current release of
R and a R.app Mac OS X GUI. This port of R for Mac OS X is maintained by
Simon Urbanek <Simon.Urbanek@R-project.org> (and previously by Stefano
Iacus). The "R for Mac OS X FAQ
(http://CRAN.R-project.org/bin/macosx/RMacOSX-FAQ.html) has more details.
Snapshots of the r-patched and r-devel versions of R are available as
Apple installer packages at `http://r.research.att.com'.
2.6 Are there Unix-like binaries for R?
=======================================
The `bin/linux' directory of a CRAN site contains the following packages.
CPU Versions Provider
-----------------------------------------------------------------------------
Debian i386/amd64 etch/lenny/squeeze Johannes Ranke
Red Hat i386/x86_64 fedora10/fedora11 Martyn Plummer
Ubuntu i386/amd64 hardy/lucid/natty/oneiric/precise Michael Rutter
Debian packages, maintained by Dirk Eddelbuettel, have long been part of
the Debian distribution, and can be accessed through APT, the Debian
package maintenance tool. Use e.g. `apt-get install r-base r-recommended'
to install the R environment and recommended packages. If you also want to
build R packages from source, also run `apt-get install r-base-dev' to
obtain the additional tools required for this. So-called "backports" of
the current R packages for at least the "stable" distribution of Debian are
provided by Johannes Ranke, and available from CRAN. See
`http://CRAN.R-project.org/bin/linux/debian/README' for details on R Debian
packages and installing the backports, which should also be suitable for
other Debian derivatives. Native backports for Ubuntu are provided by
Michael Rutter.
R binaries for Fedora, maintained by Tom "Spot" Callaway, are provided
as part of the Fedora distribution and can be accessed through `yum', the
RPM installer/updater. The Fedora R RPM is a "meta-package" which installs
all the user and developer components of R (available separately as
`R-core' and `R-devel'), as well as the standalone R math library
(`libRmath' and `libRmath-devel'). RPMs for a selection of R packages are
also provided by Fedora. The Extra Packages for Enterprise Linux (EPEL)
project (`http://fedoraproject.org/wiki/EPEL') provides ports of the Fedora
RPMs for RedHat Enterprise Linux and compatible distributions. When a new
version of R is released, there may be a delay of up to 2 weeks until the
Fedora RPM becomes publicly available, as it must pass through the
statutory Fedora review process.
See `http://CRAN.R-project.org/bin/linux/suse/README.html' for
information about RPMs for openSUSE.
No other binary distributions are currently publically available via
CRAN.
2.7 What documentation exists for R?
====================================
Online documentation for most of the functions and variables in R exists,
and can be printed on-screen by typing `help(NAME)' (or `?NAME') at the R
prompt, where NAME is the name of the topic help is sought for. (In the
case of unary and binary operators and control-flow special forms, the name
may need to be be quoted.)
This documentation can also be made available as one reference manual
for on-line reading in HTML and PDF formats, and as hardcopy via LaTeX, see
*note How can R be installed?::. An up-to-date HTML version is always
available for web browsing at `http://stat.ethz.ch/R-manual/'.
Printed copies of the R reference manual for some version(s) are
available from Network Theory Ltd, at
`http://www.network-theory.co.uk/R/base/'. For each set of manuals sold,
the publisher donates USD 10 to the R Foundation (*note What is the R
Foundation?::).
The R distribution also comes with the following manuals.
* "An Introduction to R" (`R-intro') includes information on data types,
programming elements, statistical modeling and graphics. This
document is based on the "Notes on S-PLUS" by Bill Venables and David
Smith.
* "Writing R Extensions" (`R-exts') currently describes the process of
creating R add-on packages, writing R documentation, R's system and
foreign language interfaces, and the R API.
* "R Data Import/Export" (`R-data') is a guide to importing and
exporting data to and from R.
* "The R Language Definition" (`R-lang'), a first version of the
"Kernighan & Ritchie of R", explains evaluation, parsing, object
oriented programming, computing on the language, and so forth.
* "R Installation and Administration" (`R-admin').
* "R Internals" (`R-ints') is a guide to R's internal structures.
(Added in R 2.4.0.)
An annotated bibliography (BibTeX format) of R-related publications can
be found at
`http://www.R-project.org/doc/bib/R.bib'
Books on R by R Core Team members include
John M. Chambers (2008), "Software for Data Analysis: Programming with
R". Springer, New York, ISBN 978-0-387-75935-7,
`http://stat.stanford.edu/~jmc4/Rbook/'.
Peter Dalgaard (2008), "Introductory Statistics with R", 2nd edition.
Springer, ISBN 978-0-387-79053-4,
`http://www.biostat.ku.dk/~pd/ISwR.html'.
Robert Gentleman (2008), "R Programming for Bioinformatics". Chapman
& Hall/CRC, Boca Raton, FL, ISBN 978-1-420-06367-7,
`http://www.bioconductor.org/pub/RBioinf/'.
Stefano M. Iacus (2008), "Simulation and Inference for Stochastic
Differential Equations: With R Examples". Springer, New York, ISBN
978-0-387-75838-1.
Deepayan Sarkar (2007), "Lattice: Multivariate Data Visualization with
R". Springer, New York, ISBN 978-0-387-75968-5.
W. John Braun and Duncan J. Murdoch (2007), "A First Course in
Statistical Programming with R". Cambridge University Press,
Cambridge, ISBN 978-0521872652.
P. Murrell (2005), "R Graphics", Chapman & Hall/CRC, ISBN:
1-584-88486-X,
`http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html'.
William N. Venables and Brian D. Ripley (2002), "Modern Applied
Statistics with S" (4th edition). Springer, ISBN 0-387-95457-0,
`http://www.stats.ox.ac.uk/pub/MASS4/'.
Jose C. Pinheiro and Douglas M. Bates (2000), "Mixed-Effects Models in
S and S-Plus". Springer, ISBN 0-387-98957-0.
Last, but not least, Ross' and Robert's experience in designing and
implementing R is described in Ihaka & Gentleman (1996), "R: A Language for
Data Analysis and Graphics", _Journal of Computational and Graphical
Statistics_, *5*, 299-314.
2.8 Citing R
============
To cite R in publications, use
@Manual{,
title = {R: A Language and Environment for Statistical
Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = 2014,
url = {http://www.R-project.org}
}
Citation strings (or BibTeX entries) for R and R packages can also be
obtained by `citation()'.
2.9 What mailing lists exist for R?
===================================
Thanks to Martin Maechler <Martin.Maechler@R-project.org>, there are four
mailing lists devoted to R.
`R-announce'
A moderated list for major announcements about the development of R and
the availability of new code.
`R-packages'
A moderated list for announcements on the availability of new or
enhanced contributed packages.
`R-help'
The `main' R mailing list, for discussion about problems and solutions
using R, announcements (not covered by `R-announce' and `R-packages')
about the development of R and the availability of new code.
`R-devel'
This list is for questions and discussion about code development in R.
Please read the posting guide (http://www.R-project.org/posting-guide.html)
_before_ sending anything to any mailing list.
Note in particular that R-help is intended to be comprehensible to
people who want to use R to solve problems but who are not necessarily
interested in or knowledgeable about programming. Questions likely to
prompt discussion unintelligible to non-programmers (e.g., questions
involving C or C++) should go to R-devel.
Convenient access to information on these lists, subscription, and
archives is provided by the web interface at
`http://stat.ethz.ch/mailman/listinfo/'. One can also subscribe (or
unsubscribe) via email, e.g. to R-help by sending `subscribe' (or
`unsubscribe') in the _body_ of the message (not in the subject!) to
<R-help-request@lists.R-project.org>.
Send email to <R-help@lists.R-project.org> to send a message to everyone
on the R-help mailing list. Subscription and posting to the other lists is
done analogously, with `R-help' replaced by `R-announce', `R-packages', and
`R-devel', respectively. Note that the R-announce and R-packages lists are
gatewayed into R-help. Hence, you should subscribe to either of them only
in case you are not subscribed to R-help.
It is recommended that you send mail to R-help rather than only to the R
Core developers (who are also subscribed to the list, of course). This may
save them precious time they can use for constantly improving R, and will
typically also result in much quicker feedback for yourself.
Of course, in the case of bug reports it would be very helpful to have
code which reliably reproduces the problem. Also, make sure that you
include information on the system and version of R being used. See *note R
Bugs:: for more details.
See `http://www.R-project.org/mail.html' for more information on the R
mailing lists.
The R Core Team can be reached at <R-core@lists.R-project.org> for
comments and reports.
Many of the R project's mailing lists are also available via Gmane
(http://gmane.org), from which they can be read with a web browser, using
an NNTP news reader, or via RSS feeds. See
`http://dir.gmane.org/index.php?prefix=gmane.comp.lang.r.' for the
available mailing lists, and `http://www.gmane.org/rss.php' for details on
RSS feeds.
2.10 What is CRAN?
==================
The "Comprehensive R Archive Network" (CRAN) is a collection of sites which
carry identical material, consisting of the R distribution(s), the
contributed extensions, documentation for R, and binaries.
The CRAN master site at WU (Wirtschaftsuniversitt Wien) in Austria can
be found at the URL
`http://CRAN.R-project.org/'
Daily mirrors are available at URLs including
`http://cran.at.R-project.org/' (WU Wien, Austria)
`http://cran.au.R-project.org/' (PlanetMirror, Australia)
`http://cran.br.R-project.org/' (Universidade Federal do
Paran, Brazil)
`http://cran.ch.R-project.org/' (ETH Zrich, Switzerland)
`http://cran.dk.R-project.org/' (SunSITE, Denmark)
`http://cran.es.R-project.org/' (Spanish National Research
Network, Madrid, Spain)
`http://cran.fr.R-project.org/' (INRA, Toulouse, France)
`http://cran.pt.R-project.org/' (Universidade do Porto,
Portugal)
`http://cran.uk.R-project.org/' (U of Bristol, United
Kingdom)
`http://cran.za.R-project.org/' (Rhodes U, South Africa)
See `http://CRAN.R-project.org/mirrors.html' for a complete list of
mirrors. Please use the CRAN site closest to you to reduce network load.
From CRAN, you can obtain the latest official release of R, daily
snapshots of R (copies of the current source trees), as gzipped and bzipped
tar files, a wealth of additional contributed code, as well as prebuilt
binaries for various operating systems (Linux, Mac OS Classic, Mac OS X,
and MS Windows). CRAN also provides access to documentation on R, existing
mailing lists and the R Bug Tracking system.
Please always use the URL of the master site when referring to CRAN.
2.11 Can I use R for commercial purposes?
=========================================
R is released under the GNU General Public License (GPL) version 2. If you
have any questions regarding the legality of using R in any particular
situation you should bring it up with your legal counsel. We are in no
position to offer legal advice.
It is the opinion of the R Core Team that one can use R for commercial
purposes (e.g., in business or in consulting). The GPL, like all Open
Source licenses, permits all and any use of the package. It only restricts
distribution of R or of other programs containing code from R. This is
made clear in clause 6 ("No Discrimination Against Fields of Endeavor") of
the Open Source Definition (http://www.opensource.org/docs/definition.html):
The license must not restrict anyone from making use of the program in
a specific field of endeavor. For example, it may not restrict the
program from being used in a business, or from being used for genetic
research.
