File: datasets-Ex.Rout.save

package info (click to toggle)
r-base 3.1.1-1
  • links: PTS
  • area: main
  • in suites: jessie-kfreebsd
  • size: 85,396 kB
  • sloc: ansic: 306,777; fortran: 91,908; sh: 11,216; makefile: 5,311; yacc: 4,994; tcl: 4,562; objc: 746; perl: 655; asm: 553; java: 31; sed: 6
file content (3471 lines) | stat: -rw-r--r-- 109,820 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471

R version 3.1.1 RC (2014-07-04 r66081) -- "Sock it to Me"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

  Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> pkgname <- "datasets"
> source(file.path(R.home("share"), "R", "examples-header.R"))
> options(warn = 1)
> library('datasets')
> 
> base::assign(".oldSearch", base::search(), pos = 'CheckExEnv')
> cleanEx()
> nameEx("AirPassengers")
> ### * AirPassengers
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: AirPassengers
> ### Title: Monthly Airline Passenger Numbers 1949-1960
> ### Aliases: AirPassengers
> ### Keywords: datasets
> 
> ### ** Examples
> 
> ## Not run: 
> ##D ## These are quite slow and so not run by example(AirPassengers)
> ##D 
> ##D ## The classic 'airline model', by full ML
> ##D (fit <- arima(log10(AirPassengers), c(0, 1, 1),
> ##D               seasonal = list(order = c(0, 1, 1), period = 12)))
> ##D update(fit, method = "CSS")
> ##D update(fit, x = window(log10(AirPassengers), start = 1954))
> ##D pred <- predict(fit, n.ahead = 24)
> ##D tl <- pred$pred - 1.96 * pred$se
> ##D tu <- pred$pred + 1.96 * pred$se
> ##D ts.plot(AirPassengers, 10^tl, 10^tu, log = "y", lty = c(1, 2, 2))
> ##D 
> ##D ## full ML fit is the same if the series is reversed, CSS fit is not
> ##D ap0 <- rev(log10(AirPassengers))
> ##D attributes(ap0) <- attributes(AirPassengers)
> ##D arima(ap0, c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))
> ##D arima(ap0, c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12),
> ##D       method = "CSS")
> ##D 
> ##D ## Structural Time Series
> ##D ap <- log10(AirPassengers) - 2
> ##D (fit <- StructTS(ap, type = "BSM"))
> ##D par(mfrow = c(1, 2))
> ##D plot(cbind(ap, fitted(fit)), plot.type = "single")
> ##D plot(cbind(ap, tsSmooth(fit)), plot.type = "single")
> ## End(Not run)
> 
> 
> cleanEx()
> nameEx("BOD")
> ### * BOD
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: BOD
> ### Title: Biochemical Oxygen Demand
> ### Aliases: BOD
> ### Keywords: datasets
> 
> ### ** Examples
> 
> ## Don't show: 
> options(show.nls.convergence=FALSE)
> old <- options(digits = 5)
> ## End Don't show
> require(stats)
> # simplest form of fitting a first-order model to these data
> fm1 <- nls(demand ~ A*(1-exp(-exp(lrc)*Time)), data = BOD,
+    start = c(A = 20, lrc = log(.35)))
> coef(fm1)
       A      lrc 
19.14258 -0.63282 
> fm1
Nonlinear regression model
  model: demand ~ A * (1 - exp(-exp(lrc) * Time))
   data: BOD
     A    lrc 
19.143 -0.633 
 residual sum-of-squares: 26
> # using the plinear algorithm
> fm2 <- nls(demand ~ (1-exp(-exp(lrc)*Time)), data = BOD,
+    start = c(lrc = log(.35)), algorithm = "plinear", trace = TRUE)
32.946 :  -1.0498 22.1260
25.992 :  -0.62572 19.10319
25.99 :  -0.6327 19.1419
25.99 :  -0.63282 19.14256
> # using a self-starting model
> fm3 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
> summary(fm3)

Formula: demand ~ SSasympOrig(Time, A, lrc)

Parameters:
    Estimate Std. Error t value Pr(>|t|)   
A     19.143      2.496    7.67   0.0016 **
lrc   -0.633      0.382   -1.65   0.1733   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.55 on 4 degrees of freedom

> ## Don't show: 
> options(old)
> ## End Don't show
> 
> 
> 
> cleanEx()
> nameEx("ChickWeight")
> ### * ChickWeight
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: ChickWeight
> ### Title: Weight versus age of chicks on different diets
> ### Aliases: ChickWeight
> ### Keywords: datasets
> 
> ### ** Examples
> 
> 
> cleanEx()
> nameEx("DNase")
> ### * DNase
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: DNase
> ### Title: Elisa assay of DNase
> ### Aliases: DNase
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> ## Don't show: 
> options(show.nls.convergence=FALSE)
> ## End Don't show
> coplot(density ~ conc | Run, data = DNase,
+        show.given = FALSE, type = "b")
> coplot(density ~ log(conc) | Run, data = DNase,
+        show.given = FALSE, type = "b")
> ## fit a representative run
> fm1 <- nls(density ~ SSlogis( log(conc), Asym, xmid, scal ),
+     data = DNase, subset = Run == 1)
> ## compare with a four-parameter logistic
> fm2 <- nls(density ~ SSfpl( log(conc), A, B, xmid, scal ),
+     data = DNase, subset = Run == 1)
> summary(fm2)

Formula: density ~ SSfpl(log(conc), A, B, xmid, scal)

Parameters:
      Estimate Std. Error t value Pr(>|t|)    
A    -0.007897   0.017200  -0.459    0.654    
B     2.377239   0.109516  21.707 5.35e-11 ***
xmid  1.507403   0.102080  14.767 4.65e-09 ***
scal  1.062579   0.056996  18.643 3.16e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01981 on 12 degrees of freedom

> anova(fm1, fm2)
Analysis of Variance Table

Model 1: density ~ SSlogis(log(conc), Asym, xmid, scal)
Model 2: density ~ SSfpl(log(conc), A, B, xmid, scal)
  Res.Df Res.Sum Sq Df     Sum Sq F value Pr(>F)
1     13  0.0047896                             
2     12  0.0047073  1 8.2314e-05  0.2098 0.6551
> 
> 
> 
> cleanEx()
> nameEx("Formaldehyde")
> ### * Formaldehyde
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: Formaldehyde
> ### Title: Determination of Formaldehyde
> ### Aliases: Formaldehyde
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> plot(optden ~ carb, data = Formaldehyde,
+      xlab = "Carbohydrate (ml)", ylab = "Optical Density",
+      main = "Formaldehyde data", col = 4, las = 1)
> abline(fm1 <- lm(optden ~ carb, data = Formaldehyde))
> summary(fm1)

Call:
lm(formula = optden ~ carb, data = Formaldehyde)

Residuals:
        1         2         3         4         5         6 
-0.006714  0.001029  0.002771  0.007143  0.007514 -0.011743 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.005086   0.007834   0.649    0.552    
carb        0.876286   0.013535  64.744 3.41e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.008649 on 4 degrees of freedom
Multiple R-squared:  0.999,	Adjusted R-squared:  0.9988 
F-statistic:  4192 on 1 and 4 DF,  p-value: 3.409e-07

> opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0))
> plot(fm1)
> par(opar)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("HairEyeColor")
> ### * HairEyeColor
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: HairEyeColor
> ### Title: Hair and Eye Color of Statistics Students
> ### Aliases: HairEyeColor
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> ## Full mosaic
> mosaicplot(HairEyeColor)
> ## Aggregate over sex (as in Snee's original data)
> x <- apply(HairEyeColor, c(1, 2), sum)
> x
       Eye
Hair    Brown Blue Hazel Green
  Black    68   20    15     5
  Brown   119   84    54    29
  Red      26   17    14    14
  Blond     7   94    10    16
> mosaicplot(x, main = "Relation between hair and eye color")
> 
> 
> 
> cleanEx()
> nameEx("Harman23.cor")
> ### * Harman23.cor
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: Harman23.cor
> ### Title: Harman Example 2.3
> ### Aliases: Harman23.cor
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats)
> (Harman23.FA <- factanal(factors = 1, covmat = Harman23.cor))

Call:
factanal(factors = 1, covmat = Harman23.cor)

Uniquenesses:
        height       arm.span        forearm      lower.leg         weight 
         0.158          0.135          0.190          0.187          0.760 
bitro.diameter    chest.girth    chest.width 
         0.829          0.877          0.801 

Loadings:
               Factor1
height         0.918  
arm.span       0.930  
forearm        0.900  
lower.leg      0.902  
weight         0.490  
bitro.diameter 0.413  
chest.girth    0.351  
chest.width    0.446  

               Factor1
SS loadings      4.064
Proportion Var   0.508

Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 611.44 on 20 degrees of freedom.
The p-value is 1.12e-116 
> for(factors in 2:4) print(update(Harman23.FA, factors = factors))

Call:
factanal(factors = factors, covmat = Harman23.cor)

Uniquenesses:
        height       arm.span        forearm      lower.leg         weight 
         0.170          0.107          0.166          0.199          0.089 
bitro.diameter    chest.girth    chest.width 
         0.364          0.416          0.537 

Loadings:
               Factor1 Factor2
height         0.865   0.287  
arm.span       0.927   0.181  
forearm        0.895   0.179  
lower.leg      0.859   0.252  
weight         0.233   0.925  
bitro.diameter 0.194   0.774  
chest.girth    0.134   0.752  
chest.width    0.278   0.621  

               Factor1 Factor2
SS loadings      3.335   2.617
Proportion Var   0.417   0.327
Cumulative Var   0.417   0.744

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 75.74 on 13 degrees of freedom.
The p-value is 6.94e-11 

Call:
factanal(factors = factors, covmat = Harman23.cor)

Uniquenesses:
        height       arm.span        forearm      lower.leg         weight 
         0.127          0.005          0.193          0.157          0.090 
bitro.diameter    chest.girth    chest.width 
         0.359          0.411          0.490 

