1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
####=== Numerical / Arithmetic Tests
####--- ALL tests here should return TRUE !
###
### '##P': These lines don't give TRUE but relevant ``Print output''
### --> d-p-q-r-tests.R for distribution things
.proctime00 <- proc.time()
opt.conformance <- 0
Meps <- .Machine $ double.eps
## this uses random inputs, so set the seed
set.seed(1)
options(rErr.eps = 1e-30)
rErr <- function(approx, true, eps = .Options$rErr.eps)
{
if(is.null(eps)) { eps <- 1e-30; options(rErr.eps = eps) }
ifelse(Mod(true) >= eps,
1 - approx / true, # relative error
true - approx) # absolute error (e.g. when true=0)
}
abs(1- .Machine$double.xmin * 10^(-.Machine$double.min.exp*log10(2)))/Meps < 1e3
##P (1- .Machine$double.xmin * 10^(-.Machine$double.min.exp*log10(2)))/Meps
if(opt.conformance)#fails at least on SGI/IRIX 6.5
abs(1- .Machine$double.xmax * 10^(-.Machine$double.max.exp*log10(2)))/Meps < 1e3
## More IEEE Infinity/NaN checks
i1 <- pi / 0
i1 == (i2 <- 1:1 / 0:0)
is.infinite( i1) & is.infinite( i2) & i1 > 12 & i2 > 12
is.infinite(-i1) & is.infinite(-i2) & (-i1) < -12 & (-i2) < -12
is.nan(n1 <- 0 / 0)
is.nan( - n1)
i1 == i1 + i1
i1 == i1 * i1
is.nan(i1 - i1)
is.nan(i1 / i1)
1/0 == Inf & 0 ^ -1 == Inf
1/Inf == 0 & Inf ^ -1 == 0
iNA <- as.integer(NA)
!is.na(Inf) & !is.nan(Inf) & is.infinite(Inf) & !is.finite(Inf)
!is.na(-Inf)& !is.nan(-Inf)& is.infinite(-Inf)& !is.finite(-Inf)
is.na(NA) & !is.nan(NA) & !is.infinite(NA) & !is.finite(NA)
is.na(NaN) & is.nan(NaN) & !is.infinite(NaN) & !is.finite(NaN)
is.na(iNA) & !is.nan(iNA) & !is.infinite(iNA) & !is.finite(iNA)
## These are "double"s:
all(!is.nan(c(1.,NA)))
all(c(FALSE,TRUE,FALSE) == is.nan(c (1.,NaN,NA)))
## lists are no longer allowed
## all(c(FALSE,TRUE,FALSE) == is.nan(list(1.,NaN,NA)))
## log() and "pow()" -- POSIX is not specific enough..
log(0) == -Inf
is.nan(log(-1))# TRUE and warning
rp <- c(1:2,Inf); rn <- rev(- rp)
r <- c(rn, 0, rp, NA, NaN)
all(r^0 == 1)
ir <- suppressWarnings(as.integer(r))
all(ir^0 == 1)
all(ir^0L == 1)# not in R <= 2.15.0
all( 1^r == 1)# not in R 0.64
all(1L^r == 1)
all(1L^ir == 1)# not in R <= 2.15.0
all((rn ^ -3) == -((-rn) ^ -3))
#
all(c(1.1,2,Inf) ^ Inf == Inf)
all(c(1.1,2,Inf) ^ -Inf == 0)
.9 ^ Inf == 0
.9 ^ -Inf == Inf
## Wasn't ok in 0.64:
all(is.nan(rn ^ .5))# in some C's : (-Inf) ^ .5 gives Inf, instead of NaN
## Real Trig.:
cos(0) == 1
sin(3*pi/2) == cos(pi)
x <- rnorm(99)
all( sin(-x) == - sin(x))
all( cos(-x) == cos(x))
x <- 1:99/100
all(abs(1 - x / asin(sin(x))) <= 2*Meps)# "== 2*" for HP-UX
all(abs(1 - x / atan(tan(x))) < 2*Meps)
## Sun has asin(.) = acos(.) = 0 for these:
## is.nan(acos(1.1)) && is.nan(asin(-2)) [!]
## gamma()
abs(gamma(1/2)^2 - pi) < 4* Meps
r <- rlnorm(5000) # NB random, and next has failed for some seed
all(abs(rErr(gamma(r+1), r*gamma(r))) < 500 * Meps)
## more accurate for integers n <= 50 since R 1.8.0 Sol8: perfect
n <- 20; all( gamma(1:n) == cumprod(c(1,1:(n-1))))# Lnx: up too n=28
n <- 50; all(abs(rErr( gamma(1:n), cumprod(c(1,1:(n-1))))) < 20*Meps)#Lnx: f=2
n <- 120; all(abs(rErr( gamma(1:n), cumprod(c(1,1:(n-1))))) < 1000*Meps)
n <- 10000;all(abs(rErr(lgamma(1:n),cumsum(log(c(1,1:(n-1)))))) < 100*Meps)
n <- 10; all( gamma(1:n) == cumprod(c(1,1:(n-1))))
n <- 20; all(abs(rErr( gamma(1:n), cumprod(c(1,1:(n-1))))) < 100*Meps)
n <- 120; all(abs(rErr( gamma(1:n), cumprod(c(1,1:(n-1))))) < 1000*Meps)
n <- 10000;all(abs(rErr(lgamma(1:n),cumsum(log(c(1,1:(n-1)))))) < 100*Meps)
all(is.nan(gamma(0:-47))) # + warn.