It is also explicitly stated in clause 0 of the GPL, which says in part
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program.
Most add-on packages, including all recommended ones, also explicitly
allow commercial use in this way. A few packages are restricted to
"non-commercial use"; you should contact the author to clarify whether
these may be used or seek the advice of your legal counsel.
None of the discussion in this section constitutes legal advice. The R
Core Team does not provide legal advice under any circumstances.
2.12 Why is R named R?
======================
The name is partly based on the (first) names of the first two R authors
(Robert Gentleman and Ross Ihaka), and partly a play on the name of the
Bell Labs language `S' (*note What is S?::).
2.13 What is the R Foundation?
==============================
The R Foundation is a not for profit organization working in the public
interest. It was founded by the members of the R Core Team in order to
provide support for the R project and other innovations in statistical
computing, provide a reference point for individuals, institutions or
commercial enterprises that want to support or interact with the R
development community, and to hold and administer the copyright of R
software and documentation. See `http://www.R-project.org/foundation/' for
more information.
2.14 What is R-Forge?
=====================
R-Forge (`http://R-Forge.R-project.org/') offers a central platform for the
development of R packages, R-related software and further projects. It is
based on GForge (http://www.gforge.org/) offering easy access to the best
in SVN, daily built and checked packages, mailing lists, bug tracking,
message boards/forums, site hosting, permanent file archival, full backups,
and total web-based administration. For more information, see the R-Forge
web page and Stefan Theul and Achim Zeileis (2009), "Collaborative software
development using R-Forge", _The R Journal_, *1*(1):9-14.
3 R and S
*********
3.1 What is S?
==============
S is a very high level language and an environment for data analysis and
graphics. In 1998, the Association for Computing Machinery (ACM) presented
its Software System Award to John M. Chambers, the principal designer of S,
for
the S system, which has forever altered the way people analyze,
visualize, and manipulate data ...
S is an elegant, widely accepted, and enduring software system, with
conceptual integrity, thanks to the insight, taste, and effort of John
Chambers.
The evolution of the S language is characterized by four books by John
Chambers and coauthors, which are also the primary references for S.
* Richard A. Becker and John M. Chambers (1984), "S. An Interactive
Environment for Data Analysis and Graphics," Monterey: Wadsworth and
Brooks/Cole.
This is also referred to as the "_Brown Book_", and of historical
interest only.
* Richard A. Becker, John M. Chambers and Allan R. Wilks (1988), "The New
S Language," London: Chapman & Hall.
This book is often called the "_Blue Book_", and introduced what is
now known as S version 2.
* John M. Chambers and Trevor J. Hastie (1992), "Statistical Models in
S," London: Chapman & Hall.
This is also called the "_White Book_", and introduced S version 3,
which added structures to facilitate statistical modeling in S.
* John M. Chambers (1998), "Programming with Data," New York: Springer,
ISBN 0-387-98503-4
(`http://cm.bell-labs.com/cm/ms/departments/sia/Sbook/').
This "_Green Book_" describes version 4 of S, a major revision of S
designed by John Chambers to improve its usefulness at every stage of
the programming process.
See `http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html' for
further information on "Stages in the Evolution of S".
There is a huge amount of user-contributed code for S, available at the
S Repository (http://lib.stat.cmu.edu/S/) at CMU.
3.2 What is S-PLUS?
===================
S-PLUS is a value-added version of S sold by Insightful Corporation
(http://www.insightful.com), which in 2008 was acquired by TIBCO Software
Inc (http://www.tibco.com/). See the Insightful S-PLUS page
(http://www.insightful.com/products/splus/) and the TIBCO Spotfire S+
Products page for further information.
3.3 What are the differences between R and S?
=============================================
We can regard S as a language with three current implementations or
"engines", the "old S engine" (S version 3; S-PLUS 3.x and 4.x), the "new S
engine" (S version 4; S-PLUS 5.x and above), and R. Given this
understanding, asking for "the differences between R and S" really amounts
to asking for the specifics of the R implementation of the S language,
i.e., the difference between the R and S _engines_.
For the remainder of this section, "S" refers to the S engines and not
the S language.
3.3.1 Lexical scoping
---------------------
Contrary to other implementations of the S language, R has adopted an
evaluation model in which nested function definitions are lexically scoped.
This is analogous to the evaluation model in Scheme.
This difference becomes manifest when _free_ variables occur in a
function. Free variables are those which are neither formal parameters
(occurring in the argument list of the function) nor local variables
(created by assigning to them in the body of the function). In S, the
values of free variables are determined by a set of global variables
(similar to C, there is only local and global scope). In R, they are
determined by the environment in which the function was created.
Consider the following function:
cube <- function(n) {
sq <- function() n * n
n * sq()
}
Under S, `sq()' does not "know" about the variable `n' unless it is
defined globally:
S> cube(2)
Error in sq(): Object "n" not found
Dumped
S> n <- 3
S> cube(2)
[1] 18
In R, the "environment" created when `cube()' was invoked is also looked
in:
R> cube(2)
[1] 8
As a more "interesting" real-world problem, suppose you want to write a
function which returns the density function of the r-th order statistic
from a sample of size n from a (continuous) distribution. For simplicity,
we shall use both the cdf and pdf of the distribution as explicit
arguments. (Example compiled from various postings by Luke Tierney.)
The S-PLUS documentation for `call()' basically suggests the following:
dorder <- function(n, r, pfun, dfun) {
f <- function(x) NULL
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
PF <- call(substitute(pfun), as.name("x"))
DF <- call(substitute(dfun), as.name("x"))
f[[length(f)]] <-
call("*", con,
call("*", call("^", PF, r - 1),
call("*", call("^", call("-", 1, PF), n - r),
DF)))
f
}
Rather tricky, isn't it? The code uses the fact that in S, functions are
just lists of special mode with the function body as the last argument, and
hence does not work in R (one could make the idea work, though).
A version which makes heavy use of `substitute()' and seems to work
under both S and R is
dorder <- function(n, r, pfun, dfun) {
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
eval(substitute(function(x) K * PF(x)^a * (1 - PF(x))^b * DF(x),
list(PF = substitute(pfun), DF = substitute(dfun),
a = r - 1, b = n - r, K = con)))
}
(the `eval()' is not needed in S).
However, in R there is a much easier solution:
dorder <- function(n, r, pfun, dfun) {
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
function(x) {
con * pfun(x)^(r - 1) * (1 - pfun(x))^(n - r) * dfun(x)
}
}
This seems to be the "natural" implementation, and it works because the
free variables in the returned function can be looked up in the defining
environment (this is lexical scope).
Note that what you really need is the function _closure_, i.e., the body
along with all variable bindings needed for evaluating it. Since in the
above version, the free variables in the value function are not modified,
you can actually use it in S as well if you abstract out the closure
operation into a function `MC()' (for "make closure"):
dorder <- function(n, r, pfun, dfun) {
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
MC(function(x) {
con * pfun(x)^(r - 1) * (1 - pfun(x))^(n - r) * dfun(x)
},
list(con = con, pfun = pfun, dfun = dfun, r = r, n = n))
}
Given the appropriate definitions of the closure operator, this works in
both R and S, and is much "cleaner" than a substitute/eval solution (or one
which overrules the default scoping rules by using explicit access to
evaluation frames, as is of course possible in both R and S).
For R, `MC()' simply is
MC <- function(f, env) f
(lexical scope!), a version for S is
MC <- function(f, env = NULL) {
env <- as.list(env)
if (mode(f) != "function")
stop(paste("not a function:", f))
if (length(env) > 0 && any(names(env) == ""))
stop(paste("not all arguments are named:", env))
fargs <- if(length(f) > 1) f[1:(length(f) - 1)] else NULL
fargs <- c(fargs, env)
if (any(duplicated(names(fargs))))
stop(paste("duplicated arguments:", paste(names(fargs)),
collapse = ", "))
fbody <- f[length(f)]
cf <- c(fargs, fbody)
mode(cf) <- "function"
return(cf)
}
Similarly, most optimization (or zero-finding) routines need some
arguments to be optimized over and have other parameters that depend on the
data but are fixed with respect to optimization. With R scoping rules,
this is a trivial problem; simply make up the function with the required
definitions in the same environment and scoping takes care of it. With S,
one solution is to add an extra parameter to the function and to the
optimizer to pass in these extras, which however can only work if the
optimizer supports this.
Nested lexically scoped functions allow using function closures and
maintaining local state. A simple example (taken from Abelson and Sussman)
is obtained by typing `demo("scoping")' at the R prompt. Further
information is provided in the standard R reference "R: A Language for Data
Analysis and Graphics" (*note What documentation exists for R?::) and in
Robert Gentleman and Ross Ihaka (2000), "Lexical Scope and Statistical
Computing", _Journal of Computational and Graphical Statistics_, *9*,
491-508.
Nested lexically scoped functions also imply a further major difference.
Whereas S stores all objects as separate files in a directory somewhere
(usually `.Data' under the current directory), R does not. All objects in
R are stored internally. When R is started up it grabs a piece of memory
and uses it to store the objects. R performs its own memory management of
this piece of memory, growing and shrinking its size as needed. Having
everything in memory is necessary because it is not really possible to
externally maintain all relevant "environments" of symbol/value pairs.
This difference also seems to make R _faster_ than S.
The down side is that if R crashes you will lose all the work for the
current session. Saving and restoring the memory "images" (the functions
and data stored in R's internal memory at any time) can be a bit slow,
especially if they are big. In S this does not happen, because everything
is saved in disk files and if you crash nothing is likely to happen to
them. (In fact, one might conjecture that the S developers felt that the
price of changing their approach to persistent storage just to accommodate
lexical scope was far too expensive.) Hence, when doing important work,
you might consider saving often (see *note How can I save my workspace?::)
to safeguard against possible crashes. Other possibilities are logging
your sessions, or have your R commands stored in text files which can be
read in using `source()'.
Note: If you run R from within Emacs (see *note R and Emacs::), you
can save the contents of the interaction buffer to a file and
conveniently manipulate it using `ess-transcript-mode', as well as
save source copies of all functions and data used.
3.3.2 Models
------------
There are some differences in the modeling code, such as
* Whereas in S, you would use `lm(y ~ x^3)' to regress `y' on `x^3', in
R, you have to insulate powers of numeric vectors (using `I()'), i.e.,
you have to use `lm(y ~ I(x^3))'.
* The glm family objects are implemented differently in R and S. The
same functionality is available but the components have different
names.
* Option `na.action' is set to `"na.omit"' by default in R, but not set
in S.
* Terms objects are stored differently. In S a terms object is an
expression with attributes, in R it is a formula with attributes. The
attributes have the same names but are mostly stored differently.
* Finally, in R `y ~ x + 0' is an alternative to `y ~ x - 1' for
specifying a model with no intercept. Models with no parameters at all
can be specified by `y ~ 0'.
3.3.3 Others
------------
Apart from lexical scoping and its implications, R follows the S language
definition in the Blue and White Books as much as possible, and hence
really is an "implementation" of S. There are some intentional differences
where the behavior of S is considered "not clean". In general, the
rationale is that R should help you detect programming errors, while at the
same time being as compatible as possible with S.
Some known differences are the following.
* In R, if `x' is a list, then `x[i] <- NULL' and `x[[i]] <- NULL'
remove the specified elements from `x'. The first of these is
incompatible with S, where it is a no-op. (Note that you can set
elements to `NULL' using `x[i] <- list(NULL)'.)