Loadings:
               Factor1 Factor2 Factor3
height          0.886   0.267  -0.130 
arm.span        0.937   0.195   0.280 
forearm         0.874   0.188         
lower.leg       0.877   0.230  -0.145 
weight          0.242   0.916  -0.106 
bitro.diameter  0.193   0.777         
chest.girth     0.137   0.755         
chest.width     0.261   0.646   0.159 

               Factor1 Factor2 Factor3
SS loadings      3.379   2.628   0.162
Proportion Var   0.422   0.329   0.020
Cumulative Var   0.422   0.751   0.771

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 22.81 on 7 degrees of freedom.
The p-value is 0.00184 

Call:
factanal(factors = factors, covmat = Harman23.cor)

Uniquenesses:
        height       arm.span        forearm      lower.leg         weight 
         0.137          0.005          0.191          0.116          0.138 
bitro.diameter    chest.girth    chest.width 
         0.283          0.178          0.488 

Loadings:
               Factor1 Factor2 Factor3 Factor4
height          0.879   0.277          -0.115 
arm.span        0.937   0.194           0.277 
forearm         0.875   0.191                 
lower.leg       0.887   0.209   0.135  -0.188 
weight          0.246   0.882   0.111  -0.109 
bitro.diameter  0.187   0.822                 
chest.girth     0.117   0.729   0.526         
chest.width     0.263   0.644           0.141 

               Factor1 Factor2 Factor3 Factor4
SS loadings      3.382   2.595   0.323   0.165
Proportion Var   0.423   0.324   0.040   0.021
Cumulative Var   0.423   0.747   0.787   0.808

Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 4.63 on 2 degrees of freedom.
The p-value is 0.0988 
> 
> 
> 
> cleanEx()
> nameEx("Harman74.cor")
> ### * Harman74.cor
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: Harman74.cor
> ### Title: Harman Example 7.4
> ### Aliases: Harman74.cor
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats)
> (Harman74.FA <- factanal(factors = 1, covmat = Harman74.cor))

Call:
factanal(factors = 1, covmat = Harman74.cor)

Uniquenesses:
      VisualPerception                  Cubes         PaperFormBoard 
                 0.677                  0.866                  0.830 
                 Flags     GeneralInformation  PargraphComprehension 
                 0.768                  0.487                  0.491 
    SentenceCompletion     WordClassification            WordMeaning 
                 0.500                  0.514                  0.474 
              Addition                   Code           CountingDots 
                 0.818                  0.731                  0.824 
StraightCurvedCapitals        WordRecognition      NumberRecognition 
                 0.681                  0.833                  0.863 
     FigureRecognition           ObjectNumber           NumberFigure 
                 0.775                  0.812                  0.778 
            FigureWord              Deduction       NumericalPuzzles 
                 0.816                  0.612                  0.676 
      ProblemReasoning       SeriesCompletion     ArithmeticProblems 
                 0.619                  0.524                  0.593 

Loadings:
                       Factor1
VisualPerception       0.569  
Cubes                  0.366  
PaperFormBoard         0.412  
Flags                  0.482  
GeneralInformation     0.716  
PargraphComprehension  0.713  
SentenceCompletion     0.707  
WordClassification     0.697  
WordMeaning            0.725  
Addition               0.426  
Code                   0.519  
CountingDots           0.419  
StraightCurvedCapitals 0.565  
WordRecognition        0.408  
NumberRecognition      0.370  
FigureRecognition      0.474  
ObjectNumber           0.434  
NumberFigure           0.471  
FigureWord             0.429  
Deduction              0.623  
NumericalPuzzles       0.569  
ProblemReasoning       0.617  
SeriesCompletion       0.690  
ArithmeticProblems     0.638  

               Factor1
SS loadings      7.438
Proportion Var   0.310

Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 622.91 on 252 degrees of freedom.
The p-value is 2.28e-33 
> for(factors in 2:5) print(update(Harman74.FA, factors = factors))

Call:
factanal(factors = factors, covmat = Harman74.cor)

Uniquenesses:
      VisualPerception                  Cubes         PaperFormBoard 
                 0.650                  0.864                  0.844 
                 Flags     GeneralInformation  PargraphComprehension 
                 0.778                  0.375                  0.316 
    SentenceCompletion     WordClassification            WordMeaning 
                 0.319                  0.503                  0.258 
              Addition                   Code           CountingDots 
                 0.670                  0.608                  0.581 
StraightCurvedCapitals        WordRecognition      NumberRecognition 
                 0.567                  0.832                  0.850 
     FigureRecognition           ObjectNumber           NumberFigure 
                 0.743                  0.770                  0.625 
            FigureWord              Deduction       NumericalPuzzles 
                 0.792                  0.629                  0.579 
      ProblemReasoning       SeriesCompletion     ArithmeticProblems 
                 0.634                  0.539                  0.553 

Loadings:
                       Factor1 Factor2
VisualPerception       0.506   0.306  
Cubes                  0.304   0.209  
PaperFormBoard         0.297   0.260  
Flags                  0.327   0.339  
GeneralInformation     0.240   0.753  
PargraphComprehension  0.171   0.809  
SentenceCompletion     0.163   0.809  
WordClassification     0.344   0.615  
WordMeaning            0.148   0.849  
Addition               0.563   0.115  
Code                   0.591   0.207  
CountingDots           0.647          
StraightCurvedCapitals 0.612   0.241  
WordRecognition        0.315   0.263  
NumberRecognition      0.328   0.205  
FigureRecognition      0.457   0.218  
ObjectNumber           0.431   0.209  
NumberFigure           0.601   0.116  
FigureWord             0.399   0.222  
Deduction              0.379   0.477  
NumericalPuzzles       0.604   0.237  
ProblemReasoning       0.390   0.462  
SeriesCompletion       0.486   0.474  
ArithmeticProblems     0.544   0.389  

               Factor1 Factor2
SS loadings      4.573   4.548
Proportion Var   0.191   0.190
Cumulative Var   0.191   0.380

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 420.24 on 229 degrees of freedom.
The p-value is 2.01e-13 

Call:
factanal(factors = factors, covmat = Harman74.cor)

Uniquenesses:
      VisualPerception                  Cubes         PaperFormBoard 
                 0.500                  0.793                  0.662 
                 Flags     GeneralInformation  PargraphComprehension 
                 0.694                  0.352                  0.316 
    SentenceCompletion     WordClassification            WordMeaning 
                 0.300                  0.502                  0.256 
              Addition                   Code           CountingDots 
                 0.200                  0.586                  0.494 
StraightCurvedCapitals        WordRecognition      NumberRecognition 
                 0.569                  0.838                  0.848 
     FigureRecognition           ObjectNumber           NumberFigure 
                 0.643                  0.780                  0.635 
            FigureWord              Deduction       NumericalPuzzles 
                 0.788                  0.590                  0.580 
      ProblemReasoning       SeriesCompletion     ArithmeticProblems 
                 0.597                  0.498                  0.500 

Loadings:
                       Factor1 Factor2 Factor3
VisualPerception        0.176   0.656   0.198 
Cubes                   0.122   0.428         
PaperFormBoard          0.145   0.563         
Flags                   0.239   0.487   0.107 
GeneralInformation      0.745   0.191   0.237 
PargraphComprehension   0.780   0.249   0.118 
SentenceCompletion      0.802   0.175   0.160 
WordClassification      0.571   0.327   0.256 
WordMeaning             0.821   0.248         
Addition                0.162  -0.118   0.871 
Code                    0.198   0.219   0.572 
CountingDots                    0.179   0.688 
StraightCurvedCapitals  0.190   0.381   0.499 
WordRecognition         0.231   0.253   0.210 
NumberRecognition       0.158   0.299   0.195 
FigureRecognition       0.108   0.557   0.186 
ObjectNumber            0.178   0.267   0.342 
NumberFigure                    0.427   0.424 
FigureWord              0.167   0.355   0.240 
Deduction               0.392   0.472   0.181 
NumericalPuzzles        0.178   0.406   0.473 
ProblemReasoning        0.382   0.473   0.182 
SeriesCompletion        0.379   0.528   0.283 
ArithmeticProblems      0.377   0.226   0.554 

               Factor1 Factor2 Factor3
SS loadings      3.802   3.488   3.186
Proportion Var   0.158   0.145   0.133
Cumulative Var   0.158   0.304   0.436

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 295.59 on 207 degrees of freedom.
The p-value is 5.12e-05 

Call:
factanal(factors = factors, covmat = Harman74.cor)

Uniquenesses:
      VisualPerception                  Cubes         PaperFormBoard 
                 0.438                  0.780                  0.644 
                 Flags     GeneralInformation  PargraphComprehension 
                 0.651                  0.352                  0.312 
    SentenceCompletion     WordClassification            WordMeaning 
                 0.283                  0.485                  0.257 
              Addition                   Code           CountingDots 
                 0.240                  0.551                  0.435 
StraightCurvedCapitals        WordRecognition      NumberRecognition 
                 0.491                  0.646                  0.696 
     FigureRecognition           ObjectNumber           NumberFigure 
                 0.549                  0.598                  0.593 
            FigureWord              Deduction       NumericalPuzzles 
                 0.762                  0.592                  0.583 
      ProblemReasoning       SeriesCompletion     ArithmeticProblems 
                 0.601                  0.497                  0.500 

Loadings:
                       Factor1 Factor2 Factor3 Factor4
VisualPerception        0.160   0.689   0.187   0.160 
Cubes                   0.117   0.436                 
PaperFormBoard          0.137   0.570           0.110 
Flags                   0.233   0.527                 
GeneralInformation      0.739   0.185   0.213   0.150 
PargraphComprehension   0.767   0.205           0.233 
SentenceCompletion      0.806   0.197   0.153         
WordClassification      0.569   0.339   0.242   0.132 
WordMeaning             0.806   0.201           0.227 
Addition                0.167  -0.118   0.831   0.166 
Code                    0.180   0.120   0.512   0.374 
CountingDots                    0.210   0.716         
StraightCurvedCapitals  0.188   0.438   0.525         
WordRecognition         0.197                   0.553 
NumberRecognition       0.122   0.116           0.520 
FigureRecognition               0.408           0.525 
ObjectNumber            0.142           0.219   0.574 
NumberFigure                    0.293   0.336   0.456 
FigureWord              0.148   0.239   0.161   0.365 
Deduction               0.378   0.402   0.118   0.301 
NumericalPuzzles        0.175   0.381   0.438   0.223 
ProblemReasoning        0.366   0.399   0.123   0.301 
SeriesCompletion        0.369   0.500   0.244   0.239 
ArithmeticProblems      0.370   0.158   0.496   0.304 

