1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
R version 3.1.1 RC (2014-07-04 r66081) -- "Sock it to Me"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-unknown-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ## For examples skipped in testing because they need recommended packages.
>
> ## This is skipped entirely on a Unix-alike if recommended packages are,
> ## so for Windows
> if(!require("MASS")) q()
Loading required package: MASS
>
> pdf("reg-examples-3.pdf", encoding = "ISOLatin1.enc")
>
> ## From datasets
> if(require("survival")) {
+ model3 <- clogit(case ~ spontaneous+induced+strata(stratum), data = infert)
+ print(summary(model3))
+ detach("package:survival") # survival (conflicts)
+ }
Loading required package: survival
Loading required package: splines
Call:
coxph(formula = Surv(rep(1, 248L), case) ~ spontaneous + induced +
strata(stratum), data = infert, method = "exact")
n= 248, number of events= 83
coef exp(coef) se(coef) z Pr(>|z|)
spontaneous 1.9859 7.2854 0.3524 5.635 1.75e-08 ***
induced 1.4090 4.0919 0.3607 3.906 9.38e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
exp(coef) exp(-coef) lower .95 upper .95
spontaneous 7.285 0.1373 3.651 14.536
induced 4.092 0.2444 2.018 8.298
Rsquare= 0.193 (max possible= 0.519 )
Likelihood ratio test= 53.15 on 2 df, p=2.869e-12
Wald test = 31.84 on 2 df, p=1.221e-07
Score (logrank) test = 48.44 on 2 df, p=3.032e-11
>
>
> ## From grDevices
> x1 <- matrix(rnorm(1e3), ncol = 2)
> x2 <- matrix(rnorm(1e3, mean = 3, sd = 1.5), ncol = 2)
> x <- rbind(x1, x2)
>
> dcols <- densCols(x)
KernSmooth 2.23 loaded
Copyright M. P. Wand 1997-2009
> graphics::plot(x, col = dcols, pch = 20, main = "n = 1000")
>
>
> ## From graphics:
> ## A largish data set
> set.seed(123)
> n <- 10000
> x1 <- matrix(rnorm(n), ncol = 2)
> x2 <- matrix(rnorm(n, mean = 3, sd = 1.5), ncol = 2)
> x <- rbind(x1, x2)
>
> oldpar <- par(mfrow = c(2, 2))
> smoothScatter(x, nrpoints = 0)
> smoothScatter(x)
>
> ## a different color scheme:
> Lab.palette <- colorRampPalette(c("blue", "orange", "red"), space = "Lab")
> smoothScatter(x, colramp = Lab.palette)
>
> ## somewhat similar, using identical smoothing computations,
> ## but considerably *less* efficient for really large data:
> plot(x, col = densCols(x), pch = 20)
>
> ## use with pairs:
> par(mfrow = c(1, 1))
> y <- matrix(rnorm(40000), ncol = 4) + 3*rnorm(10000)
> y[, c(2,4)] <- -y[, c(2,4)]
> pairs(y, panel = function(...) smoothScatter(..., nrpoints = 0, add = TRUE))
>
> par(oldpar)
>
>
> ## From stats
> # alias.Rd
> op <- options(contrasts = c("contr.helmert", "contr.poly"))
> npk.aov <- aov(yield ~ block + N*P*K, npk)
> alias(npk.aov)
Model :
yield ~ block + N * P * K
Complete :
(Intercept) block1 block2 block3 block4 block5 N1 P1 K1 N1:P1
N1:P1:K1 0 1 1/3 1/6 -3/10 -1/5 0 0 0 0
N1:K1 P1:K1
N1:P1:K1 0 0
> options(op) # reset
>
> # as.hclust.Rd
> if(require("cluster", quietly = TRUE)) {# is a recommended package
+ set.seed(123)
+ x <- matrix(rnorm(30), ncol = 3)
+ hc <- hclust(dist(x), method = "complete")
+ ag <- agnes(x, method = "complete")
+ hcag <- as.hclust(ag)
+ ## The dendrograms order slightly differently:
+ op <- par(mfrow = c(1,2))