* In S, the functions named `.First' and `.Last' in the `.Data'
directory can be used for customizing, as they are executed at the
very beginning and end of a session, respectively.
In R, the startup mechanism is as follows. Unless `--no-environ' was
given on the command line, R searches for site and user files to
process for setting environment variables. Then, R searches for a
site-wide startup profile unless the command line option
`--no-site-file' was given. This code is loaded in package *base*.
Then, unless `--no-init-file' was given, R searches for a user profile
file, and sources it into the user workspace. It then loads a saved
image of the user workspace from `.RData' in case there is one (unless
`--no-restore-data' or `--no-restore' were specified). Next, a
function `.First()' is run if found on the search path. Finally,
function `.First.sys' in the *base* package is run. When terminating
an R session, by default a function `.Last' is run if found on the
search path, followed by `.Last.sys'. If needed, the functions
`.First()' and `.Last()' should be defined in the appropriate startup
profiles. See the help pages for `.First' and `.Last' for more
details.
* In R, `T' and `F' are just variables being set to `TRUE' and `FALSE',
respectively, but are not reserved words as in S and hence can be
overwritten by the user. (This helps e.g. when you have factors with
levels `"T"' or `"F"'.) Hence, when writing code you should always
use `TRUE' and `FALSE'.
* In R, `dyn.load()' can only load _shared objects_, as created for
example by `R CMD SHLIB'.
* In R, `attach()' currently only works for lists and data frames, but
not for directories. (In fact, `attach()' also works for R data files
created with `save()', which is analogous to attaching directories in
S.) Also, you cannot attach at position 1.
* Categories do not exist in R, and never will as they are deprecated now
in S. Use factors instead.
* In R, `For()' loops are not necessary and hence not supported.
* In R, `assign()' uses the argument `envir=' rather than `where=' as in
S.
* The random number generators are different, and the seeds have
different length.
* R passes integer objects to C as `int *' rather than `long *' as in S.
* R has no single precision storage mode. However, as of version 0.65.1,
there is a single precision interface to C/FORTRAN subroutines.
* By default, `ls()' returns the names of the objects in the current
(under R) and global (under S) environment, respectively. For example,
given
x <- 1; fun <- function() {y <- 1; ls()}
then `fun()' returns `"y"' in R and `"x"' (together with the rest of
the global environment) in S.
* R allows for zero-extent matrices (and arrays, i.e., some elements of
the `dim' attribute vector can be 0). This has been determined a
useful feature as it helps reducing the need for special-case tests for
empty subsets. For example, if `x' is a matrix, `x[, FALSE]' is not
`NULL' but a "matrix" with 0 columns. Hence, such objects need to be
tested for by checking whether their `length()' is zero (which works
in both R and S), and not using `is.null()'.
* Named vectors are considered vectors in R but not in S (e.g.,
`is.vector(c(a = 1:3))' returns `FALSE' in S and `TRUE' in R).
* Data frames are not considered as matrices in R (i.e., if `DF' is a
data frame, then `is.matrix(DF)' returns `FALSE' in R and `TRUE' in S).
* R by default uses treatment contrasts in the unordered case, whereas S
uses the Helmert ones. This is a deliberate difference reflecting the
opinion that treatment contrasts are more natural.
* In R, the argument of a replacement function which corresponds to the
right hand side must be named `value'. E.g., `f(a) <- b' is evaluated
as `a <- "f<-"(a, value = b)'. S always takes the last argument,
irrespective of its name.
* In S, `substitute()' searches for names for substitution in the given
expression in three places: the actual and the default arguments of
the matching call, and the local frame (in that order). R looks in
the local frame only, with the special rule to use a "promise" if a
variable is not evaluated. Since the local frame is initialized with
the actual arguments or the default expressions, this is usually
equivalent to S, until assignment takes place.
* In S, the index variable in a `for()' loop is local to the inside of
the loop. In R it is local to the environment where the `for()'
statement is executed.
* In S, `tapply(simplify=TRUE)' returns a vector where R returns a
one-dimensional array (which can have named dimnames).
* In S(-PLUS) the C locale is used, whereas in R the current operating
system locale is used for determining which characters are
alphanumeric and how they are sorted. This affects the set of valid
names for R objects (for example accented chars may be allowed in R)
and ordering in sorts and comparisons (such as whether `"aA" < "Bb"' is
true or false). From version 1.2.0 the locale can be (re-)set in R by
the `Sys.setlocale()' function.
* In S, `missing(ARG)' remains `TRUE' if ARG is subsequently modified;
in R it doesn't.
* From R version 1.3.0, `data.frame' strips `I()' when creating (column)
names.
* In R, the string `"NA"' is not treated as a missing value in a
character variable. Use `as.character(NA)' to create a missing
character value.
* R disallows repeated formal arguments in function calls.
* In S, `dump()', `dput()' and `deparse()' are essentially different
interfaces to the same code. In R from version 2.0.0, this is only
true if the same `control' argument is used, but by default it is not.
By default `dump()' tries to write code that will evaluate to
reproduce the object, whereas `dput()' and `deparse()' default to
options for producing deparsed code that is readable.
* In R, indexing a vector, matrix, array or data frame with `[' using a
character vector index looks only for exact matches (whereas `[[' and
`$' allow partial matches). In S, `[' allows partial matches.
* S has a two-argument version of `atan' and no `atan2'. A call in S
such as `atan(x1, x2)' is equivalent to R's `atan2(x1, x2)'. However,
beware of named arguments since S's `atan(x = a, y = b)' is equivalent
to R's `atan2(y = a, x = b)' with the meanings of `x' and `y'
interchanged. (R used to have undocumented support for a two-argument
`atan' with positional arguments, but this has been withdrawn to avoid
further confusion.)
* Numeric constants with no fractional and exponent (i.e., only integer)
part are taken as integer in S-PLUS 6.x or later, but as double in R.
There are also differences which are not intentional, and result from
missing or incorrect code in R. The developers would appreciate hearing
about any deficiencies you may find (in a written report fully documenting
the difference as you see it). Of course, it would be useful if you were
to implement the change yourself and make sure it works.
3.4 Is there anything R can do that S-PLUS cannot?
==================================================
Since almost anything you can do in R has source code that you could port
to S-PLUS with little effort there will never be much you can do in R that
you couldn't do in S-PLUS if you wanted to. (Note that using lexical
scoping may simplify matters considerably, though.)
R offers several graphics features that S-PLUS does not, such as finer
handling of line types, more convenient color handling (via palettes),
gamma correction for color, and, most importantly, mathematical annotation
in plot texts, via input expressions reminiscent of TeX constructs. See
the help page for `plotmath', which features an impressive on-line example.
More details can be found in Paul Murrell and Ross Ihaka (2000), "An
Approach to Providing Mathematical Annotation in Plots", _Journal of
Computational and Graphical Statistics_, *9*, 582-599.
3.5 What is R-plus?
===================
For a very long time, there was no such thing.
XLSolutions Corporation (http://www.xlsolutions-corp.com/) is currently
beta testing a commercially supported version of R named R+ (read R plus).
REvolution Computing (http://www.revolution-computing.com/) has released
REvolution R
(http://www.revolution-computing.com/products/revolution-r.php), an
enterprise-class statistical analysis system based on R, suitable for
deployment in professional, commercial and regulated environments.
Random Technologies (http://www.random-technologies-llc.com/) offers
RStat (http://random-technologies-llc.com/products/RStat/rstat), an
enterprise-strength statistical computing environment which combines R with
enterprise-level validation, documentation, software support, and
consulting services, as well as related R-based products.
See also
`http://en.wikipedia.org/wiki/R_programming_language#Commercialized_versions_of_R'
for pointers to commercialized versions of R.
4 R Web Interfaces
******************
*Rweb* is developed and maintained by Jeff Banfield
<jeff@math.montana.edu>. The Rweb Home Page
(http://www.math.montana.edu/Rweb/) provides access to all three versions
of Rweb--a simple text entry form that returns output and graphs, a more
sophisticated JavaScript version that provides a multiple window
environment, and a set of point and click modules that are useful for
introductory statistics courses and require no knowledge of the R language.
All of the Rweb versions can analyze Web accessible datasets if a URL is
provided.
The paper "Rweb: Web-based Statistical Analysis", providing a detailed
explanation of the different versions of Rweb and an overview of how Rweb
works, was published in the Journal of Statistical Software
(`http://www.jstatsoft.org/v04/i01/').
Ulf Bartel <ulfi@cs.tu-berlin.de> has developed *R-Online*, a simple
on-line programming environment for R which intends to make the first steps
in statistical programming with R (especially with time series) as easy as
possible. There is no need for a local installation since the only
requirement for the user is a JavaScript capable browser. See
`http://osvisions.com/r-online/' for more information.
*Rcgi* is a CGI WWW interface to R by MJ Ray <mjr@dsl.pipex.com>. It
had the ability to use "embedded code": you could mix user input and code,
allowing the HTML author to do anything from load in data sets to enter
most of the commands for users without writing CGI scripts. Graphical
output was possible in PostScript or GIF formats and the executed code was
presented to the user for revision. However, it is not clear if the
project is still active. Currently, a modified version of *Rcgi* by Mai
Zhou <mai@ms.uky.edu> (actually, two versions: one with (bitmap) graphics
and one without) as well as the original code are available from
`http://www.ms.uky.edu/~statweb/'.
CGI-based web access to R is also provided at
`http://hermes.sdu.dk/cgi-bin/go/'. There are many additional examples of
web interfaces to R which basically allow to submit R code to a remote
server, see for example the collection of links available from
`http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/StatCompCourse'.
David Firth (http://www.warwick.ac.uk/go/dfirth) has written *CGIwithR*
(http://CRAN.R-project.org/package=CGIwithR), an R add-on package available
from CRAN. It provides some simple extensions to R to facilitate running R
scripts through the CGI interface to a web server, and allows submission of
data using both GET and POST methods. It is easily installed using Apache
under Linux and in principle should run on any platform that supports R and
a web server provided that the installer has the necessary security
permissions. David's paper "CGIwithR: Facilities for Processing Web Forms
Using R" was published in the Journal of Statistical Software
(`http://www.jstatsoft.org/v08/i10/'). The package is now maintained by
Duncan Temple Lang <duncan@wald.ucdavis.edu> and has a web page at
`http://www.omegahat.org/CGIwithR/'.
Rpad (http://www.rpad.org/Rpad), developed and actively maintained by
Tom Short, provides a sophisticated environment which combines some of the
features of the previous approaches with quite a bit of JavaScript,
allowing for a GUI-like behavior (with sortable tables, clickable graphics,
editable output), etc.
Jeff Horner is working on the R/Apache Integration Project which embeds
the R interpreter inside Apache 2 (and beyond). A tutorial and
presentation are available from the project web page at
`http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/RApacheProject'.
Rserve (http://stats.math.uni-augsburg.de/Rserve/) is a project actively
developed by Simon Urbanek. It implements a TCP/IP server which allows
other programs to use facilities of R. Clients are available from the web
site for Java and C++ (and could be written for other languages that
support TCP/IP sockets).