               Factor1 Factor2 Factor3 Factor4
SS loadings      3.647   2.872   2.657   2.290
Proportion Var   0.152   0.120   0.111   0.095
Cumulative Var   0.152   0.272   0.382   0.478

Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 226.68 on 186 degrees of freedom.
The p-value is 0.0224 

Call:
factanal(factors = factors, covmat = Harman74.cor)

Uniquenesses:
      VisualPerception                  Cubes         PaperFormBoard 
                 0.450                  0.781                  0.639 
                 Flags     GeneralInformation  PargraphComprehension 
                 0.649                  0.357                  0.288 
    SentenceCompletion     WordClassification            WordMeaning 
                 0.277                  0.485                  0.262 
              Addition                   Code           CountingDots 
                 0.215                  0.386                  0.444 
StraightCurvedCapitals        WordRecognition      NumberRecognition 
                 0.256                  0.639                  0.706 
     FigureRecognition           ObjectNumber           NumberFigure 
                 0.550                  0.614                  0.596 
            FigureWord              Deduction       NumericalPuzzles 
                 0.764                  0.521                  0.564 
      ProblemReasoning       SeriesCompletion     ArithmeticProblems 
                 0.580                  0.442                  0.478 

Loadings:
                       Factor1 Factor2 Factor3 Factor4 Factor5
VisualPerception        0.161   0.658   0.136   0.182   0.199 
Cubes                   0.113   0.435           0.107         
PaperFormBoard          0.135   0.562           0.107   0.116 
Flags                   0.231   0.533                         
GeneralInformation      0.736   0.188   0.192   0.162         
PargraphComprehension   0.775   0.187           0.251   0.113 
SentenceCompletion      0.809   0.208   0.136                 
WordClassification      0.568   0.348   0.223   0.131         
WordMeaning             0.800   0.215           0.224         
Addition                0.175  -0.100   0.844   0.176         
Code                    0.185           0.438   0.451   0.426 
CountingDots                    0.222   0.690   0.101   0.140 
StraightCurvedCapitals  0.186   0.425   0.458           0.559 
WordRecognition         0.197                   0.557         
NumberRecognition       0.121   0.130           0.508         
FigureRecognition               0.400           0.529         
ObjectNumber            0.145           0.208   0.562         
NumberFigure                    0.306   0.325   0.452         
FigureWord              0.147   0.242   0.145   0.364         
Deduction               0.370   0.452   0.139   0.287  -0.190 
NumericalPuzzles        0.170   0.402   0.439   0.230         
ProblemReasoning        0.358   0.423   0.126   0.302         
SeriesCompletion        0.360   0.549   0.256   0.223  -0.107 
ArithmeticProblems      0.371   0.185   0.502   0.307         

               Factor1 Factor2 Factor3 Factor4 Factor5
SS loadings      3.632   2.964   2.456   2.345   0.663
Proportion Var   0.151   0.124   0.102   0.098   0.028
Cumulative Var   0.151   0.275   0.377   0.475   0.503

Test of the hypothesis that 5 factors are sufficient.
The chi square statistic is 186.82 on 166 degrees of freedom.
The p-value is 0.128 
> Harman74.FA <- factanal(factors = 5, covmat = Harman74.cor,
+                         rotation = "promax")
> print(Harman74.FA$loadings, sort = TRUE)

Loadings:
                       Factor1 Factor2 Factor3 Factor4 Factor5
VisualPerception        0.831          -0.127           0.230 
Cubes                   0.534                                 
PaperFormBoard          0.736          -0.290           0.136 
Flags                   0.647                  -0.104         
SeriesCompletion        0.555   0.126   0.127                 
GeneralInformation              0.764                         
PargraphComprehension           0.845  -0.140   0.140         
SentenceCompletion              0.872          -0.140         
WordClassification      0.277   0.505   0.104                 
WordMeaning                     0.846  -0.108                 
Addition               -0.334           1.012                 
CountingDots            0.206  -0.200   0.722           0.185 
ArithmeticProblems              0.197   0.500   0.139         
WordRecognition        -0.126   0.127  -0.103   0.657         
NumberRecognition                               0.568         
FigureRecognition       0.399  -0.142  -0.207   0.562         
ObjectNumber           -0.108           0.107   0.613         
StraightCurvedCapitals  0.542           0.247           0.618 
Code                            0.112   0.288   0.486   0.424 
NumberFigure            0.255  -0.230   0.211   0.413         
FigureWord              0.187                   0.347         
Deduction               0.404   0.169           0.117  -0.203 
NumericalPuzzles        0.393           0.368                 
ProblemReasoning        0.381   0.188           0.169         

               Factor1 Factor2 Factor3 Factor4 Factor5
SS loadings      3.529   3.311   2.367   2.109   0.762
Proportion Var   0.147   0.138   0.099   0.088   0.032
Cumulative Var   0.147   0.285   0.384   0.471   0.503
> 
> 
> 
> cleanEx()
> nameEx("InsectSprays")
> ### * InsectSprays
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: InsectSprays
> ### Title: Effectiveness of Insect Sprays
> ### Aliases: InsectSprays
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> boxplot(count ~ spray, data = InsectSprays,
+         xlab = "Type of spray", ylab = "Insect count",
+         main = "InsectSprays data", varwidth = TRUE, col = "lightgray")
> fm1 <- aov(count ~ spray, data = InsectSprays)
> summary(fm1)
            Df Sum Sq Mean Sq F value Pr(>F)    
spray        5   2669   533.8    34.7 <2e-16 ***
Residuals   66   1015    15.4                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0))
> plot(fm1)
> fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays)
> summary(fm2)
            Df Sum Sq Mean Sq F value Pr(>F)    
spray        5  88.44  17.688    44.8 <2e-16 ***
Residuals   66  26.06   0.395                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> plot(fm2)
> par(opar)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("JohnsonJohnson")
> ### * JohnsonJohnson
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: JohnsonJohnson
> ### Title: Quarterly Earnings per Johnson & Johnson Share
> ### Aliases: JohnsonJohnson
> ### Keywords: datasets
> 
> ### ** Examples
> 
> 
> cleanEx()
> nameEx("LifeCycleSavings")
> ### * LifeCycleSavings
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: LifeCycleSavings
> ### Title: Intercountry Life-Cycle Savings Data
> ### Aliases: LifeCycleSavings
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> pairs(LifeCycleSavings, panel = panel.smooth,
+       main = "LifeCycleSavings data")
> fm1 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
> summary(fm1)

Call:
lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

Residuals:
    Min      1Q  Median      3Q     Max 
-8.2422 -2.6857 -0.2488  2.4280  9.7509 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 28.5660865  7.3545161   3.884 0.000334 ***
pop15       -0.4611931  0.1446422  -3.189 0.002603 ** 
pop75       -1.6914977  1.0835989  -1.561 0.125530    
dpi         -0.0003369  0.0009311  -0.362 0.719173    
ddpi         0.4096949  0.1961971   2.088 0.042471 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.803 on 45 degrees of freedom
Multiple R-squared:  0.3385,	Adjusted R-squared:  0.2797 
F-statistic: 5.756 on 4 and 45 DF,  p-value: 0.0007904

> 
> 
> 
> cleanEx()
> nameEx("Loblolly")
> ### * Loblolly
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: Loblolly
> ### Title: Growth of Loblolly pine trees
> ### Aliases: Loblolly
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> plot(height ~ age, data = Loblolly, subset = Seed == 329,
+      xlab = "Tree age (yr)", las = 1,
+      ylab = "Tree height (ft)",
+      main = "Loblolly data and fitted curve (Seed 329 only)")
> fm1 <- nls(height ~ SSasymp(age, Asym, R0, lrc),
+            data = Loblolly, subset = Seed == 329)
> age <- seq(0, 30, length.out = 101)
> lines(age, predict(fm1, list(age = age)))
> 
> 
> 
> cleanEx()
> nameEx("Nile")
> ### * Nile
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: Nile
> ### Title: Flow of the River Nile
> ### Aliases: Nile
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> par(mfrow = c(2, 2))
> plot(Nile)
> acf(Nile)
> pacf(Nile)
> ar(Nile) # selects order 2

Call:
ar(x = Nile)

Coefficients:
     1       2  
0.4081  0.1812  

Order selected 2  sigma^2 estimated as  21247
> cpgram(ar(Nile)$resid)
> par(mfrow = c(1, 1))
> arima(Nile, c(2, 0, 0))

Call:
arima(x = Nile, order = c(2, 0, 0))

Coefficients:
         ar1     ar2  intercept
      0.4096  0.1987   919.8397
s.e.  0.0974  0.0990    35.6410

sigma^2 estimated as 20291:  log likelihood = -637.98,  aic = 1283.96
> 
> ## Now consider missing values, following Durbin & Koopman
> NileNA <- Nile
> NileNA[c(21:40, 61:80)] <- NA
> arima(NileNA, c(2, 0, 0))

Call:
arima(x = NileNA, order = c(2, 0, 0))

Coefficients:
         ar1     ar2  intercept
      0.3622  0.1678   918.3103
s.e.  0.1273  0.1323    39.5037

sigma^2 estimated as 23676:  log likelihood = -387.7,  aic = 783.41
> plot(NileNA)
> pred <-
+    predict(arima(window(NileNA, 1871, 1890), c(2, 0, 0)), n.ahead = 20)
> lines(pred$pred, lty = 3, col = "red")
> lines(pred$pred + 2*pred$se, lty = 2, col = "blue")
> lines(pred$pred - 2*pred$se, lty = 2, col = "blue")
> pred <-
+    predict(arima(window(NileNA, 1871, 1930), c(2, 0, 0)), n.ahead = 20)
> lines(pred$pred, lty = 3, col = "red")
> lines(pred$pred + 2*pred$se, lty = 2, col = "blue")
> lines(pred$pred - 2*pred$se, lty = 2, col = "blue")
> 
> ## Structural time series models
> par(mfrow = c(3, 1))
> plot(Nile)
> ## local level model
> (fit <- StructTS(Nile, type = "level"))

