1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
## tests of R functions based on the lapack module
## NB: the signs of singular and eigenvectors are arbitrary,
## so there may be differences from the reference ouptut,
## especially when alternative BLAS are used.
options(digits=4)
## ------- examples from ?svd ---------
hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
Eps <- 100 * .Machine$double.eps
X <- hilbert(9)[,1:6]
(s <- svd(X)); D <- diag(s$d)
stopifnot(abs(X - s$u %*% D %*% t(s$v)) < Eps)# X = U D V'
stopifnot(abs(D - t(s$u) %*% X %*% s$v) < Eps)# D = U' X V
# The signs of the vectors are not determined here.
X <- cbind(1, 1:7)
s <- svd(X); D <- diag(s$d)
stopifnot(abs(X - s$u %*% D %*% t(s$v)) < Eps)# X = U D V'
stopifnot(abs(D - t(s$u) %*% X %*% s$v) < Eps)# D = U' X V
# test nu and nv
s <- svd(X, nu = 0)
s <- svd(X, nu = 7) # the last 5 columns are not determined here
stopifnot(dim(s$u) == c(7,7))
s <- svd(X, nv = 0)
# test of complex case
X <- cbind(1, 1:7+(-3:3)*1i)
s <- svd(X); D <- diag(s$d)
stopifnot(abs(X - s$u %*% D %*% Conj(t(s$v))) < Eps)
stopifnot(abs(D - Conj(t(s$u)) %*% X %*% s$v) < Eps)
## ------- tests of random real and complex matrices ------
fixsign <- function(A) {
A[] <- apply(A, 2, function(x) x*sign(Re(x[1])))
A
}
## 100 may cause failures here.
eigenok <- function(A, E, Eps=1000*.Machine$double.eps)
{
print(fixsign(E$vectors))
print(zapsmall(E$values))
V <- E$vectors; lam <- E$values
stopifnot(abs(A %*% V - V %*% diag(lam)) < Eps,
abs(lam[length(lam)]/lam[1]) < Eps || # this one not for singular A :
abs(A - V %*% diag(lam) %*% t(V)) < Eps)
}
Ceigenok <- function(A, E, Eps=1000*.Machine$double.eps)
{
print(fixsign(E$vectors))
print(signif(E$values, 5))
V <- E$vectors; lam <- E$values
stopifnot(Mod(A %*% V - V %*% diag(lam)) < Eps,
Mod(A - V %*% diag(lam) %*% Conj(t(V))) < Eps)
}
## failed for some 64bit-Lapack-gcc combinations:
sm <- cbind(1, 3:1, 1:3)
eigenok(sm, eigen(sm))
eigenok(sm, eigen(sm, sym=FALSE))
set.seed(123)
sm <- matrix(rnorm(25), 5, 5)
sm <- 0.5 * (sm + t(sm))
eigenok(sm, eigen(sm))
eigenok(sm, eigen(sm, sym=FALSE))
sm[] <- as.complex(sm)
Ceigenok(sm, eigen(sm))
Ceigenok(sm, eigen(sm, sym=FALSE))
sm[] <- sm + rnorm(25) * 1i
sm <- 0.5 * (sm + Conj(t(sm)))
Ceigenok(sm, eigen(sm))
Ceigenok(sm, eigen(sm, sym=FALSE))
## ------- tests of integer matrices -----------------
set.seed(123)
A <- matrix(rpois(25, 5), 5, 5)
A %*% A
crossprod(A)
tcrossprod(A)
solve(A)
qr(A)
determinant(A, log = FALSE)
rcond(A)
rcond(A, "I")
rcond(A, "1")
eigen(A)
svd(A)
La.svd(A)
As <- crossprod(A)
E <- eigen(As)
E$values
abs(E$vectors) # signs vary
chol(As)
backsolve(As, 1:5)
## ------- tests of logical matrices -----------------
set.seed(123)
A <- matrix(runif(25) > 0.5, 5, 5)
A %*% A
crossprod(A)
tcrossprod(A)
Q <- qr(A)
zapsmall(Q$qr)
zapsmall(Q$qraux)
determinant(A, log = FALSE) # 0
rcond(A)
rcond(A, "I")
rcond(A, "1")
E <- eigen(A)
zapsmall(E$values)
zapsmall(Mod(E$vectors))
S <- svd(A)
zapsmall(S$d)
S <- La.svd(A)
zapsmall(S$d)
As <- A
As[upper.tri(A)] <- t(A)[upper.tri(A)]
det(As)
E <- eigen(As)
E$values
zapsmall(E$vectors)
solve(As)
## quite hard to come up with an example where this might make sense.
Ac <- A; Ac[] <- as.logical(diag(5))
chol(Ac)
|