OpenStatServer (http://openstatserver.org/index.html) is being developed
by a team lead by Greg Warnes; it aims "to provide clean access to
computational modules defined in a variety of computational environments
(R, SAS, Matlab, etc) via a single well-defined client interface" and to
turn computational services into web services.
Two projects use PHP to provide a web interface to R. R_PHP_Online
(http://steve-chen.net/R_PHP/) by Steve Chen (though it is unclear if this
project is still active) is somewhat similar to the above Rcgi and Rweb.
R-php (http://dssm.unipa.it/R-php/?cmd=home) is actively developed by
Alfredo Pontillo and Angelo Mineo and provides both a web interface to R
and a set of pre-specified analyses that need no R code input.
webbioc (http://www.bioconductor.org/) is "an integrated web interface
for doing microarray analysis using several of the Bioconductor packages"
and is designed to be installed at local sites as a shared computing
resource.
Rwui (http://sysbio.mrc-bsu.cam.ac.uk/Rwui) is a web application to
create user-friendly web interfaces for R scripts. All code for the web
interface is created automatically. There is no need for the user to do
any extra scripting or learn any new scripting techniques.
The *R.rsp* (http://CRAN.R-project.org/package=R.rsp) package by Henrik
Bengtsson introduces "R Server Pages". Analogous to Java Server Pages, an
R server page is typically HTML with embedded R code that gets evaluated
when the page is requested. The package includes an internal
cross-platform HTTP server implemented in Tcl, so provides a good framework
for including web-based user interfaces in packages. The approach is
similar to the use of the *brew* (http://CRAN.R-project.org/package=brew)
package with Rapache (http://rapache.net/) with the advantage of
cross-platform support and easy installation.
The *Rook* (http://CRAN.R-project.org/package=Rook) package by Jeffrey
Horner provides a web server interface borrowing heavily from Ruby's Rack
project.
Finally, Concerto (http://code.google.com/p/concerto-platform/) is a
user friendly open-source Web Interface to R developed at the Psychometrics
Centre of Cambridge University. It was designed as an online platform to
design and run Computerized Adaptive Tests, but can be also used as a
general-purpose R Web Interface. It allows R users with no programming or
web designing background to quickly develop flexible and powerful online
applications, websites, and psychometrics tests. To maximize its
reliability, security, and performance, Concerto relies on the popular and
reliable open-source elements such as MySQL server (exchange and storage of
the data), Rstudio (http://rstudio.org/) (R code designing and testing,
file management), CKEditor (HTML Layer design), and PHP.
See `http://rwiki.sciviews.org/doku.php?id=faq-r#web_interfaces' for
additional information.
5 R Add-On Packages
*******************
5.1 Which add-on packages exist for R?
======================================
5.1.1 Add-on packages in R
--------------------------
The R distribution comes with the following packages:
*base*
Base R functions (and datasets before R 2.0.0).
*compiler*
R byte code compiler (added in R 2.13.0).
*datasets*
Base R datasets (added in R 2.0.0).
*grDevices*
Graphics devices for base and grid graphics (added in R 2.0.0).
*graphics*
R functions for base graphics.
*grid*
A rewrite of the graphics layout capabilities, plus some support for
interaction.
*methods*
Formally defined methods and classes for R objects, plus other
programming tools, as described in the Green Book.
*parallel*
Support for parallel computation, including by forking and by sockets,
and random-number generation (added in R 2.14.0).
*splines*
Regression spline functions and classes.
*stats*
R statistical functions.
*stats4*
Statistical functions using S4 classes.
*tcltk*
Interface and language bindings to Tcl/Tk GUI elements.
*tools*
Tools for package development and administration.
*utils*
R utility functions.
These "base packages" were substantially reorganized in R 1.9.0. The
former *base* was split into the four packages *base*, *graphics*, *stats*,
and *utils*. Packages *ctest*, *eda*, *modreg*, *mva*, *nls*, *stepfun* and
*ts* were merged into *stats*, package *lqs* returned to the recommended
package *MASS* (http://CRAN.R-project.org/package=MASS), and package *mle*
moved to *stats4*.
5.1.2 Add-on packages from CRAN
-------------------------------
The CRAN `src/contrib' area contains a wealth of add-on packages, including
the following _recommended_ packages which are to be included in all binary
distributions of R.
*KernSmooth*
Functions for kernel smoothing (and density estimation) corresponding
to the book "Kernel Smoothing" by M. P. Wand and M. C. Jones, 1995.
*MASS*
Functions and datasets from the main package of Venables and Ripley,
"Modern Applied Statistics with S". (Contained in the `VR' bundle for
R versions prior to 2.10.0.)
*Matrix*
A Matrix package. (Recommended for R 2.9.0 or later.)
*boot*
Functions and datasets for bootstrapping from the book "Bootstrap
Methods and Their Applications" by A. C. Davison and D. V. Hinkley,
1997, Cambridge University Press.
*class*
Functions for classification (k-nearest neighbor and LVQ). (Contained
in the `VR' bundle for R versions prior to 2.10.0.)
*cluster*
Functions for cluster analysis.
*codetools*
Code analysis tools. (Recommended for R 2.5.0 or later.)
*foreign*
Functions for reading and writing data stored by statistical software
like Minitab, S, SAS, SPSS, Stata, Systat, etc.
*lattice*
Lattice graphics, an implementation of Trellis Graphics functions.
*mgcv*
Routines for GAMs and other generalized ridge regression problems with
multiple smoothing parameter selection by GCV or UBRE.
*nlme*
Fit and compare Gaussian linear and nonlinear mixed-effects models.
*nnet*
Software for single hidden layer perceptrons ("feed-forward neural
networks"), and for multinomial log-linear models. (Contained in the
`VR' bundle for R versions prior to 2.10.0.)
*rpart*
Recursive PARTitioning and regression trees.
*spatial*
Functions for kriging and point pattern analysis from "Modern Applied
Statistics with S" by W. Venables and B. Ripley. (Contained in the
`VR' bundle for R versions prior to 2.10.0.)
*survival*
Functions for survival analysis, including penalized likelihood.
See the CRAN contributed packages page for more information.
Many of these packages are categorized into CRAN Task Views
(http://CRAN.R-project.org/web/views/), allowing to browse packages by
topic and providing tools to automatically install all packages for special
areas of interest.
Some CRAN packages that do not build out of the box on Windows, require
additional software, or are shipping third party libraries for Windows
cannot be made available on CRAN in form of a Windows binary packages.
Nevertheless, some of these packages are available at the "CRAN extras"
repository at `http://www.stats.ox.ac.uk/pub/RWin/' kindly provided by Brian
D. Ripley. Note that this repository is a default repository for recent
versions of R for Windows.
5.1.3 Add-on packages from Omegahat
-----------------------------------
The Omega Project for Statistical Computing (http://www.omegahat.org/)
provides a variety of open-source software for statistical applications,
with special emphasis on web-based software, Java, the Java virtual
machine, and distributed computing. A CRAN style R package repository is
available via `http://www.omegahat.org/R/'. See `http://www.omegahat.org/'
for information on most R packages available from the Omega project.
5.1.4 Add-on packages from Bioconductor
---------------------------------------
Bioconductor (http://www.bioconductor.org/) is an open source and open
development software project for the analysis and comprehension of genomic
data. Most Bioconductor components are distributed as R add-on packages.
Initially most of the Bioconductor software packages
(http://www.bioconductor.org/packages/bioc/) focused primarily on DNA
microarray data analysis. As the project has matured, the functional scope
of the software packages broadened to include the analysis of all types of
genomic data, such as SAGE, sequence, or SNP data. In addition, there are
metadata (annotation, CDF and probe) and experiment data packages. See
`http://www.bioconductor.org/download/' for available packages and a
complete taxonomy via BioC Views.
5.1.5 Other add-on packages
---------------------------
Many more packages are available from places other than the three default
repositories discussed above (CRAN, Bioconductor and Omegahat). In
particular, R-Forge provides a CRAN style repository at
`http://R-Forge.R-project.org/'.
More code has been posted to the R-help mailing list, and can be
obtained from the mailing list archive.
5.2 How can add-on packages be installed?
=========================================
(Unix-like only.) The add-on packages on CRAN come as gzipped tar files
named `PKG_VERSION.tar.gz', which may in fact be "bundles" containing more
than one package. Let PATH be the path to such a package file. Provided
that `tar' and `gzip' are available on your system, type
$ R CMD INSTALL PATH/PKG_VERSION.tar.gz
at the shell prompt to install to the library tree rooted at the first
directory in your library search path (see the help page for `.libPaths()'
for details on how the search path is determined).
To install to another tree (e.g., your private one), use
$ R CMD INSTALL -l LIB PATH/PKG_VERSION.tar.gz
where LIB gives the path to the library tree to install to.
Even more conveniently, you can install and automatically update
packages from within R if you have access to repositories such as CRAN.
See the help page for `available.packages()' for more information.
5.3 How can add-on packages be used?
====================================
To find out which additional packages are available on your system, type
library()
at the R prompt.
This produces something like
Packages in `/home/me/lib/R':
mystuff My own R functions, nicely packaged but not documented
Packages in `/usr/local/lib/R/library':
KernSmooth Functions for kernel smoothing for Wand & Jones (1995)
MASS Main Package of Venables and Ripley's MASS
Matrix Sparse and Dense Matrix Classes and Methods
base The R Base package
boot Bootstrap R (S-Plus) Functions (Canty)
class Functions for Classification
cluster Functions for clustering (by Rousseeuw et al.)
codetools Code Analysis Tools for R
datasets The R Datasets Package
foreign Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat,
dBase, ...
grDevices The R Graphics Devices and Support for Colours and Fonts
graphics The R Graphics Package
grid The Grid Graphics Package
lattice Lattice Graphics
methods Formal Methods and Classes
mgcv GAMs with GCV/AIC/REML smoothness estimation and GAMMs
by PQL
nlme Linear and Nonlinear Mixed Effects Models
nnet Feed-forward Neural Networks and Multinomial Log-Linear
Models
rpart Recursive Partitioning
spatial Functions for Kriging and Point Pattern Analysis
splines Regression Spline Functions and Classes
stats The R Stats Package
stats4 Statistical functions using S4 Classes
survival Survival analysis, including penalised likelihood
tcltk Tcl/Tk Interface
tools Tools for Package Development
utils The R Utils Package
You can "load" the installed package PKG by
library(PKG)
You can then find out which functions it provides by typing one of
library(help = PKG)
help(package = PKG)
You can unload the loaded package PKG by
detach("package:PKG", unload = TRUE)
(where `unload = TRUE' is needed only for packages with a namespace, see
`?unload').
5.4 How can add-on packages be removed?
=======================================
Use
$ R CMD REMOVE PKG_1 ... PKG_N
to remove the packages PKG_1, ..., PKG_N from the library tree rooted at
the first directory given in `R_LIBS' if this is set and non-null, and from
the default library otherwise. (Versions of R prior to 1.3.0 removed from
the default library by default.)
To remove from library LIB, do
$ R CMD REMOVE -l LIB PKG_1 ... PKG_N
5.5 How can I create an R package?
==================================
A package consists of a subdirectory containing a file `DESCRIPTION' and
the subdirectories `R', `data', `demo', `exec', `inst', `man', `po', `src',
and `tests' (some of which can be missing). The package subdirectory may
also contain files `INDEX', `NAMESPACE', `configure', `cleanup', `LICENSE',
`LICENCE', `COPYING' and `NEWS'.