Call:
StructTS(x = Nile, type = "level")

Variances:
  level  epsilon  
   1469    15099  
> lines(fitted(fit), lty = 2)              # contemporaneous smoothing
> lines(tsSmooth(fit), lty = 2, col = 4)   # fixed-interval smoothing
> plot(residuals(fit)); abline(h = 0, lty = 3)
> ## local trend model
> (fit2 <- StructTS(Nile, type = "trend")) ## constant trend fitted

Call:
StructTS(x = Nile, type = "trend")

Variances:
  level    slope  epsilon  
   1427        0    15047  
> pred <- predict(fit, n.ahead = 30)
> ## with 50% confidence interval
> ts.plot(Nile, pred$pred,
+         pred$pred + 0.67*pred$se, pred$pred -0.67*pred$se)
> 
> ## Now consider missing values
> plot(NileNA)
> (fit3 <- StructTS(NileNA, type = "level"))

Call:
StructTS(x = NileNA, type = "level")

Variances:
  level  epsilon  
  685.8  17899.8  
> lines(fitted(fit3), lty = 2)
> lines(tsSmooth(fit3), lty = 3)
> plot(residuals(fit3)); abline(h = 0, lty = 3)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("Orange")
> ### * Orange
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: Orange
> ### Title: Growth of Orange Trees
> ### Aliases: Orange
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> coplot(circumference ~ age | Tree, data = Orange, show.given = FALSE)
> fm1 <- nls(circumference ~ SSlogis(age, Asym, xmid, scal),
+            data = Orange, subset = Tree == 3)
> plot(circumference ~ age, data = Orange, subset = Tree == 3,
+      xlab = "Tree age (days since 1968/12/31)",
+      ylab = "Tree circumference (mm)", las = 1,
+      main = "Orange tree data and fitted model (Tree 3 only)")
> age <- seq(0, 1600, length.out = 101)
> lines(age, predict(fm1, list(age = age)))
> 
> 
> 
> cleanEx()
> nameEx("OrchardSprays")
> ### * OrchardSprays
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: OrchardSprays
> ### Title: Potency of Orchard Sprays
> ### Aliases: OrchardSprays
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> pairs(OrchardSprays, main = "OrchardSprays data")
> 
> 
> 
> cleanEx()
> nameEx("PlantGrowth")
> ### * PlantGrowth
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: PlantGrowth
> ### Title: Results from an Experiment on Plant Growth
> ### Aliases: PlantGrowth
> ### Keywords: datasets
> 
> ### ** Examples
> 
> ## One factor ANOVA example from Dobson's book, cf. Table 7.4:
> require(stats); require(graphics)
> boxplot(weight ~ group, data = PlantGrowth, main = "PlantGrowth data",
+         ylab = "Dried weight of plants", col = "lightgray",
+         notch = TRUE, varwidth = TRUE)
Warning in bxp(list(stats = c(4.17, 4.53, 5.155, 5.33, 6.11, 3.59, 4.17,  :
  some notches went outside hinges ('box'): maybe set notch=FALSE
> anova(lm(weight ~ group, data = PlantGrowth))
Analysis of Variance Table

Response: weight
          Df  Sum Sq Mean Sq F value  Pr(>F)  
group      2  3.7663  1.8832  4.8461 0.01591 *
Residuals 27 10.4921  0.3886                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> 
> 
> 
> cleanEx()
> nameEx("Puromycin")
> ### * Puromycin
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: Puromycin
> ### Title: Reaction Velocity of an Enzymatic Reaction
> ### Aliases: Puromycin
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> ## Don't show: 
> options(show.nls.convergence=FALSE)
> ## End Don't show
> plot(rate ~ conc, data = Puromycin, las = 1,
+      xlab = "Substrate concentration (ppm)",
+      ylab = "Reaction velocity (counts/min/min)",
+      pch = as.integer(Puromycin$state),
+      col = as.integer(Puromycin$state),
+      main = "Puromycin data and fitted Michaelis-Menten curves")
> ## simplest form of fitting the Michaelis-Menten model to these data
> fm1 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,
+            subset = state == "treated",
+            start = c(Vm = 200, K = 0.05))
> fm2 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,
+            subset = state == "untreated",
+            start = c(Vm = 160, K = 0.05))
> summary(fm1)

Formula: rate ~ Vm * conc/(K + conc)

Parameters:
    Estimate Std. Error t value Pr(>|t|)    
Vm 2.127e+02  6.947e+00  30.615 3.24e-11 ***
K  6.412e-02  8.281e-03   7.743 1.57e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.93 on 10 degrees of freedom

> summary(fm2)

Formula: rate ~ Vm * conc/(K + conc)

Parameters:
    Estimate Std. Error t value Pr(>|t|)    
Vm 1.603e+02  6.480e+00  24.734 1.38e-09 ***
K  4.771e-02  7.782e-03   6.131 0.000173 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.773 on 9 degrees of freedom

> ## add fitted lines to the plot
> conc <- seq(0, 1.2, length.out = 101)
> lines(conc, predict(fm1, list(conc = conc)), lty = 1, col = 1)
> lines(conc, predict(fm2, list(conc = conc)), lty = 2, col = 2)
> legend(0.8, 120, levels(Puromycin$state),
+        col = 1:2, lty = 1:2, pch = 1:2)
> 
> ## using partial linearity
> fm3 <- nls(rate ~ conc/(K + conc), data = Puromycin,
+            subset = state == "treated", start = c(K = 0.05),
+            algorithm = "plinear")
> 
> 
> 
> cleanEx()
> nameEx("Theoph")
> ### * Theoph
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: Theoph
> ### Title: Pharmacokinetics of Theophylline
> ### Aliases: Theoph
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> ## Don't show: 
> options(show.nls.convergence=FALSE)
> ## End Don't show
> coplot(conc ~ Time | Subject, data = Theoph, show.given = FALSE)
> Theoph.4 <- subset(Theoph, Subject == 4)
> fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),
+            data = Theoph.4)
> summary(fm1)

Formula: conc ~ SSfol(Dose, Time, lKe, lKa, lCl)

Parameters:
    Estimate Std. Error t value Pr(>|t|)    
lKe  -2.4365     0.2257 -10.797 4.77e-06 ***
lKa   0.1583     0.2297   0.689     0.51    
lCl  -3.2861     0.1448 -22.695 1.51e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8465 on 8 degrees of freedom

> plot(conc ~ Time, data = Theoph.4,
+      xlab = "Time since drug administration (hr)",
+      ylab = "Theophylline concentration (mg/L)",
+      main = "Observed concentrations and fitted model",
+      sub  = "Theophylline data - Subject 4 only",
+      las = 1, col = 4)
> xvals <- seq(0, par("usr")[2], length.out = 55)
> lines(xvals, predict(fm1, newdata = list(Time = xvals)),
+       col = 4)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("Titanic")
> ### * Titanic
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: Titanic
> ### Title: Survival of passengers on the Titanic
> ### Aliases: Titanic
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> mosaicplot(Titanic, main = "Survival on the Titanic")
> ## Higher survival rates in children?
> apply(Titanic, c(3, 4), sum)
       Survived
Age       No Yes
  Child   52  57
  Adult 1438 654
> ## Higher survival rates in females?
> apply(Titanic, c(2, 4), sum)
        Survived
Sex        No Yes
  Male   1364 367
  Female  126 344
> ## Use loglm() in package 'MASS' for further analysis ...
> 
> 
> 
> cleanEx()
> nameEx("ToothGrowth")
> ### * ToothGrowth
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: ToothGrowth
> ### Title: The Effect of Vitamin C on Tooth Growth in Guinea Pigs
> ### Aliases: ToothGrowth
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> coplot(len ~ dose | supp, data = ToothGrowth, panel = panel.smooth,
+        xlab = "ToothGrowth data: length vs dose, given type of supplement")
> 
> 
> 
> cleanEx()
> nameEx("UCBAdmissions")
> ### * UCBAdmissions
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: UCBAdmissions
> ### Title: Student Admissions at UC Berkeley
> ### Aliases: UCBAdmissions
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> ## Data aggregated over departments
> apply(UCBAdmissions, c(1, 2), sum)
          Gender
Admit      Male Female
  Admitted 1198    557
  Rejected 1493   1278
> mosaicplot(apply(UCBAdmissions, c(1, 2), sum),
+            main = "Student admissions at UC Berkeley")
> ## Data for individual departments
> opar <- par(mfrow = c(2, 3), oma = c(0, 0, 2, 0))
> for(i in 1:6)
+   mosaicplot(UCBAdmissions[,,i],
+     xlab = "Admit", ylab = "Sex",
+     main = paste("Department", LETTERS[i]))
> mtext(expression(bold("Student admissions at UC Berkeley")),
+       outer = TRUE, cex = 1.5)
> par(opar)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("UKDriverDeaths")
> ### * UKDriverDeaths
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: UKDriverDeaths
> ### Title: Road Casualties in Great Britain 1969-84
> ### Aliases: UKDriverDeaths Seatbelts
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> ## work with pre-seatbelt period to identify a model, use logs
> work <- window(log10(UKDriverDeaths), end = 1982+11/12)
> par(mfrow = c(3, 1))
> plot(work); acf(work); pacf(work)
> par(mfrow = c(1, 1))
> (fit <- arima(work, c(1, 0, 0), seasonal = list(order = c(1, 0, 0))))

Call:
arima(x = work, order = c(1, 0, 0), seasonal = list(order = c(1, 0, 0)))