## choose() {and lchoose}:
n51 <- c(196793068630200, 229591913401900, 247959266474052)
abs(c(n51, rev(n51))- choose(51, 23:28)) <= 2
all(choose(0:4,2) == c(0,0,1,3,6))
## 3 to 8 units off and two NaN's in 1.8.1
## psi[gamma](x) and derivatives:
## psi == digamma:
gEuler <- 0.577215664901532860606512# = Euler's gamma
abs(digamma(1) + gEuler) < 32*Meps # i386 Lx: = 2.5*Meps
all.equal(digamma(1) - digamma(1/2), log(4), tolerance = 32*Meps)# Linux: < 1*Meps!
n <- 1:12
all.equal(digamma(n),
- gEuler + c(0, cumsum(1/n)[-length(n)]),tolerance = 32*Meps)#i386 Lx: 1.3 Meps
all.equal(digamma(n + 1/2),
- gEuler - log(4) + 2*cumsum(1/(2*n-1)),tolerance = 32*Meps)#i386 Lx: 1.8 Meps
## higher psigamma:
all.equal(psigamma(1, deriv=c(1,3,5)),
pi^(2*(1:3)) * c(1/6, 1/15, 8/63), tolerance = 32*Meps)
x <- c(-100,-3:2, -99.9, -7.7, seq(-3,3, length=61), 5.1, 77)
## Intel icc showed a < 1ulp difference in the second.
stopifnot(all.equal( digamma(x), psigamma(x,0), tolerance = 2*Meps),
all.equal(trigamma(x), psigamma(x,1), tolerance = 2*Meps))# TRUE (+ NaN warnings)
## very large x:
x <- 1e30 ^ (1:10)
a.relE <- function(appr, true) abs(1 - appr/true)
stopifnot(a.relE(digamma(x), log(x)) < 1e-13,
a.relE(trigamma(x), 1/x) < 1e-13)
x <- sqrt(x[2:6]); stopifnot(a.relE(psigamma(x,2), - 1/x^2) < 1e-13)
x <- 10^(10*(2:6));stopifnot(a.relE(psigamma(x,5), +24/x^5) < 1e-13)
## fft():
ok <- TRUE
##test EXTENSIVELY: for(N in 1:100) {
cat(".")
for(n in c(1:30, 1000:1050)) {
x <- rnorm(n)
er <- Mod(rErr(fft(fft(x), inverse = TRUE)/n, x*(1+0i)))
n.ok <- all(er < 1e-8) & quantile(er, 0.95, names=FALSE) < 10000*Meps
if(!n.ok) cat("\nn=",n,": quantile(rErr, c(.95,1)) =",
formatC(quantile(er, prob= c(.95,1))),"\n")
ok <- ok & n.ok
}
cat("\n")
##test EXTENSIVELY: }
ok
## var():
for(n in 2:10)
print(all.equal(n*(n-1)*var(diag(n)),
matrix(c(rep(c(n-1,rep(-1,n)),n-1), n-1), nr=n, nc=n),
tolerance = 20*Meps)) # use tolerance = 0 to see rel.error
## pmin() & pmax() -- "attributes" !
v1 <- c(a=2)
m1 <- cbind( 2:4,3)
m2 <- cbind(a=2:4,2)
all( pmax(v1, 1:3) == pmax(1:3, v1) & pmax(1:3, v1) == c(2,2,3))
all( pmin(v1, 1:3) == pmin(1:3, v1) & pmin(1:3, v1) == c(1,2,2))
oo <- options(warn = -1)# These four lines each would give 3-4 warnings :
all( pmax(m1, 1:7) == pmax(1:7, m1) & pmax(1:7, m1) == c(2:4,4:7))
all( pmin(m1, 1:7) == pmin(1:7, m1) & pmin(1:7, m1) == c(1:3,3,3,3,2))
all( pmax(m2, 1:7) == pmax(1:7, m2) & pmax(1:7, m2) == pmax(1:7, m1))
all( pmin(m2, 1:7) == pmin(1:7, m2) & pmin(1:7, m2) == c(1:3,2,2,2,2))
options(oo)
## pretty()
stopifnot(pretty(1:15) == seq(0,16, by=2),
pretty(1:15, h=2) == seq(0,15, by=5),
pretty(1) == 0:1,
pretty(pi) == c(2,4),
pretty(pi, n=6) == 2:4,
pretty(pi, n=10) == 2:5,
pretty(pi, shr=.1)== c(3, 3.5))
## gave infinite loop [R 0.64; Solaris], seealso PR#390 :
all(pretty((1-1e-5)*c(1,1+3*Meps), 7) == seq(0,1,len=3))
n <- 1000
x12 <- matrix(NA, 2,n); x12[,1] <- c(2.8,3) # Bug PR#673
for(j in 1:2) x12[j, -1] <- round(rnorm(n-1), dig = rpois(n-1, lam=3.5) - 2)
for(i in 1:n) {
lp <- length(p <- pretty(x <- sort(x12[,i])))
stopifnot(p[1] <= x[1] & x[2] <= p[lp],
all(x==0) || all.equal(p, rev(-pretty(-x)), tolerance = 10*Meps))
}
## PR#741:
pi != (pi0 <- pi + 2*.Machine$double.eps)
is.na(match(c(1,pi,pi0), pi)[3])
## PR#749:
all(is.na(c(NA && TRUE, TRUE && NA, NA && NA,
NA || FALSE,FALSE || NA, NA || NA)))
all((c(NA || TRUE, TRUE || NA,
!c(NA && FALSE,FALSE && NA))))
## not sure what the point of this is: it gives mean(numeric(0)), that is NaN
(z <- mean(rep(NA_real_, 2), trim = .1, na.rm = TRUE))
is.na(z)
## Last Line:
cat('Time elapsed: ', proc.time() - .proctime00,'\n')
|