See section "Creating R packages" in `Writing R Extensions', for
details. This manual is included in the R distribution, *note What
documentation exists for R?::, and gives information on package structure,
the configure and cleanup mechanisms, and on automated package checking and
building.
R version 1.3.0 has added the function `package.skeleton()' which will
set up directories, save data and code, and create skeleton help files for
a set of R functions and datasets.
*Note What is CRAN?::, for information on uploading a package to CRAN.
5.6 How can I contribute to R?
==============================
R is in active development and there is always a risk of bugs creeping in.
Also, the developers do not have access to all possible machines capable of
running R. So, simply using it and communicating problems is certainly of
great value.
The R Developer Page (http://developer.R-project.org/) acts as an
intermediate repository for more or less finalized ideas and plans for the
R statistical system. It contains (pointers to) TODO lists, RFCs, various
other writeups, ideas lists, and SVN miscellanea.
6 R and Emacs
*************
6.1 Is there Emacs support for R?
=================================
There is an Emacs package called ESS ("Emacs Speaks Statistics") which
provides a standard interface between statistical programs and statistical
processes. It is intended to provide assistance for interactive
statistical programming and data analysis. Languages supported include: S
dialects (R, S 3/4, and S-PLUS 3.x/4.x/5.x/6.x/7.x), LispStat dialects
(XLispStat, ViSta), SAS, Stata, and BUGS.
ESS grew out of the need for bug fixes and extensions to S-mode 4.8
(which was a GNU Emacs interface to S/S-PLUS version 3 only). The current
set of developers desired support for XEmacs, R, S4, and MS Windows. In
addition, with new modes being developed for R, Stata, and SAS, it was felt
that a unifying interface and framework for the user interface would
benefit both the user and the developer, by helping both groups conform to
standard Emacs usage. The end result is an increase in efficiency for
statistical programming and data analysis, over the usual tools.
R support contains code for editing R source code (syntactic indentation
and highlighting of source code, partial evaluations of code, loading and
error-checking of code, and source code revision maintenance) and
documentation (syntactic indentation and highlighting of source code,
sending examples to running ESS process, and previewing), interacting with
an inferior R process from within Emacs (command-line editing, searchable
command history, command-line completion of R object and file names, quick
access to object and search lists, transcript recording, and an interface
to the help system), and transcript manipulation (recording and saving
transcript files, manipulating and editing saved transcripts, and
re-evaluating commands from transcript files).
The latest stable version of ESS is available via CRAN or the ESS web
page (http://ESS.R-project.org/). The HTML version of the documentation
can be found at `http://stat.ethz.ch/ESS/'.
ESS comes with detailed installation instructions.
For help with ESS, send email to <ESS-help@stat.math.ethz.ch>.
Please send bug reports and suggestions on ESS to
<ESS-bugs@stat.math.ethz.ch>. The easiest way to do this from is within
Emacs by typing `M-x ess-submit-bug-report' or using the [ESS] or [iESS]
pulldown menus.
6.2 Should I run R from within Emacs?
=====================================
Yes, _definitely_. Inferior R mode provides a readline/history mechanism,
object name completion, and syntax-based highlighting of the interaction
buffer using Font Lock mode, as well as a very convenient interface to the
R help system.
Of course, it also integrates nicely with the mechanisms for editing R
source using Emacs. One can write code in one Emacs buffer and send whole
or parts of it for execution to R; this is helpful for both data analysis
and programming. One can also seamlessly integrate with a revision control
system, in order to maintain a log of changes in your programs and data, as
well as to allow for the retrieval of past versions of the code.
In addition, it allows you to keep a record of your session, which can
also be used for error recovery through the use of the transcript mode.
To specify command line arguments for the inferior R process, use `C-u
M-x R' for starting R.
6.3 Debugging R from within Emacs
=================================
To debug R "from within Emacs", there are several possibilities. To use
the Emacs GUD (Grand Unified Debugger) library with the recommended
debugger GDB, type `M-x gdb' and give the path to the R _binary_ as
argument. At the `gdb' prompt, set `R_HOME' and other environment
variables as needed (using e.g. `set env R_HOME /path/to/R/', but see also
below), and start the binary with the desired arguments (e.g., `run
--quiet').
If you have ESS, you can do `C-u M-x R <RET> - d <SPC> g d b <RET>' to
start an inferior R process with arguments `-d gdb'.
A third option is to start an inferior R process via ESS (`M-x R') and
then start GUD (`M-x gdb') giving the R binary (using its full path name)
as the program to debug. Use the program `ps' to find the process number
of the currently running R process then use the `attach' command in gdb to
attach it to that process. One advantage of this method is that you have
separate `*R*' and `*gud-gdb*' windows. Within the `*R*' window you have
all the ESS facilities, such as object-name completion, that we know and
love.
When using GUD mode for debugging from within Emacs, you may find it
most convenient to use the directory with your code in it as the current
working directory and then make a symbolic link from that directory to the
R binary. That way `.gdbinit' can stay in the directory with the code and
be used to set up the environment and the search paths for the source, e.g.
as follows:
set env R_HOME /opt/R
set env R_PAPERSIZE letter
set env R_PRINTCMD lpr
dir /opt/R/src/appl
dir /opt/R/src/main
dir /opt/R/src/nmath
dir /opt/R/src/unix
7 R Miscellanea
***************
7.1 How can I set components of a list to NULL?
===============================================
You can use
x[i] <- list(NULL)
to set component `i' of the list `x' to `NULL', similarly for named
components. Do not set `x[i]' or `x[[i]]' to `NULL', because this will
remove the corresponding component from the list.
For dropping the row names of a matrix `x', it may be easier to use
`rownames(x) <- NULL', similarly for column names.
7.2 How can I save my workspace?
================================
`save.image()' saves the objects in the user's `.GlobalEnv' to the file
`.RData' in the R startup directory. (This is also what happens after
`q("yes")'.) Using `save.image(FILE)' one can save the image under a
different name.
7.3 How can I clean up my workspace?
====================================
To remove all objects in the currently active environment (typically
`.GlobalEnv'), you can do
rm(list = ls(all = TRUE))
(Without `all = TRUE', only the objects with names not starting with a `.'
are removed.)
7.4 How can I get eval() and D() to work?
=========================================
Strange things will happen if you use `eval(print(x), envir = e)' or
`D(x^2, "x")'. The first one will either tell you that "`x'" is not found,
or print the value of the wrong `x'. The other one will likely return zero
if `x' exists, and an error otherwise.
This is because in both cases, the first argument is evaluated in the
calling environment first. The result (which should be an object of mode
`"expression"' or `"call"') is then evaluated or differentiated. What you
(most likely) really want is obtained by "quoting" the first argument upon
surrounding it with `expression()'. For example,
R> D(expression(x^2), "x")
2 * x
Although this behavior may initially seem to be rather strange, it is
perfectly logical. The "intuitive" behavior could easily be implemented,
but problems would arise whenever the expression is contained in a
variable, passed as a parameter, or is the result of a function call.
Consider for instance the semantics in cases like
D2 <- function(e, n) D(D(e, n), n)
or
g <- function(y) eval(substitute(y), sys.frame(sys.parent(n = 2)))
g(a * b)
See the help page for `deriv()' for more examples.
7.5 Why do my matrices lose dimensions?
=======================================
When a matrix with a single row or column is created by a subscripting
operation, e.g., `row <- mat[2, ]', it is by default turned into a vector.
In a similar way if an array with dimension, say, 2 x 3 x 1 x 4 is created
by subscripting it will be coerced into a 2 x 3 x 4 array, losing the
unnecessary dimension. After much discussion this has been determined to
be a _feature_.
To prevent this happening, add the option `drop = FALSE' to the
subscripting. For example,
rowmatrix <- mat[2, , drop = FALSE] # creates a row matrix
colmatrix <- mat[, 2, drop = FALSE] # creates a column matrix
a <- b[1, 1, 1, drop = FALSE] # creates a 1 x 1 x 1 array
The `drop = FALSE' option should be used defensively when programming.
For example, the statement
somerows <- mat[index, ]
will return a vector rather than a matrix if `index' happens to have length
1, causing errors later in the code. It should probably be rewritten as
somerows <- mat[index, , drop = FALSE]
7.6 How does autoloading work?
==============================
R has a special environment called `.AutoloadEnv'. Using `autoload(NAME,
PKG)', where NAME and PKG are strings giving the names of an object and the
package containing it, stores some information in this environment. When R
tries to evaluate NAME, it loads the corresponding package PKG and
reevaluates NAME in the new package's environment.
Using this mechanism makes R behave as if the package was loaded, but
does not occupy memory (yet).
See the help page for `autoload()' for a very nice example.
7.7 How should I set options?
=============================
The function `options()' allows setting and examining a variety of global
"options" which affect the way in which R computes and displays its
results. The variable `.Options' holds the current values of these
options, but should never directly be assigned to unless you want to drive
yourself crazy--simply pretend that it is a "read-only" variable.
For example, given
test1 <- function(x = pi, dig = 3) {
oo <- options(digits = dig); on.exit(options(oo));
cat(.Options$digits, x, "\n")
}
test2 <- function(x = pi, dig = 3) {
.Options$digits <- dig
cat(.Options$digits, x, "\n")
}
we obtain:
R> test1()
3 3.14
R> test2()
3 3.141593
What is really used is the _global_ value of `.Options', and using
`options(OPT = VAL)' correctly updates it. Local copies of `.Options',
either in `.GlobalEnv' or in a function environment (frame), are just
silently disregarded.
7.8 How do file names work in Windows?
======================================
As R uses C-style string handling, `\' is treated as an escape character,
so that for example one can enter a newline as `\n'. When you really need
a `\', you have to escape it with another `\'.
Thus, in filenames use something like `"c:\\data\\money.dat"'. You can
also replace `\' by `/' (`"c:/data/money.dat"').
7.9 Why does plotting give a color allocation error?
====================================================
On an X11 device, plotting sometimes, e.g., when running `demo("image")',
results in "Error: color allocation error". This is an X problem, and only
indirectly related to R. It occurs when applications started prior to R
have used all the available colors. (How many colors are available depends
on the X configuration; sometimes only 256 colors can be used.)
One application which is notorious for "eating" colors is Netscape. If
the problem occurs when Netscape is running, try (re)starting it with
either the `-no-install' (to use the default colormap) or the `-install'
(to install a private colormap) option.
You could also set the `colortype' of `X11()' to `"pseudo.cube"' rather
than the default `"pseudo"'. See the help page for `X11()' for more
information.
7.10 How do I convert factors to numeric?
=========================================
It may happen that when reading numeric data into R (usually, when reading
in a file), they come in as factors. If `f' is such a factor object, you
can use
as.numeric(as.character(f))
to get the numbers back. More efficient, but harder to remember, is
as.numeric(levels(f))[as.integer(f)]
In any case, do not call `as.numeric()' or their likes directly for the
task at hand (as `as.numeric()' or `unclass()' give the internal codes).
7.11 Are Trellis displays implemented in R?
===========================================
The recommended package *lattice*
(http://CRAN.R-project.org/package=lattice) (which is based on base package
*grid*) provides graphical functionality that is compatible with most
Trellis commands.