Coefficients:
         ar1    sar1  intercept
      0.4378  0.6281     3.2274
s.e.  0.0764  0.0637     0.0131

sigma^2 estimated as 0.00157:  log likelihood = 300.85,  aic = -593.7
> z <- predict(fit, n.ahead = 24)
> ts.plot(log10(UKDriverDeaths), z$pred, z$pred+2*z$se, z$pred-2*z$se,
+         lty = c(1, 3, 2, 2), col = c("black", "red", "blue", "blue"))
> 
> ## now see the effect of the explanatory variables
> X <- Seatbelts[, c("kms", "PetrolPrice", "law")]
> X[, 1] <- log10(X[, 1]) - 4
> arima(log10(Seatbelts[, "drivers"]), c(1, 0, 0),
+       seasonal = list(order = c(1, 0, 0)), xreg = X)

Call:
arima(x = log10(Seatbelts[, "drivers"]), order = c(1, 0, 0), seasonal = list(order = c(1, 
    0, 0)), xreg = X)

Coefficients:
         ar1    sar1  intercept     kms  PetrolPrice      law
      0.3348  0.6672     3.3539  0.0082      -1.2224  -0.0963
s.e.  0.0775  0.0612     0.0441  0.0902       0.3839   0.0166

sigma^2 estimated as 0.001476:  log likelihood = 349.73,  aic = -685.46
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("UKLungDeaths")
> ### * UKLungDeaths
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: UKLungDeaths
> ### Title: Monthly Deaths from Lung Diseases in the UK
> ### Aliases: UKLungDeaths ldeaths fdeaths mdeaths
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics) # for time
> plot(ldeaths)
> plot(mdeaths, fdeaths)
> ## Better labels:
> yr <- floor(tt <- time(mdeaths))
> plot(mdeaths, fdeaths,
+      xy.labels = paste(month.abb[12*(tt - yr)], yr-1900, sep = "'"))
> 
> 
> 
> cleanEx()
> nameEx("UKgas")
> ### * UKgas
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: UKgas
> ### Title: UK Quarterly Gas Consumption
> ### Aliases: UKgas
> ### Keywords: datasets
> 
> ### ** Examples
> 
> ## maybe str(UKgas) ; plot(UKgas) ...
> 
> 
> 
> cleanEx()
> nameEx("USArrests")
> ### * USArrests
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: USArrests
> ### Title: Violent Crime Rates by US State
> ### Aliases: USArrests
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> pairs(USArrests, panel = panel.smooth, main = "USArrests data")
> 
> 
> 
> cleanEx()
> nameEx("USJudgeRatings")
> ### * USJudgeRatings
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: USJudgeRatings
> ### Title: Lawyers' Ratings of State Judges in the US Superior Court
> ### Aliases: USJudgeRatings
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> pairs(USJudgeRatings, main = "USJudgeRatings data")
> 
> 
> 
> cleanEx()
> nameEx("USPersonalExpenditure")
> ### * USPersonalExpenditure
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: USPersonalExpenditure
> ### Title: Personal Expenditure Data
> ### Aliases: USPersonalExpenditure
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats) # for medpolish
> USPersonalExpenditure
                      1940   1945  1950 1955  1960
Food and Tobacco    22.200 44.500 59.60 73.2 86.80
Household Operation 10.500 15.500 29.00 36.5 46.20
Medical and Health   3.530  5.760  9.71 14.0 21.10
Personal Care        1.040  1.980  2.45  3.4  5.40
Private Education    0.341  0.974  1.80  2.6  3.64
> medpolish(log10(USPersonalExpenditure))
1: 1.126317
2: 1.032421
Final: 1.032421

Median Polish Results (Dataset: "log10(USPersonalExpenditure)")

Overall: 0.9872192

Row Effects:
   Food and Tobacco Household Operation  Medical and Health       Personal Care 
          0.7880270           0.4327608           0.0000000          -0.5606543 
  Private Education 
         -0.7319467 

Column Effects:
      1940       1945       1950       1955       1960 
-0.4288933 -0.2267967  0.0000000  0.1423128  0.3058289 

Residuals:
                         1940       1945      1950      1955      1960
Food and Tobacco     0.000000  0.0999105  0.000000 -0.053048 -0.142555
Household Operation  0.030103 -0.0028516  0.042418  0.000000 -0.061167
Medical and Health  -0.010551  0.0000000  0.000000  0.016596  0.031234
Personal Care        0.019362  0.0968971 -0.037399 -0.037399  0.000000
Private Education   -0.293625 -0.0399168  0.000000  0.017388  0.000000

> 
> 
> 
> cleanEx()
> nameEx("VADeaths")
> ### * VADeaths
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: VADeaths
> ### Title: Death Rates in Virginia (1940)
> ### Aliases: VADeaths
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> n <- length(dr <- c(VADeaths))
> nam <- names(VADeaths)
> d.VAD <- data.frame(
+  Drate = dr,
+  age = rep(ordered(rownames(VADeaths)), length.out = n),
+  gender = gl(2, 5, n, labels = c("M", "F")),
+  site =  gl(2, 10, labels = c("rural", "urban")))
> coplot(Drate ~ as.numeric(age) | gender * site, data = d.VAD,
+        panel = panel.smooth, xlab = "VADeaths data - Given: gender")
> summary(aov.VAD <- aov(Drate ~ .^2, data = d.VAD))
            Df Sum Sq Mean Sq F value   Pr(>F)    
age          4   6288  1572.1 590.858 8.55e-06 ***
gender       1    648   647.5 243.361 9.86e-05 ***
site         1     77    76.8  28.876  0.00579 ** 
age:gender   4     86    21.6   8.100  0.03358 *  
age:site     4     43    10.6   3.996  0.10414    
gender:site  1     73    73.0  27.422  0.00636 ** 
Residuals    4     11     2.7                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0))
> plot(aov.VAD)
> par(opar)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("WWWusage")
> ### * WWWusage
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: WWWusage
> ### Title: Internet Usage per Minute
> ### Aliases: WWWusage
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> work <- diff(WWWusage)
> par(mfrow = c(2, 1)); plot(WWWusage); plot(work)
> ## Not run: 
> ##D require(stats)
> ##D aics <- matrix(, 6, 6, dimnames = list(p = 0:5, q = 0:5))
> ##D for(q in 1:5) aics[1, 1+q] <- arima(WWWusage, c(0, 1, q),
> ##D     optim.control = list(maxit = 500))$aic
> ##D for(p in 1:5)
> ##D    for(q in 0:5) aics[1+p, 1+q] <- arima(WWWusage, c(p, 1, q),
> ##D        optim.control = list(maxit = 500))$aic
> ##D round(aics - min(aics, na.rm = TRUE), 2)
> ## End(Not run)
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("WorldPhones")
> ### * WorldPhones
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: WorldPhones
> ### Title: The World's Telephones
> ### Aliases: WorldPhones
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> matplot(rownames(WorldPhones), WorldPhones, type = "b", log = "y",
+         xlab = "Year", ylab = "Number of telephones (1000's)")
> legend(1951.5, 80000, colnames(WorldPhones), col = 1:6, lty = 1:5,
+        pch = rep(21, 7))
> title(main = "World phones data: log scale for response")
> 
> 
> 
> cleanEx()
> nameEx("ability.cov")
> ### * ability.cov
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: ability.cov
> ### Title: Ability and Intelligence Tests
> ### Aliases: ability.cov
> ### Keywords: datasets
> 
> ### ** Examples
> 
> 
> cleanEx()
> nameEx("airmiles")
> ### * airmiles
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: airmiles
> ### Title: Passenger Miles on Commercial US Airlines, 1937-1960
> ### Aliases: airmiles
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> plot(airmiles, main = "airmiles data",
+      xlab = "Passenger-miles flown by U.S. commercial airlines", col = 4)
> 
> 
> 
> cleanEx()
> nameEx("airquality")
> ### * airquality
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: airquality
> ### Title: New York Air Quality Measurements
> ### Aliases: airquality
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> pairs(airquality, panel = panel.smooth, main = "airquality data")
> 
> 
> 
> cleanEx()
> nameEx("anscombe")
> ### * anscombe
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: anscombe
> ### Title: Anscombe's Quartet of 'Identical' Simple Linear Regressions
> ### Aliases: anscombe
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> summary(anscombe)
       x1             x2             x3             x4           y1        
 Min.   : 4.0   Min.   : 4.0   Min.   : 4.0   Min.   : 8   Min.   : 4.260  
 1st Qu.: 6.5   1st Qu.: 6.5   1st Qu.: 6.5   1st Qu.: 8   1st Qu.: 6.315  
 Median : 9.0   Median : 9.0   Median : 9.0   Median : 8   Median : 7.580  
 Mean   : 9.0   Mean   : 9.0   Mean   : 9.0   Mean   : 9   Mean   : 7.501  
 3rd Qu.:11.5   3rd Qu.:11.5   3rd Qu.:11.5   3rd Qu.: 8   3rd Qu.: 8.570  
 Max.   :14.0   Max.   :14.0   Max.   :14.0   Max.   :19   Max.   :10.840  
       y2              y3              y4        
 Min.   :3.100   Min.   : 5.39   Min.   : 5.250  
 1st Qu.:6.695   1st Qu.: 6.25   1st Qu.: 6.170  
 Median :8.140   Median : 7.11   Median : 7.040  
 Mean   :7.501   Mean   : 7.50   Mean   : 7.501  
 3rd Qu.:8.950   3rd Qu.: 7.98   3rd Qu.: 8.190  
 Max.   :9.260   Max.   :12.74   Max.   :12.500  
> 
> ##-- now some "magic" to do the 4 regressions in a loop:
> ff <- y ~ x
> mods <- setNames(as.list(1:4), paste0("lm", 1:4))
> for(i in 1:4) {
+   ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
+   ## or   ff[[2]] <- as.name(paste0("y", i))
+   ##      ff[[3]] <- as.name(paste0("x", i))
+   mods[[i]] <- lmi <- lm(ff, data = anscombe)
+   print(anova(lmi))
+ }
Analysis of Variance Table