+ plot(hc) ; mtext("hclust", side = 1)
+ plot(hcag); mtext("agnes", side = 1)
+ detach("package:cluster")
+ }
>
> # confint.Rd
> counts <- c(18,17,15,20,10,20,25,13,12)
> outcome <- gl(3, 1, 9); treatment <- gl(3, 3)
> glm.D93 <- glm(counts ~ outcome + treatment, family = poisson())
> confint(glm.D93)
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) 2.6958215 3.36655581
outcome2 -0.8577018 -0.06255840
outcome3 -0.6753696 0.08244089
treatment2 -0.3932548 0.39325483
treatment3 -0.3932548 0.39325483
> confint.default(glm.D93) # based on asymptotic normality}
2.5 % 97.5 %
(Intercept) 2.7095672 3.37947764
outcome2 -0.8505027 -0.05800787
outcome3 -0.6707552 0.08478093
treatment2 -0.3919928 0.39199279
treatment3 -0.3919928 0.39199279
>
> # contrasts.Rd
> utils::example(factor)
factor> (ff <- factor(substring("statistics", 1:10, 1:10), levels = letters))
[1] s t a t i s t i c s
Levels: a b c d e f g h i j k l m n o p q r s t u v w x y z
factor> as.integer(ff) # the internal codes
[1] 19 20 1 20 9 19 20 9 3 19
factor> (f. <- factor(ff)) # drops the levels that do not occur
[1] s t a t i s t i c s
Levels: a c i s t
factor> ff[, drop = TRUE] # the same, more transparently
[1] s t a t i s t i c s
Levels: a c i s t
factor> factor(letters[1:20], labels = "letter")
[1] letter1 letter2 letter3 letter4 letter5 letter6 letter7 letter8
[9] letter9 letter10 letter11 letter12 letter13 letter14 letter15 letter16
[17] letter17 letter18 letter19 letter20
20 Levels: letter1 letter2 letter3 letter4 letter5 letter6 letter7 ... letter20
factor> class(ordered(4:1)) # "ordered", inheriting from "factor"
[1] "ordered" "factor"
factor> z <- factor(LETTERS[3:1], ordered = TRUE)
factor> ## and "relational" methods work:
factor> stopifnot(sort(z)[c(1,3)] == range(z), min(z) < max(z))
factor> ## Don't show:
factor> of <- ordered(ff)
factor> stopifnot(identical(range(of, rev(of)), of[3:2]),
factor+ identical(max(of), of[2]))
factor> ## End Don't show
factor>
factor> ## suppose you want "NA" as a level, and to allow missing values.
factor> (x <- factor(c(1, 2, NA), exclude = NULL))
[1] 1 2 <NA>
Levels: 1 2 <NA>
factor> is.na(x)[2] <- TRUE
factor> x # [1] 1 <NA> <NA>
[1] 1 <NA> <NA>
Levels: 1 2 <NA>
factor> is.na(x)
[1] FALSE TRUE FALSE
factor> # [1] FALSE TRUE FALSE
factor>
factor> ## Using addNA()
factor> Month <- airquality$Month
factor> table(addNA(Month))
5 6 7 8 9 <NA>
31 30 31 31 30 0
factor> table(addNA(Month, ifany = TRUE))
5 6 7 8 9
31 30 31 31 30
> fff <- ff[, drop = TRUE] # reduce to 5 levels.
> contrasts(fff) <- contr.sum(5)[, 1:2]; contrasts(fff)
[,1] [,2] [,3] [,4]
a 1 0 -0.2471257 0.2688164
c 0 1 -0.2471257 0.2688164
i 0 0 -0.1498721 -0.8817814
s 0 0 0.8912491 0.0753323
t -1 -1 -0.2471257 0.2688164
>
> ## using sparse contrasts: % useful, once model.matrix() works with these :
> ffs <- fff
> contrasts(ffs) <- contr.sum(5, sparse = TRUE)[, 1:2]; contrasts(ffs)
[,1] [,2] [,3] [,4]
a 1 0 -0.2471257 0.2688164
c 0 1 -0.2471257 0.2688164
i 0 0 -0.1498721 -0.8817814
s 0 0 0.8912491 0.0753323
t -1 -1 -0.2471257 0.2688164
> stopifnot(all.equal(ffs, fff))
> contrasts(ffs) <- contr.sum(5, sparse = TRUE); contrasts(ffs)
5 x 4 sparse Matrix of class "dgCMatrix"
a 1 . . .