You could also look at `coplot()' and `dotchart()' which might do at
least some of what you want. Note also that the R version of `pairs()' is
fairly general and provides most of the functionality of `splom()', and
that R's default plot method has an argument `asp' allowing to specify (and
fix against device resizing) the aspect ratio of the plot.
(Because the word "Trellis" has been claimed as a trademark we do not
use it in R. The name "lattice" has been chosen for the R equivalent.)
7.12 What are the enclosing and parent environments?
====================================================
Inside a function you may want to access variables in two additional
environments: the one that the function was defined in ("enclosing"), and
the one it was invoked in ("parent").
If you create a function at the command line or load it in a package its
enclosing environment is the global workspace. If you define a function
`f()' inside another function `g()' its enclosing environment is the
environment inside `g()'. The enclosing environment for a function is
fixed when the function is created. You can find out the enclosing
environment for a function `f()' using `environment(f)'.
The "parent" environment, on the other hand, is defined when you invoke
a function. If you invoke `lm()' at the command line its parent
environment is the global workspace, if you invoke it inside a function
`f()' then its parent environment is the environment inside `f()'. You can
find out the parent environment for an invocation of a function by using
`parent.frame()' or `sys.frame(sys.parent())'.
So for most user-visible functions the enclosing environment will be the
global workspace, since that is where most functions are defined. The
parent environment will be wherever the function happens to be called from.
If a function `f()' is defined inside another function `g()' it will
probably be used inside `g()' as well, so its parent environment and
enclosing environment will probably be the same.
Parent environments are important because things like model formulas
need to be evaluated in the environment the function was called from, since
that's where all the variables will be available. This relies on the
parent environment being potentially different with each invocation.
Enclosing environments are important because a function can use
variables in the enclosing environment to share information with other
functions or with other invocations of itself (see the section on lexical
scoping). This relies on the enclosing environment being the same each
time the function is invoked. (In C this would be done with static
variables.)
Scoping _is_ hard. Looking at examples helps. It is particularly
instructive to look at examples that work differently in R and S and try to
see why they differ. One way to describe the scoping differences between R
and S is to say that in S the enclosing environment is _always_ the global
workspace, but in R the enclosing environment is wherever the function was
created.
7.13 How can I substitute into a plot label?
============================================
Often, it is desired to use the value of an R object in a plot label, e.g.,
a title. This is easily accomplished using `paste()' if the label is a
simple character string, but not always obvious in case the label is an
expression (for refined mathematical annotation). In such a case, either
use `parse()' on your pasted character string or use `substitute()' on an
expression. For example, if `ahat' is an estimator of your parameter a of
interest, use
title(substitute(hat(a) == ahat, list(ahat = ahat)))
(note that it is `==' and not `='). Sometimes `bquote()' gives a more
compact form, e.g.,
title(bquote(hat(a) = .(ahat)))
where subexpressions enclosed in `.()' are replaced by their values.
There are more examples in the mailing list archives.
7.14 What are valid names?
==========================
When creating data frames using `data.frame()' or `read.table()', R by
default ensures that the variable names are syntactically valid. (The
argument `check.names' to these functions controls whether variable names
are checked and adjusted by `make.names()' if needed.)
To understand what names are "valid", one needs to take into account
that the term "name" is used in several different (but related) ways in the
language:
1. A _syntactic name_ is a string the parser interprets as this type of
expression. It consists of letters, numbers, and the dot and (for
versions of R at least 1.9.0) underscore characters, and starts with
either a letter or a dot not followed by a number. Reserved words are
not syntactic names.
2. An _object name_ is a string associated with an object that is
assigned in an expression either by having the object name on the left
of an assignment operation or as an argument to the `assign()'
function. It is usually a syntactic name as well, but can be any
non-empty string if it is quoted (and it is always quoted in the call
to `assign()').
3. An _argument name_ is what appears to the left of the equals sign when
supplying an argument in a function call (for example, `f(trim=.5)').
Argument names are also usually syntactic names, but again can be
anything if they are quoted.
4. An _element name_ is a string that identifies a piece of an object (a
component of a list, for example.) When it is used on the right of
the `$' operator, it must be a syntactic name, or quoted. Otherwise,
element names can be any strings. (When an object is used as a
database, as in a call to `eval()' or `attach()', the element names
become object names.)
5. Finally, a _file name_ is a string identifying a file in the operating
system for reading, writing, etc. It really has nothing much to do
with names in the language, but it is traditional to call these
strings file "names".
7.15 Are GAMs implemented in R?
===============================
Package *gam* (http://CRAN.R-project.org/package=gam) from CRAN implements
all the Generalized Additive Models (GAM) functionality as described in the
GAM chapter of the White Book. In particular, it implements backfitting
with both local regression and smoothing splines, and is extendable. There
is a `gam()' function for GAMs in package *mgcv*
(http://CRAN.R-project.org/package=mgcv), but it is not an exact clone of
what is described in the White Book (no `lo()' for example). Package *gss*
(http://CRAN.R-project.org/package=gss) can fit spline-based GAMs too. And
if you can accept regression splines you can use `glm()'. For Gaussian
GAMs you can use `bruto()' from package *mda*
(http://CRAN.R-project.org/package=mda).
7.16 Why is the output not printed when I source() a file?
==========================================================
Most R commands do not generate any output. The command
1+1
computes the value 2 and returns it; the command
summary(glm(y~x+z, family=binomial))
fits a logistic regression model, computes some summary information and
returns an object of class `"summary.glm"' (*note How should I write
summary methods?::).
If you type `1+1' or `summary(glm(y~x+z, family=binomial))' at the
command line the returned value is automatically printed (unless it is
`invisible()'), but in other circumstances, such as in a `source()'d file
or inside a function it isn't printed unless you specifically print it.
To print the value use
print(1+1)
or
print(summary(glm(y~x+z, family=binomial)))
instead, or use `source(FILE, echo=TRUE)'.
7.17 Why does outer() behave strangely with my function?
========================================================
As the help for `outer()' indicates, it does not work on arbitrary
functions the way the `apply()' family does. It requires functions that
are vectorized to work elementwise on arrays. As you can see by looking at
the code, `outer(x, y, FUN)' creates two large vectors containing every
possible combination of elements of `x' and `y' and then passes this to
`FUN' all at once. Your function probably cannot handle two large vectors
as parameters.
If you have a function that cannot handle two vectors but can handle two
scalars, then you can still use `outer()' but you will need to wrap your
function up first, to simulate vectorized behavior. Suppose your function
is
foo <- function(x, y, happy) {
stopifnot(length(x) == 1, length(y) == 1) # scalars only!
(x + y) * happy
}
If you define the general function
wrapper <- function(x, y, my.fun, ...) {
sapply(seq_along(x), FUN = function(i) my.fun(x[i], y[i], ...))
}
then you can use `outer()' by writing, e.g.,
outer(1:4, 1:2, FUN = wrapper, my.fun = foo, happy = 10)
Scalar functions can also be vectorized using `Vectorize()'.
7.18 Why does the output from anova() depend on the order of factors in the model?
==================================================================================
In a model such as `~A+B+A:B', R will report the difference in sums of
squares between the models `~1', `~A', `~A+B' and `~A+B+A:B'. If the model
were `~B+A+A:B', R would report differences between `~1', `~B', `~A+B', and
`~A+B+A:B' . In the first case the sum of squares for `A' is comparing `~1'
and `~A', in the second case it is comparing `~B' and `~B+A'. In a
non-orthogonal design (i.e., most unbalanced designs) these comparisons are
(conceptually and numerically) different.
Some packages report instead the sums of squares based on comparing the
full model to the models with each factor removed one at a time (the famous
`Type III sums of squares' from SAS, for example). These do not depend on
the order of factors in the model. The question of which set of sums of
squares is the Right Thing provokes low-level holy wars on R-help from time
to time.
There is no need to be agitated about the particular sums of squares
that R reports. You can compute your favorite sums of squares quite
easily. Any two models can be compared with `anova(MODEL1, MODEL2)', and
`drop1(MODEL1)' will show the sums of squares resulting from dropping
single terms.
7.19 How do I produce PNG graphics in batch mode?
=================================================
Under a Unix-like, if your installation supports the `type="cairo"' option
to the `png()' device there should be no problems, and the default settings
should just work. This option is not available for versions of R prior to
2.7.0, or without support for cairo. From R 2.7.0 `png()' by default uses
the Quartz device on Mac OS X, and that too works in batch mode.
Earlier versions of the `png()' device used the X11 driver, which is a
problem in batch mode or for remote operation. If you have Ghostscript you
can use `bitmap()', which produces a PostScript or PDF file then converts
it to any bitmap format supported by Ghostscript. On some installations
this produces ugly output, on others it is perfectly satisfactory. Many
systems now come with Xvfb from X.Org (http://www.x.org/Downloads.html)
(possibly as an optional install), which is an X11 server that does not
require a screen; and there is the *GDD*
(http://CRAN.R-project.org/package=GDD) package from CRAN, which produces
PNG, JPEG and GIF bitmaps without X11.
7.20 How can I get command line editing to work?
================================================
The Unix-like command-line interface to R can only provide the inbuilt
command line editor which allows recall, editing and re-submission of prior
commands provided that the GNU readline library is available at the time R
is configured for compilation. Note that the `development' version of
readline including the appropriate headers is needed: users of Linux binary
distributions will need to install packages such as `libreadline-dev'
(Debian) or `readline-devel' (Red Hat).
7.21 How can I turn a string into a variable?
=============================================
If you have
varname <- c("a", "b", "d")
you can do
get(varname[1]) + 2
for
a + 2
or
assign(varname[1], 2 + 2)
for
a <- 2 + 2
or
eval(substitute(lm(y ~ x + variable),
list(variable = as.name(varname[1]))))
for
lm(y ~ x + a)
At least in the first two cases it is often easier to just use a list,
and then you can easily index it by name
vars <- list(a = 1:10, b = rnorm(100), d = LETTERS)
vars[["a"]]
without any of this messing about.
7.22 Why do lattice/trellis graphics not work?
==============================================
The most likely reason is that you forgot to tell R to display the graph.
Lattice functions such as `xyplot()' create a graph object, but do not
display it (the same is true of *ggplot2*
(http://CRAN.R-project.org/package=ggplot2) graphics, and Trellis graphics
in S-PLUS). The `print()' method for the graph object produces the actual
display. When you use these functions interactively at the command line,
the result is automatically printed, but in `source()' or inside your own
functions you will need an explicit `print()' statement.
7.23 How can I sort the rows of a data frame?
=============================================
To sort the rows within a data frame, with respect to the values in one or
more of the columns, simply use `order()' (e.g., `DF[order(DF$a,
DF[["b"]]), ]' to sort the data frame `DF' on columns named `a' and `b').
7.24 Why does the help.start() search engine not work?
======================================================
The browser-based search engine in `help.start()' utilizes a Java applet.
In order for this to function properly, a compatible version of Java must
installed on your system and linked to your browser, and both Java _and_
JavaScript need to be enabled in your browser.
There have been a number of compatibility issues with versions of Java
and of browsers. For further details please consult section "Enabling
search in HTML help" in `R Installation and Administration'. This manual is
included in the R distribution, *note What documentation exists for R?::,
and its HTML version is linked from the HTML search page.