Response: y1
          Df Sum Sq Mean Sq F value  Pr(>F)   
x1         1 27.510 27.5100   17.99 0.00217 **
Residuals  9 13.763  1.5292                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Analysis of Variance Table

Response: y2
          Df Sum Sq Mean Sq F value   Pr(>F)   
x2         1 27.500 27.5000  17.966 0.002179 **
Residuals  9 13.776  1.5307                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Analysis of Variance Table

Response: y3
          Df Sum Sq Mean Sq F value   Pr(>F)   
x3         1 27.470 27.4700  17.972 0.002176 **
Residuals  9 13.756  1.5285                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Analysis of Variance Table

Response: y4
          Df Sum Sq Mean Sq F value   Pr(>F)   
x4         1 27.490 27.4900  18.003 0.002165 **
Residuals  9 13.742  1.5269                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> 
> ## See how close they are (numerically!)
> sapply(mods, coef)
                  lm1      lm2       lm3       lm4
(Intercept) 3.0000909 3.000909 3.0024545 3.0017273
x1          0.5000909 0.500000 0.4997273 0.4999091
> lapply(mods, function(fm) coef(summary(fm)))
$lm1
             Estimate Std. Error  t value    Pr(>|t|)
(Intercept) 3.0000909  1.1247468 2.667348 0.025734051
x1          0.5000909  0.1179055 4.241455 0.002169629

$lm2
            Estimate Std. Error  t value    Pr(>|t|)
(Intercept) 3.000909  1.1253024 2.666758 0.025758941
x2          0.500000  0.1179637 4.238590 0.002178816

$lm3
             Estimate Std. Error  t value    Pr(>|t|)
(Intercept) 3.0024545  1.1244812 2.670080 0.025619109
x3          0.4997273  0.1178777 4.239372 0.002176305

$lm4
             Estimate Std. Error  t value    Pr(>|t|)
(Intercept) 3.0017273  1.1239211 2.670763 0.025590425
x4          0.4999091  0.1178189 4.243028 0.002164602

> 
> ## Now, do what you should have done in the first place: PLOTS
> op <- par(mfrow = c(2, 2), mar = 0.1+c(4,4,1,1), oma =  c(0, 0, 2, 0))
> for(i in 1:4) {
+   ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
+   plot(ff, data = anscombe, col = "red", pch = 21, bg = "orange", cex = 1.2,
+        xlim = c(3, 19), ylim = c(3, 13))
+   abline(mods[[i]], col = "blue")
+ }
> mtext("Anscombe's 4 Regression data sets", outer = TRUE, cex = 1.5)
> par(op)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("attenu")
> ### * attenu
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: attenu
> ### Title: The Joyner-Boore Attenuation Data
> ### Aliases: attenu
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> ## check the data class of the variables
> sapply(attenu, data.class)
    event       mag   station      dist     accel 
"numeric" "numeric"  "factor" "numeric" "numeric" 
> summary(attenu)
     event            mag           station         dist       
 Min.   : 1.00   Min.   :5.000   117    :  5   Min.   :  0.50  
 1st Qu.: 9.00   1st Qu.:5.300   1028   :  4   1st Qu.: 11.32  
 Median :18.00   Median :6.100   113    :  4   Median : 23.40  
 Mean   :14.74   Mean   :6.084   112    :  3   Mean   : 45.60  
 3rd Qu.:20.00   3rd Qu.:6.600   135    :  3   3rd Qu.: 47.55  
 Max.   :23.00   Max.   :7.700   (Other):147   Max.   :370.00  
                                 NA's   : 16                   
     accel        
 Min.   :0.00300  
 1st Qu.:0.04425  
 Median :0.11300  
 Mean   :0.15422  
 3rd Qu.:0.21925  
 Max.   :0.81000  
                  
> pairs(attenu, main = "attenu data")
> coplot(accel ~ dist | as.factor(event), data = attenu, show.given = FALSE)
> coplot(log(accel) ~ log(dist) | as.factor(event),
+        data = attenu, panel = panel.smooth, show.given = FALSE)
> 
> 
> 
> cleanEx()
> nameEx("attitude")
> ### * attitude
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: attitude
> ### Title: The Chatterjee-Price Attitude Data
> ### Aliases: attitude
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> pairs(attitude, main = "attitude data")
> summary(attitude)
     rating        complaints     privileges       learning         raises     
 Min.   :40.00   Min.   :37.0   Min.   :30.00   Min.   :34.00   Min.   :43.00  
 1st Qu.:58.75   1st Qu.:58.5   1st Qu.:45.00   1st Qu.:47.00   1st Qu.:58.25  
 Median :65.50   Median :65.0   Median :51.50   Median :56.50   Median :63.50  
 Mean   :64.63   Mean   :66.6   Mean   :53.13   Mean   :56.37   Mean   :64.63  
 3rd Qu.:71.75   3rd Qu.:77.0   3rd Qu.:62.50   3rd Qu.:66.75   3rd Qu.:71.00  
 Max.   :85.00   Max.   :90.0   Max.   :83.00   Max.   :75.00   Max.   :88.00  
    critical        advance     
 Min.   :49.00   Min.   :25.00  
 1st Qu.:69.25   1st Qu.:35.00  
 Median :77.50   Median :41.00  
 Mean   :74.77   Mean   :42.93  
 3rd Qu.:80.00   3rd Qu.:47.75  
 Max.   :92.00   Max.   :72.00  
> summary(fm1 <- lm(rating ~ ., data = attitude))

Call:
lm(formula = rating ~ ., data = attitude)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.9418  -4.3555   0.3158   5.5425  11.5990 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 10.78708   11.58926   0.931 0.361634    
complaints   0.61319    0.16098   3.809 0.000903 ***
privileges  -0.07305    0.13572  -0.538 0.595594    
learning     0.32033    0.16852   1.901 0.069925 .  
raises       0.08173    0.22148   0.369 0.715480    
critical     0.03838    0.14700   0.261 0.796334    
advance     -0.21706    0.17821  -1.218 0.235577    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.068 on 23 degrees of freedom
Multiple R-squared:  0.7326,	Adjusted R-squared:  0.6628 
F-statistic:  10.5 on 6 and 23 DF,  p-value: 1.24e-05

> opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
+             mar = c(4.1, 4.1, 2.1, 1.1))
> plot(fm1)
> summary(fm2 <- lm(rating ~ complaints, data = attitude))

Call:
lm(formula = rating ~ complaints, data = attitude)

Residuals:
     Min       1Q   Median       3Q      Max 
-12.8799  -5.9905   0.1783   6.2978   9.6294 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 14.37632    6.61999   2.172   0.0385 *  
complaints   0.75461    0.09753   7.737 1.99e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.993 on 28 degrees of freedom
Multiple R-squared:  0.6813,	Adjusted R-squared:  0.6699 
F-statistic: 59.86 on 1 and 28 DF,  p-value: 1.988e-08

> plot(fm2)
> par(opar)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("beavers")
> ### * beavers
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: beavers
> ### Title: Body Temperature Series of Two Beavers
> ### Aliases: beavers beaver1 beaver2
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> (yl <- range(beaver1$temp, beaver2$temp))
[1] 36.33 38.35
> 
> beaver.plot <- function(bdat, ...) {
+   nam <- deparse(substitute(bdat))
+   with(bdat, {
+     # Hours since start of day:
+     hours <- time %/% 100 + 24*(day - day[1]) + (time %% 100)/60
+     plot (hours, temp, type = "l", ...,
+           main = paste(nam, "body temperature"))
+     abline(h = 37.5, col = "gray", lty = 2)
+     is.act <- activ == 1
+     points(hours[is.act], temp[is.act], col = 2, cex = .8)
+   })
+ }
> op <- par(mfrow = c(2, 1), mar = c(3, 3, 4, 2), mgp = 0.9 * 2:0)
>  beaver.plot(beaver1, ylim = yl)
>  beaver.plot(beaver2, ylim = yl)
> par(op)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("cars")
> ### * cars
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: cars
> ### Title: Speed and Stopping Distances of Cars
> ### Aliases: cars
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
+      las = 1)
> lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
> title(main = "cars data")
> plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
+      las = 1, log = "xy")
> title(main = "cars data (logarithmic scales)")
> lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
> summary(fm1 <- lm(log(dist) ~ log(speed), data = cars))

Call:
lm(formula = log(dist) ~ log(speed), data = cars)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.00215 -0.24578 -0.02898  0.20717  0.88289 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -0.7297     0.3758  -1.941   0.0581 .  
log(speed)    1.6024     0.1395  11.484 2.26e-15 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4053 on 48 degrees of freedom
Multiple R-squared:  0.7331,	Adjusted R-squared:  0.7276 
F-statistic: 131.9 on 1 and 48 DF,  p-value: 2.259e-15

> opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
+             mar = c(4.1, 4.1, 2.1, 1.1))
> plot(fm1)
> par(opar)
> 
> ## An example of polynomial regression
> plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
+     las = 1, xlim = c(0, 25))
> d <- seq(0, 25, length.out = 200)
> for(degree in 1:4) {
+   fm <- lm(dist ~ poly(speed, degree), data = cars)
+   assign(paste("cars", degree, sep = "."), fm)
+   lines(d, predict(fm, data.frame(speed = d)), col = degree)
+ }
> anova(cars.1, cars.2, cars.3, cars.4)
Analysis of Variance Table

Model 1: dist ~ poly(speed, degree)
Model 2: dist ~ poly(speed, degree)
Model 3: dist ~ poly(speed, degree)
Model 4: dist ~ poly(speed, degree)
  Res.Df   RSS Df Sum of Sq      F Pr(>F)
1     48 11354                           
2     47 10825  1    528.81 2.3108 0.1355
3     46 10634  1    190.35 0.8318 0.3666
4     45 10298  1    336.55 1.4707 0.2316
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("chickwts")
> ### * chickwts
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: chickwts
> ### Title: Chicken Weights by Feed Type
> ### Aliases: chickwts
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> boxplot(weight ~ feed, data = chickwts, col = "lightgray",
+     varwidth = TRUE, notch = TRUE, main = "chickwt data",
+     ylab = "Weight at six weeks (gm)")
Warning in bxp(list(stats = c(216, 271.5, 342, 373.5, 404, 108, 136, 151.5,  :
  some notches went outside hinges ('box'): maybe set notch=FALSE
> anova(fm1 <- lm(weight ~ feed, data = chickwts))
Analysis of Variance Table