c . 1 . .
i . . 1 .
s . . . 1
t -1 -1 -1 -1
>
> # glm.Rd
> utils::data(anorexia, package = "MASS")
>
> anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
+ family = gaussian, data = anorexia)
> summary(anorex.1)
Call:
glm(formula = Postwt ~ Prewt + Treat + offset(Prewt), family = gaussian,
data = anorexia)
Deviance Residuals:
Min 1Q Median 3Q Max
-14.1083 -4.2773 -0.5484 5.4838 15.2922
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.7711 13.3910 3.717 0.000410 ***
Prewt -0.5655 0.1612 -3.509 0.000803 ***
TreatCont -4.0971 1.8935 -2.164 0.033999 *
TreatFT 4.5631 2.1333 2.139 0.036035 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 48.69504)
Null deviance: 4525.4 on 71 degrees of freedom
Residual deviance: 3311.3 on 68 degrees of freedom
AIC: 489.97
Number of Fisher Scoring iterations: 2
>
> # logLik.Rd
> {utils::data(Orthodont, package = "nlme")
+ fm1 <- lm(distance ~ Sex * age, Orthodont)
+ logLik(fm1)
+ logLik(fm1, REML = TRUE)
+
+ # nls.Rd
+ od <- options(digits=5)
+ ## The muscle dataset in MASS is from an experiment on muscle
+ ## contraction on 21 animals. The observed variables are Strip
+ ## (identifier of muscle), Conc (Cacl concentration) and Length
+ ## (resulting length of muscle section).
+ utils::data(muscle, package = "MASS")
+
+ ## The non linear model considered is
+ ## Length = alpha + beta*exp(-Conc/theta) + error
+ ## where theta is constant but alpha and beta may vary with Strip.
+
+ with(muscle, table(Strip)) # 2, 3 or 4 obs per strip
+
+ ## We first use the plinear algorithm to fit an overall model,
+ ## ignoring that alpha and beta might vary with Strip.
+
+ musc.1 <- nls(Length ~ cbind(1, exp(-Conc/th)), muscle,
+ start = list(th = 1), algorithm = "plinear")
+ summary(musc.1)
+
+ ## Then we use nls' indexing feature for parameters in non-linear
+ ## models to use the conventional algorithm to fit a model in which
+ ## alpha and beta vary with Strip. The starting values are provided
+ ## by the previously fitted model.
+ ## Note that with indexed parameters, the starting values must be
+ ## given in a list (with names):
+ b <- coef(musc.1)
+ musc.2 <- nls(Length ~ a[Strip] + b[Strip]*exp(-Conc/th), muscle,
+ start = list(a = rep(b[2], 21), b = rep(b[3], 21), th = b[1]))
+ summary(musc.2)
+ options(od)
+
+ # princomp.Rd
+ ## Robust:
+ (pc.rob <- princomp(stackloss, covmat = MASS::cov.rob(stackloss)))
+
+ # xtabs.Rd
+ if(require("Matrix")) {
+ ## similar to "nlme"s 'ergoStool' :
+ d.ergo <- data.frame(Type = paste0("T", rep(1:4, 9*4)),
+ Subj = gl(9, 4, 36*4))
+ print(xtabs(~ Type + Subj, data = d.ergo)) # 4 replicates each
+ set.seed(15) # a subset of cases:
+ print(xtabs(~ Type + Subj, data = d.ergo[sample(36, 10), ], sparse = TRUE))
+
+ ## Hypothetical two level setup:
+ inner <- factor(sample(letters[1:25], 100, replace = TRUE))
+ inout <- factor(sample(LETTERS[1:5], 25, replace = TRUE))
+ fr <- data.frame(inner = inner, outer = inout[as.integer(inner)])
+ print(xtabs(~ inner + outer, fr, sparse = TRUE))
+ }
+
+
+ ## From tools
+
+ ## This may not be installed
+ gridEx <- system.file("doc", "grid.Rnw", package = "grid")
+ vignetteDepends(gridEx)
+
+
+ ## From utils
+ example(packageDescription)
+
+
+ ## From splines
+ library(splines)
+ Matrix::drop0(zapsmall(6*splineDesign(knots = 1:40, x = 4:37, sparse = TRUE)))
+
+
|