7.25 Why did my .Rprofile stop working when I updated R?
========================================================
Did you read the `NEWS' file? For functions that are not in the *base*
package you need to specify the correct package namespace, since the code
will be run _before_ the packages are loaded. E.g.,
ps.options(horizontal = FALSE)
help.start()
needs to be
grDevices::ps.options(horizontal = FALSE)
utils::help.start()
(`graphics::ps.options(horizontal = FALSE)' in R 1.9.x).
7.26 Where have all the methods gone?
=====================================
Many functions, particularly S3 methods, are now hidden in namespaces.
This has the advantage that they cannot be called inadvertently with
arguments of the wrong class, but it makes them harder to view.
To see the code for an S3 method (e.g., `[.terms') use
getS3method("[", "terms")
To see the code for an unexported function `foo()' in the namespace of
package `"bar"' use `bar:::foo'. Don't use these constructions to call
unexported functions in your own code--they are probably unexported for a
reason and may change without warning.
7.27 How can I create rotated axis labels?
==========================================
To rotate axis labels (using base graphics), you need to use `text()',
rather than `mtext()', as the latter does not support `par("srt")'.
## Increase bottom margin to make room for rotated labels
par(mar = c(7, 4, 4, 2) + 0.1)
## Create plot with no x axis and no x axis label
plot(1 : 8, xaxt = "n", xlab = "")
## Set up x axis with tick marks alone
axis(1, labels = FALSE)
## Create some text labels
labels <- paste("Label", 1:8, sep = " ")
## Plot x axis labels at default tick marks
text(1:8, par("usr")[3] - 0.25, srt = 45, adj = 1,
labels = labels, xpd = TRUE)
## Plot x axis label at line 6 (of 7)
mtext(1, text = "X Axis Label", line = 6)
When plotting the x axis labels, we use `srt = 45' for text rotation angle,
`adj = 1' to place the right end of text at the tick marks, and `xpd =
TRUE' to allow for text outside the plot region. You can adjust the value
of the `0.25' offset as required to move the axis labels up or down
relative to the x axis. See `?par' for more information.
Also see Figure 1 and associated code in Paul Murrell (2003),
"Integrating grid Graphics Output with Base Graphics Output", _R News_,
*3/2*, 7-12.
7.28 Why is read.table() so inefficient?
========================================
By default, `read.table()' needs to read in everything as character data,
and then try to figure out which variables to convert to numerics or
factors. For a large data set, this takes considerable amounts of time and
memory. Performance can substantially be improved by using the
`colClasses' argument to specify the classes to be assumed for the columns
of the table.
7.29 What is the difference between package and library?
========================================================
A "package" is a standardized collection of material extending R, e.g.
providing code, data, or documentation. A "library" is a place (directory)
where R knows to find packages it can use (i.e., which were "installed").
R is told to use a package (to "load" it and add it to the search path) via
calls to the function `library'. I.e., `library()' is employed to load a
package from libraries containing packages.
*Note R Add-On Packages::, for more details. See also Uwe Ligges (2003),
"R Help Desk: Package Management", _R News_, *3/3*, 37-39.
7.30 I installed a package but the functions are not there
==========================================================
To actually _use_ the package, it needs to be _loaded_ using `library()'.
See *note R Add-On Packages:: and *note What is the difference between
package and library?:: for more information.
7.31 Why doesn't R think these numbers are equal?
=================================================
The only numbers that can be represented exactly in R's numeric type are
integers and fractions whose denominator is a power of 2. Other numbers
have to be rounded to (typically) 53 binary digits accuracy. As a result,
two floating point numbers will not reliably be equal unless they have been
computed by the same algorithm, and not always even then. For example
R> a <- sqrt(2)
R> a * a == 2
[1] FALSE
R> a * a - 2
[1] 4.440892e-16
The function `all.equal()' compares two objects using a numeric
tolerance of `.Machine$double.eps ^ 0.5'. If you want much greater
accuracy than this you will need to consider error propagation carefully.
For more information, see e.g. David Goldberg (1991), "What Every
Computer Scientist Should Know About Floating-Point Arithmetic", _ACM
Computing Surveys_, *23/1*, 5-48, also available via
`http://www.validlab.com/goldberg/paper.pdf'.
To quote from "The Elements of Programming Style" by Kernighan and
Plauger:
_10.0 times 0.1 is hardly ever 1.0_.
7.32 How can I capture or ignore errors in a long simulation?
=============================================================
Use `try()', which returns an object of class `"try-error"' instead of an
error, or preferably `tryCatch()', where the return value can be configured
more flexibly. For example
beta[i,] <- tryCatch(coef(lm(formula, data)),
error = function(e) rep(NaN, 4))
would return the coefficients if the `lm()' call succeeded and would return
`c(NaN, NaN, NaN, NaN)' if it failed (presumably there are supposed to be 4
coefficients in this example).
7.33 Why are powers of negative numbers wrong?
==============================================
You are probably seeing something like
R> -2^2
[1] -4
and misunderstanding the precedence rules for expressions in R. Write
R> (-2)^2
[1] 4
to get the square of -2.
The precedence rules are documented in `?Syntax', and to see how R
interprets an expression you can look at the parse tree
R> as.list(quote(-2^2))
[[1]]
`-`
[[2]]
2^2
7.34 How can I save the result of each iteration in a loop into a separate file?
================================================================================
One way is to use `paste()' (or `sprintf()') to concatenate a stem filename
and the iteration number while `file.path()' constructs the path. For
example, to save results into files `result1.rda', ..., `result100.rda' in
the subdirectory `Results' of the current working directory, one can use
for(i in 1:100) {
## Calculations constructing "some_object" ...
fp <- file.path("Results", paste("result", i, ".rda", sep = ""))
save(list = "some_object", file = fp)
}
7.35 Why are p-values not displayed when using lmer()?
======================================================
Doug Bates has kindly provided an extensive response in a post to the
r-help list, which can be reviewed at
`https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html'.
7.36 Why are there unwanted borders, lines or grid-like artifacts when viewing a plot saved to a PS or PDF file?
================================================================================================================
This can occur when using functions such as `polygon()',
`filled.contour()', `image()' or other functions which may call these
internally. In the case of `polygon()', you may observe unwanted borders
between the polygons even when setting the `border' argument to `NA' or
`"transparent"'.
The source of the problem is the PS/PDF viewer when the plot is
anti-aliased. The details for the solution will be different depending
upon the viewer used, the operating system and may change over time. For
some common viewers, consider the following:
Acrobat Reader (cross platform)
There are options in Preferences to enable/disable text smoothing,
image smoothing and line art smoothing. Disable line art smoothing.
Preview (Mac OS X)
There is an option in Preferences to enable/disable anti-aliasing of
text and line art. Disable this option.
GSview (cross platform)
There are settings for Text Alpha and Graphics Alpha. Change Graphics
Alpha from 4 bits to 1 bit to disable graphic anti-aliasing.
gv (Unix-like X)
There is an option to enable/disable anti-aliasing. Disable this
option.
Evince (Linux/GNOME)
There is not an option to disable anti-aliasing in this viewer.
Okular (Linux/KDE)
There is not an option in the GUI to enable/disable anti-aliasing.
From a console command line, use:
$ kwriteconfig --file okularpartrc --group 'Dlg Performance' \
--key GraphicsAntialias Disabled
Then restart Okular. Change the final word to `Enabled' to restore
the original setting.
7.37 Why does backslash behave strangely inside strings?
========================================================
This question most often comes up in relation to file names (see *note How
do file names work in Windows?::) but it also happens that people complain
that they cannot seem to put a single `\' character into a text string
unless it happens to be followed by certain other characters.
To understand this, you have to distinguish between character strings
and _representations_ of character strings. Mostly, the representation in
R is just the string with a single or double quote at either end, but there
are strings that cannot be represented that way, e.g., strings that
themselves contain the quote character. So
> str <- "This \"text\" is quoted"
> str
[1] "This \"text\" is quoted"
> cat(str, "\n")
This "text" is quoted
The _escape sequences_ `\"' and `\n' represent a double quote and the
newline character respectively. Printing text strings, using `print()' or
by typing the name at the prompt will use the escape sequences too, but the
`cat()' function will display the string as-is. Notice that `"\n"' is a
one-character string, not two; the backslash is not actually in the string,
it is just generated in the printed representation.
> nchar("\n")
[1] 1
> substring("\n", 1, 1)
[1] "\n"
So how do you put a backslash in a string? For this, you have to escape
the escape character. I.e., you have to double the backslash. as in
> cat("\\n", "\n")
\n
Some functions, particularly those involving regular expression
matching, themselves use metacharacters, which may need to be escaped by
the backslash mechanism. In those cases you may need a _quadruple_
backslash to represent a single literal one.
In versions of R up to 2.4.1 an unknown escape sequence like `\p' was
quietly interpreted as just `p'. Current versions of R emit a warning.
7.38 How can I put error bars or confidence bands on my plot?
=============================================================
Some functions will display a particular kind of plot with error bars, such
as the `bar.err()' function in the *agricolae*
(http://CRAN.R-project.org/package=agricolae) package, the `plotCI()'
function in the *gplots* (http://CRAN.R-project.org/package=gplots) package,
the `plotCI()' and `brkdn.plot()' functions in the *plotrix*
(http://CRAN.R-project.org/package=plotrix) package and the `error.bars()',
`error.crosses()' and `error.bars.by()' functions in the *psych*
(http://CRAN.R-project.org/package=psych) package. Within these types of
functions, some will accept the measures of dispersion (e.g., `plotCI'),
some will calculate the dispersion measures from the raw values (`bar.err',
`brkdn.plot'), and some will do both (`error.bars'). Still other functions
will just display error bars, like the dispersion function in the *plotrix*
(http://CRAN.R-project.org/package=plotrix) package. Most of the above
functions use the `arrows()' function in the base *graphics* package to
draw the error bars.
The above functions all use the base graphics system. The grid and
lattice graphics systems also have specific functions for displaying error
bars, e.g., the `grid.arrow()' function in the *grid* package, and the
`geom_errorbar()', `geom_errorbarh()', `geom_pointrange()',
`geom_linerange()', `geom_crossbar()' and `geom_ribbon()' functions in the
*ggplot2* (http://CRAN.R-project.org/package=ggplot2) package. In the
lattice system, error bars can be displayed with `Dotplot()' or `xYplot()'
in the *Hmisc* (http://CRAN.R-project.org/package=Hmisc) package and
`segplot()' in the *latticeExtra*
(http://CRAN.R-project.org/package=latticeExtra) package.
7.39 How do I create a plot with two y-axes?
============================================
Creating a graph with two y-axes, i.e., with two sorts of data that are
scaled to the same vertical size and showing separate vertical axes on the
left and right sides of the plot that reflect the original scales of the
data, is possible in R but is not recommended. The basic approach for
constructing such graphs is to use `par(new=TRUE)' (see `?par'); functions
`twoord.plot()' (in the *plotrix*
(http://CRAN.R-project.org/package=plotrix) package) and `doubleYScale()'
(in the *latticeExtra* (http://CRAN.R-project.org/package=latticeExtra)
package) automate the process somewhat. See
`http://rwiki.sciviews.org/doku.php?id=tips:graphics-base:2yaxes' for more
information, including strong arguments against this sort of graph.
7.40 How do I access the source code for a function?
====================================================
In most cases, typing the name of the function will print its source code.