Response: weight
          Df Sum Sq Mean Sq F value    Pr(>F)    
feed       5 231129   46226  15.365 5.936e-10 ***
Residuals 65 195556    3009                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
+             mar = c(4.1, 4.1, 2.1, 1.1))
> plot(fm1)
> par(opar)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("co2")
> ### * co2
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: co2
> ### Title: Mauna Loa Atmospheric CO2 Concentration
> ### Aliases: co2
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> plot(co2, ylab = expression("Atmospheric concentration of CO"[2]),
+      las = 1)
> title(main = "co2 data set")
> 
> 
> 
> cleanEx()
> nameEx("crimtab")
> ### * crimtab
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: crimtab
> ### Title: Student's 3000 Criminals Data
> ### Aliases: crimtab
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats)
> dim(crimtab)
[1] 42 22
> utils::str(crimtab)
 'table' int [1:42, 1:22] 0 0 0 0 0 0 1 0 0 0 ...
 - attr(*, "dimnames")=List of 2
  ..$ : chr [1:42] "9.4" "9.5" "9.6" "9.7" ...
  ..$ : chr [1:22] "142.24" "144.78" "147.32" "149.86" ...
> ## for nicer printing:
> local({cT <- crimtab
+        colnames(cT) <- substring(colnames(cT), 2, 3)
+        print(cT, zero.print = " ")
+ })
     42 44 47 49 52 54 57 60 62 65 67 70 72 75 77 80 82 85 87 90 93 95
9.4                                                                   
9.5                  1                                                
9.6                                                                   
9.7                                                                   
9.8                     1                                             
9.9         1     1     1                                             
10    1        1  2     2        1                                    
10.1           1  3  1     1  1                                       
10.2        2  2  2  1     2     1                                    
10.3     1  1  3  2  2  3  5                                          
10.4        1  1  2  3  3  4  3  3                                    
10.5           1  3  7  6  4  3  1  3  1     1                        
10.6           1  4  5  9 14  6  3  1        1                        
10.7        1  2  4  9 14 16 15  7  3  1  2                           
10.8           2  5  6 14 27 10  7  1  2  1                           
10.9              2  6 14 24 27 14 10  4  1                           
11             2  6 12 15 31 37 27 17 10  6                           
11.1           3  3 12 22 26 24 26 24  7  4  1                        
11.2           3  2  7 21 30 38 29 27 20  4  1                       1
11.3           1     5 10 24 26 39 26 24  7  2                        
11.4              3  4  9 29 56 58 26 22 10 11                        
11.5                 5 11 17 33 57 38 34 25 11  2                     
11.6              2  1  4 13 37 39 48 38 27 12  2  2     1            
11.7                 2  9 17 30 37 48 45 24  9  9  2                  
11.8              1     2 11 15 35 41 34 29 10  5  1                  
11.9              1  1  2 12 10 27 32 35 19 10  9  3  1               
12                      1  4  8 19 42 39 22 16  8  2  2               
12.1                       2  4 13 22 28 15 27 10  4  1               
12.2                    1  2  5  6 23 17 16 11  8  1  1               
12.3                          4  8 10 13 20 23  6  5                  
12.4                    1  1  1  2  7 12  4  7  7  1        1         
12.5                       1     1  3 12 11  8  6  8     2            
12.6                             1     3  5  7  8  6  3  1  1         
12.7                             1  1  7  5  5  8  2  2               
12.8                                1  2  3  1  8  5  3  1  1         
12.9                                   1  2  2     1  1               
13                                  3     1     1     2  1            
13.1                                   1  1                           
13.2                                1  1     1     3                  
13.3                                                  1     1         
13.4                                                                  
13.5                                                     1            
> 
> ## Repeat Student's experiment:
> 
> # 1) Reconstitute 3000 raw data for heights in inches and rounded to
> #    nearest integer as in Student's paper:
> 
> (heIn <- round(as.numeric(colnames(crimtab)) / 2.54))
 [1] 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
> d.hei <- data.frame(height = rep(heIn, colSums(crimtab)))
> 
> # 2) shuffle the data:
> 
> set.seed(1)
> d.hei <- d.hei[sample(1:3000), , drop = FALSE]
> 
> # 3) Make 750 samples each of size 4:
> 
> d.hei$sample <- as.factor(rep(1:750, each = 4))
> 
> # 4) Compute the means and standard deviations (n) for the 750 samples:
> 
> h.mean <- with(d.hei, tapply(height, sample, FUN = mean))
> h.sd   <- with(d.hei, tapply(height, sample, FUN = sd)) * sqrt(3/4)
> 
> # 5) Compute the difference between the mean of each sample and
> #    the mean of the population and then divide by the
> #    standard deviation of the sample:
> 
> zobs <- (h.mean - mean(d.hei[,"height"]))/h.sd
> 
> # 6) Replace infinite values by +/- 6 as in Student's paper:
> 
> zobs[infZ <- is.infinite(zobs)] # 3 of them
  73  312  674 
-Inf  Inf -Inf 
> zobs[infZ] <- 6 * sign(zobs[infZ])
> 
> # 7) Plot the distribution:
> 
> require(grDevices); require(graphics)
> hist(x = zobs, probability = TRUE, xlab = "Student's z",
+      col = grey(0.8), border = grey(0.5),
+      main = "Distribution of Student's z score  for 'crimtab' data")
> 
> 
> 
> cleanEx()
> nameEx("discoveries")
> ### * discoveries
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: discoveries
> ### Title: Yearly Numbers of Important Discoveries
> ### Aliases: discoveries
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> plot(discoveries, ylab = "Number of important discoveries",
+      las = 1)
> title(main = "discoveries data set")
> 
> 
> 
> cleanEx()
> nameEx("esoph")
> ### * esoph
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: esoph
> ### Title: Smoking, Alcohol and (O)esophageal Cancer
> ### Aliases: esoph
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats)
> require(graphics) # for mosaicplot
> summary(esoph)
   agegp          alcgp         tobgp        ncases         ncontrols    
 25-34:15   0-39g/day:23   0-9g/day:24   Min.   : 0.000   Min.   : 1.00  
 35-44:15   40-79    :23   10-19   :24   1st Qu.: 0.000   1st Qu.: 3.00  
 45-54:16   80-119   :21   20-29   :20   Median : 1.000   Median : 6.00  
 55-64:16   120+     :21   30+     :20   Mean   : 2.273   Mean   :11.08  
 65-74:15                                3rd Qu.: 4.000   3rd Qu.:14.00  
 75+  :11                                Max.   :17.000   Max.   :60.00  
> ## effects of alcohol, tobacco and interaction, age-adjusted
> model1 <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,
+               data = esoph, family = binomial())
> anova(model1)
Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(ncases, ncontrols)

Terms added sequentially (first to last)


            Df Deviance Resid. Df Resid. Dev
NULL                           87    227.241
agegp        5   88.128        82    139.112
tobgp        3   19.085        79    120.028
alcgp        3   66.054        76     53.973
tobgp:alcgp  9    6.489        67     47.484
> ## Try a linear effect of alcohol and tobacco
> model2 <- glm(cbind(ncases, ncontrols) ~ agegp + unclass(tobgp)
+                                          + unclass(alcgp),
+               data = esoph, family = binomial())
> summary(model2)

Call:
glm(formula = cbind(ncases, ncontrols) ~ agegp + unclass(tobgp) + 
    unclass(alcgp), family = binomial(), data = esoph)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.7628  -0.6426  -0.2709   0.3043   2.0421  

Coefficients:
               Estimate Std. Error z value Pr(>|z|)    
(Intercept)    -4.01097    0.31224 -12.846  < 2e-16 ***
agegp.L         2.96113    0.65092   4.549 5.39e-06 ***
agegp.Q        -1.33735    0.58918  -2.270  0.02322 *  
agegp.C         0.15292    0.44792   0.341  0.73281    
agegp^4         0.06668    0.30776   0.217  0.82848    
agegp^5        -0.20288    0.19523  -1.039  0.29872    
unclass(tobgp)  0.26162    0.08198   3.191  0.00142 ** 
unclass(alcgp)  0.65308    0.08452   7.727 1.10e-14 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 227.241  on 87  degrees of freedom
Residual deviance:  59.277  on 80  degrees of freedom
AIC: 222.76

Number of Fisher Scoring iterations: 6

> ## Re-arrange data for a mosaic plot
> ttt <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
> o <- with(esoph, order(tobgp, alcgp, agegp))
> ttt[ttt == 1] <- esoph$ncases[o]
> tt1 <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
> tt1[tt1 == 1] <- esoph$ncontrols[o]
> tt <- array(c(ttt, tt1), c(dim(ttt),2),
+             c(dimnames(ttt), list(c("Cancer", "control"))))
> mosaicplot(tt, main = "esoph data set", color = TRUE)
> 
> 
> 
> cleanEx()
> nameEx("euro")
> ### * euro
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: euro
> ### Title: Conversion Rates of Euro Currencies
> ### Aliases: euro euro.cross
> ### Keywords: datasets
> 
> ### ** Examples
> 
> cbind(euro)
           euro
ATS   13.760300
BEF   40.339900
DEM    1.955830
ESP  166.386000
FIM    5.945730
FRF    6.559570
IEP    0.787564
ITL 1936.270000
LUF   40.339900
NLG    2.203710
PTE  200.482000
> 
> ## These relations hold:
> euro == signif(euro, 6) # [6 digit precision in Euro's definition]
 ATS  BEF  DEM  ESP  FIM  FRF  IEP  ITL  LUF  NLG  PTE 
TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 
> all(euro.cross == outer(1/euro, euro))
[1] TRUE
> 
> ## Convert 20 Euro to Belgian Franc
> 20 * euro["BEF"]
    BEF 
806.798 
> ## Convert 20 Austrian Schilling to Euro
> 20 / euro["ATS"]
     ATS 
1.453457 
> ## Convert 20 Spanish Pesetas to Italian Lira
> 20 * euro.cross["ESP", "ITL"]
[1] 232.7443
> 
> require(graphics)
> dotchart(euro,
+          main = "euro data: 1 Euro in currency unit")
> dotchart(1/euro,
+          main = "euro data: 1 currency unit in Euros")
> dotchart(log(euro, 10),
+          main = "euro data: log10(1 Euro in currency unit)")
> 
> 
> 
> cleanEx()
> nameEx("faithful")
> ### * faithful
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: faithful
> ### Title: Old Faithful Geyser Data
> ### Aliases: faithful
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> f.tit <-  "faithful data: Eruptions of Old Faithful"
> 
> ne60 <- round(e60 <- 60 * faithful$eruptions)
> all.equal(e60, ne60)             # relative diff. ~ 1/10000
[1] "Mean relative difference: 9.515332e-05"
> table(zapsmall(abs(e60 - ne60))) # 0, 0.02 or 0.04