However, code is sometimes hidden in a namespace, or compiled. For a
complete overview on how to access source code, see Uwe Ligges (2006),
"Help Desk: Accessing the sources", _R News_, *6/4*, 43-45
(`http://CRAN.R-project.org/doc/Rnews/Rnews_2006-4.pdf').
7.41 Why does summary() report strange results for the R^2 estimate when I fit a linear model with no intercept?
================================================================================================================
As described in `?summary.lm', when the intercept is zero (e.g., from `y ~
x - 1' or `y ~ x + 0'), `summary.lm()' uses the formula R^2 = 1 -
Sum(R[i]^2) / Sum((y[i])^2) which is different from the usual R^2 = 1 -
Sum(R[i]^2) / Sum((y[i] - mean(y))^2). There are several reasons for this:
* Otherwise the R^2 could be negative (because the model with zero
intercept can fit _worse_ than the constant-mean model it is
implicitly compared to).
* If you set the slope to zero in the model with a line through the
origin you get fitted values y*=0
* The model with constant, non-zero mean is not nested in the model with
a line through the origin.
All these come down to saying that if you know _a priori_ that E[Y]=0
when x=0 then the `null' model that you should compare to the fitted line,
the model where x doesn't explain any of the variance, is the model where
E[Y]=0 everywhere. (If you don't know a priori that E[Y]=0 when x=0, then
you probably shouldn't be fitting a line through the origin.)
7.42 Why is R apparently not releasing memory?
==============================================
This question is often asked in different flavors along the lines of "I
have removed objects in R and run `gc()' and yet `ps'/`top' still shows the
R process using a lot of memory", often on Linux machines.
This is an artifact of the way the operating system (OS) allocates
memory. In general it is common that the OS is not capable of releasing
all unused memory. In extreme cases it is possible that even if R frees
almost all its memory, the OS can not release any of it due to its design
and thus tools such as `ps' or `top' will report substantial amount of
resident RAM used by the R process even though R has released all that
memory. In general such tools do _not_ report the actual memory usage of
the process but rather what the OS is reserving for that process.
The short answer is that this is a limitation of the memory allocator in
the operating system and there is nothing R can do about it. That space is
simply kept by the OS in the hope that R will ask for it later. The
following paragraph gives more in-depth answer with technical details on
how this happens.
Most systems use two separate ways to allocate memory. For allocation of
large chunks they will use `mmap' to map memory into the process address
space. Such chunks can be released immediately when they are completely
free, because they can reside anywhere in the virtual memory. However,
this is a relatively expensive operation and many OSes have a limit on the
number of such allocated chunks, so this is only used for allocating large
memory regions. For smaller allocations the system can expand the data
segment of the process (historically using the `brk' system call), but this
whole area is always contiguous. The OS can only move the end of this
space, it cannot create any "holes". Since this operation is fairly cheap,
it is used for allocations of small pieces of memory. However, the
side-effect is that even if there is just one byte that is in use at the
end of the data segment, the OS cannot release any memory at all, because
it cannot change the address of that byte. This is actually more common
than it may seem, because allocating a lot of intermediate objects, then
allocating a result object and removing all intermediate objects is a very
common practice. Since the result is allocated at the end it will prevent
the OS from releasing any memory used by the intermediate objects. In
practice, this is not necessarily a problem, because modern operating
systems can page out unused portions of the virtual memory so it does not
necessarily reduce the amount of real memory available for other
applications. Typically, small objects such as strings or pairlists will
be affected by this behavior, whereas large objects such as long vectors
will be allocated using `mmap' and thus not affected. On Linux (and
possibly other Unix-like systems) it is possible to use the `mallinfo'
system call (also see the mallinfo (http://rforge.net/mallinfo) package) to
query the allocator about the layout of the allocations, including the
actually used memory as well as unused memory that cannot be released.
8 R Programming
***************
8.1 How should I write summary methods?
=======================================
Suppose you want to provide a summary method for class `"foo"'. Then
`summary.foo()' should not print anything, but return an object of class
`"summary.foo"', _and_ you should write a method `print.summary.foo()'
which nicely prints the summary information and invisibly returns its
object. This approach is preferred over having `summary.foo()' print
summary information and return something useful, as sometimes you need to
grab something computed by `summary()' inside a function or similar. In
such cases you don't want anything printed.
8.2 How can I debug dynamically loaded code?
============================================
Roughly speaking, you need to start R inside the debugger, load the code,
send an interrupt, and then set the required breakpoints.
See section "Finding entry points in dynamically loaded code" in
`Writing R Extensions'. This manual is included in the R distribution,
*note What documentation exists for R?::.
8.3 How can I inspect R objects when debugging?
===============================================
The most convenient way is to call `R_PV' from the symbolic debugger.
See section "Inspecting R objects when debugging" in `Writing R
Extensions'.
8.4 How can I change compilation flags?
=======================================
Suppose you have C code file for dynloading into R, but you want to use `R
CMD SHLIB' with compilation flags other than the default ones (which were
determined when R was built).
Starting with R 2.1.0, users can provide personal Makevars configuration
files in `$`HOME'/.R' to override the default flags. See section "Add-on
packages" in `R Installation and Administration'.
For earlier versions of R, you could change the file
`R_HOME/etc/Makeconf' to reflect your preferences, or (at least for systems
using GNU Make) override them by the environment variable `MAKEFLAGS'. See
section "Creating shared objects" in `Writing R Extensions'.
8.5 How can I debug S4 methods?
===============================
Use the `trace()' function with argument `signature=' to add calls to the
browser or any other code to the method that will be dispatched for the
corresponding signature. See `?trace' for details.
9 R Bugs
********
9.1 What is a bug?
==================
If R executes an illegal instruction, or dies with an operating system
error message that indicates a problem in the program (as opposed to
something like "disk full"), then it is certainly a bug. If you call
`.C()', `.Fortran()', `.External()' or `.Call()' (or `.Internal()')
yourself (or in a function you wrote), you can always crash R by using
wrong argument types (modes). This is not a bug.
Taking forever to complete a command can be a bug, but you must make
certain that it was really R's fault. Some commands simply take a long
time. If the input was such that you _know_ it should have been processed
quickly, report a bug. If you don't know whether the command should take a
long time, find out by looking in the manual or by asking for assistance.
If a command you are familiar with causes an R error message in a case
where its usual definition ought to be reasonable, it is probably a bug.
If a command does the wrong thing, that is a bug. But be sure you know for
certain what it ought to have done. If you aren't familiar with the
command, or don't know for certain how the command is supposed to work,
then it might actually be working right. For example, people sometimes
think there is a bug in R's mathematics because they don't understand how
finite-precision arithmetic works. Rather than jumping to conclusions,
show the problem to someone who knows for certain. Unexpected results of
comparison of decimal numbers, for example `0.28 * 100 != 28' or `0.1 + 0.2
!= 0.3', are not a bug. *Note Why doesn't R think these numbers are
equal?::, for more details.
Finally, a command's intended definition may not be best for statistical
analysis. This is a very important sort of problem, but it is also a
matter of judgment. Also, it is easy to come to such a conclusion out of
ignorance of some of the existing features. It is probably best not to
complain about such a problem until you have checked the documentation in
the usual ways, feel confident that you understand it, and know for certain
that what you want is not available. If you are not sure what the command
is supposed to do after a careful reading of the manual this indicates a
bug in the manual. The manual's job is to make everything clear. It is
just as important to report documentation bugs as program bugs. However,
we know that the introductory documentation is seriously inadequate, so you
don't need to report this.
If the online argument list of a function disagrees with the manual, one
of them must be wrong, so report the bug.
9.2 How to report a bug
=======================
When you decide that there is a bug, it is important to report it and to
report it in a way which is useful. What is most useful is an exact
description of what commands you type, starting with the shell command to
run R, until the problem happens. Always include the version of R,
machine, and operating system that you are using; type `version' in R to
print this.
The most important principle in reporting a bug is to report _facts_,
not hypotheses or categorizations. It is always easier to report the
facts, but people seem to prefer to strain to posit explanations and report
them instead. If the explanations are based on guesses about how R is
implemented, they will be useless; others will have to try to figure out
what the facts must have been to lead to such speculations. Sometimes this
is impossible. But in any case, it is unnecessary work for the ones trying
to fix the problem.
For example, suppose that on a data set which you know to be quite large
the command
R> data.frame(x, y, z, monday, tuesday)
never returns. Do not report that `data.frame()' fails for large data
sets. Perhaps it fails when a variable name is a day of the week. If this
is so then when others got your report they would try out the
`data.frame()' command on a large data set, probably with no day of the
week variable name, and not see any problem. There is no way in the world
that others could guess that they should try a day of the week variable
name.
Or perhaps the command fails because the last command you used was a
method for `"["()' that had a bug causing R's internal data structures to
be corrupted and making the `data.frame()' command fail from then on. This
is why others need to know what other commands you have typed (or read from
your startup file).
It is very useful to try and find simple examples that produce
apparently the same bug, and somewhat useful to find simple examples that
might be expected to produce the bug but actually do not. If you want to
debug the problem and find exactly what caused it, that is wonderful. You
should still report the facts as well as any explanations or solutions.
Please include an example that reproduces (e.g.,
`http://en.wikipedia.org/wiki/Reproducibility') the problem, preferably the
simplest one you have found.
Invoking R with the `--vanilla' option may help in isolating a bug.
This ensures that the site profile and saved data files are not read.
Before you actually submit a bug report, you should check whether the
bug has already been reported and/or fixed. First, try the "Show open bugs
new-to-old" or the search facility on `http://bugs.R-project.org/'.
Second, consult `https://svn.R-project.org/R/trunk/doc/NEWS.Rd', which
records changes that will appear in the _next_ release of R, including bug
fixes that do not appear on the Bug Tracker. Third, if possible try the
current r-patched or r-devel version of R. If a bug has already been
reported or fixed, please do not submit further bug reports on it.
Finally, check carefully whether the bug is with R, or a contributed
package. Bug reports on contributed packages should be sent first to the
package maintainer, and only submitted to the R-bugs repository by package
maintainers, mentioning the package in the subject line.
A bug report can be generated using the function `bug.report()'. For
reports on R this will open the Web page at `http://bugs.R-project.org/':
for a contributed package it will open the package's bug tracker Web page
or help you compose an email to the maintainer.
There is a section of the bug repository for suggestions for
enhancements for R labelled `wishlist'. Suggestions can be submitted in
the same ways as bugs, but please ensure that the subject line makes clear
that this is for the wishlist and not a bug report, for example by starting
with `Wishlist:'.
Comments on and suggestions for the Windows port of R should be sent to
<R-windows@R-project.org>.
Corrections to and comments on message translations should be sent to the
last translator (listed at the top of the appropriate `.po' file) or to the
translation team as listed at
`http://developer.R-project.org/TranslationTeams.html'.
10 Acknowledgments
******************
Of course, many many thanks to Robert and Ross for the R system, and to the
package writers and porters for adding to it.
Special thanks go to Doug Bates, Peter Dalgaard, Paul Gilbert, Stefano
Iacus, Fritz Leisch, Jim Lindsey, Thomas Lumley, Martin Maechler, Brian D.
Ripley, Anthony Rossini, and Andreas Weingessel for their comments which
helped me improve this FAQ.
More to come soon ...
Local Variables:
coding: iso-8859-1
End:
|