   0 0.02 0.04 
 106  163    3 
> faithful$better.eruptions <- ne60 / 60
> te <- table(ne60)
> te[te >= 4]                      # (too) many multiples of 5 !
ne60
105 108 110 112 113 120 216 230 240 245 249 250 255 260 261 262 265 270 272 275 
  6   4   7   8   4   4   4   5   6   5   4   4   4   5   4   4   4   8   5   4 
276 282 288 
  4   6   6 
> plot(names(te), te, type = "h", main = f.tit, xlab = "Eruption time (sec)")
> 
> plot(faithful[, -3], main = f.tit,
+      xlab = "Eruption time (min)",
+      ylab = "Waiting time to next eruption (min)")
> lines(lowess(faithful$eruptions, faithful$waiting, f = 2/3, iter = 3),
+       col = "red")
> 
> 
> 
> cleanEx()
> nameEx("freeny")
> ### * freeny
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: freeny
> ### Title: Freeny's Revenue Data
> ### Aliases: freeny freeny.x freeny.y
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> summary(freeny)
       y         lag.quarterly.revenue  price.index     income.level  
 Min.   :8.791   Min.   :8.791         Min.   :4.278   Min.   :5.821  
 1st Qu.:9.045   1st Qu.:9.020         1st Qu.:4.392   1st Qu.:5.948  
 Median :9.314   Median :9.284         Median :4.510   Median :6.061  
 Mean   :9.306   Mean   :9.281         Mean   :4.496   Mean   :6.039  
 3rd Qu.:9.591   3rd Qu.:9.561         3rd Qu.:4.605   3rd Qu.:6.139  
 Max.   :9.794   Max.   :9.775         Max.   :4.710   Max.   :6.200  
 market.potential
 Min.   :12.97   
 1st Qu.:13.01   
 Median :13.07   
 Mean   :13.07   
 3rd Qu.:13.12   
 Max.   :13.17   
> pairs(freeny, main = "freeny data")
> # gives warning: freeny$y has class "ts"
> 
> summary(fm1 <- lm(y ~ ., data = freeny))

Call:
lm(formula = y ~ ., data = freeny)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.0259426 -0.0101033  0.0003824  0.0103236  0.0267124 

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)           -10.4726     6.0217  -1.739   0.0911 .  
lag.quarterly.revenue   0.1239     0.1424   0.870   0.3904    
price.index            -0.7542     0.1607  -4.693 4.28e-05 ***
income.level            0.7675     0.1339   5.730 1.93e-06 ***
market.potential        1.3306     0.5093   2.613   0.0133 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01473 on 34 degrees of freedom
Multiple R-squared:  0.9981,	Adjusted R-squared:  0.9978 
F-statistic:  4354 on 4 and 34 DF,  p-value: < 2.2e-16

> opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
+             mar = c(4.1, 4.1, 2.1, 1.1))
> plot(fm1)
> par(opar)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("infert")
> ### * infert
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: infert
> ### Title: Infertility after Spontaneous and Induced Abortion
> ### Aliases: infert
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats)
> model1 <- glm(case ~ spontaneous+induced, data = infert, family = binomial())
> summary(model1)

Call:
glm(formula = case ~ spontaneous + induced, family = binomial(), 
    data = infert)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.6678  -0.8360  -0.5772   0.9030   1.9362  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.7079     0.2677  -6.380 1.78e-10 ***
spontaneous   1.1972     0.2116   5.657 1.54e-08 ***
induced       0.4181     0.2056   2.033    0.042 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 316.17  on 247  degrees of freedom
Residual deviance: 279.61  on 245  degrees of freedom
AIC: 285.61

Number of Fisher Scoring iterations: 4

> ## adjusted for other potential confounders:
> summary(model2 <- glm(case ~ age+parity+education+spontaneous+induced,
+                      data = infert, family = binomial()))

Call:
glm(formula = case ~ age + parity + education + spontaneous + 
    induced, family = binomial(), data = infert)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.7603  -0.8162  -0.4956   0.8349   2.6536  

Coefficients:
                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)      -1.14924    1.41220  -0.814   0.4158    
age               0.03958    0.03120   1.269   0.2046    
parity           -0.82828    0.19649  -4.215 2.49e-05 ***
education6-11yrs -1.04424    0.79255  -1.318   0.1876    
education12+ yrs -1.40321    0.83416  -1.682   0.0925 .  
spontaneous       2.04591    0.31016   6.596 4.21e-11 ***
induced           1.28876    0.30146   4.275 1.91e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 316.17  on 247  degrees of freedom
Residual deviance: 257.80  on 241  degrees of freedom
AIC: 271.8

Number of Fisher Scoring iterations: 4

> ## Really should be analysed by conditional logistic regression
> ## which is in the survival package
> 
> 
> 
> cleanEx()
> nameEx("iris")
> ### * iris
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: iris
> ### Title: Edgar Anderson's Iris Data
> ### Aliases: iris iris3
> ### Keywords: datasets
> 
> ### ** Examples
> 
> dni3 <- dimnames(iris3)
> ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol = 4,
+                         dimnames = list(NULL, sub(" L.",".Length",
+                                         sub(" W.",".Width", dni3[[2]])))),
+     Species = gl(3, 50, labels = sub("S", "s", sub("V", "v", dni3[[3]]))))
> all.equal(ii, iris) # TRUE
[1] TRUE
> 
> 
> 
> cleanEx()
> nameEx("islands")
> ### * islands
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: islands
> ### Title: Areas of the World's Major Landmasses
> ### Aliases: islands
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> dotchart(log(islands, 10),
+    main = "islands data: log10(area) (log10(sq. miles))")
> dotchart(log(islands[order(islands)], 10),
+    main = "islands data: log10(area) (log10(sq. miles))")
> 
> 
> 
> cleanEx()
> nameEx("longley")
> ### * longley
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: longley
> ### Title: Longley's Economic Regression Data
> ### Aliases: longley
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> ## give the data set in the form it is used in S-PLUS:
> longley.x <- data.matrix(longley[, 1:6])
> longley.y <- longley[, "Employed"]
> pairs(longley, main = "longley data")
> summary(fm1 <- lm(Employed ~ ., data = longley))

Call:
lm(formula = Employed ~ ., data = longley)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.41011 -0.15767 -0.02816  0.10155  0.45539 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -3.482e+03  8.904e+02  -3.911 0.003560 ** 
GNP.deflator  1.506e-02  8.492e-02   0.177 0.863141    
GNP          -3.582e-02  3.349e-02  -1.070 0.312681    
Unemployed   -2.020e-02  4.884e-03  -4.136 0.002535 ** 
Armed.Forces -1.033e-02  2.143e-03  -4.822 0.000944 ***
Population   -5.110e-02  2.261e-01  -0.226 0.826212    
Year          1.829e+00  4.555e-01   4.016 0.003037 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3049 on 9 degrees of freedom
Multiple R-squared:  0.9955,	Adjusted R-squared:  0.9925 
F-statistic: 330.3 on 6 and 9 DF,  p-value: 4.984e-10

> opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
+             mar = c(4.1, 4.1, 2.1, 1.1))
> plot(fm1)
> par(opar)
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("morley")
> ### * morley
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: morley
> ### Title: Michelson Speed of Light Data
> ### Aliases: morley
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> michelson <- transform(morley,
+                        Expt = factor(Expt), Run = factor(Run))
> xtabs(~ Expt + Run, data = michelson)  # 5 x 20 balanced (two-way)
    Run
Expt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
   1 1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1
   2 1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1
   3 1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1
   4 1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1
   5 1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1  1  1
> plot(Speed ~ Expt, data = michelson,
+      main = "Speed of Light Data", xlab = "Experiment No.")
> fm <- aov(Speed ~ Run + Expt, data = michelson)
> summary(fm)
            Df Sum Sq Mean Sq F value  Pr(>F)   
Run         19 113344    5965   1.105 0.36321   
Expt         4  94514   23629   4.378 0.00307 **
Residuals   76 410166    5397                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> fm0 <- update(fm, . ~ . - Run)
> anova(fm0, fm)
Analysis of Variance Table

Model 1: Speed ~ Expt
Model 2: Speed ~ Run + Expt
  Res.Df    RSS Df Sum of Sq      F Pr(>F)
1     95 523510                           
2     76 410166 19    113344 1.1053 0.3632
> 
> 
> 
> cleanEx()
> nameEx("mtcars")
> ### * mtcars
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: mtcars
> ### Title: Motor Trend Car Road Tests
> ### Aliases: mtcars
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> pairs(mtcars, main = "mtcars data")
> coplot(mpg ~ disp | as.factor(cyl), data = mtcars,
+        panel = panel.smooth, rows = 1)
> 
> 
> 
> cleanEx()
> nameEx("nhtemp")
> ### * nhtemp
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: nhtemp
> ### Title: Average Yearly Temperatures in New Haven
> ### Aliases: nhtemp
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> plot(nhtemp, main = "nhtemp data",
+   ylab = "Mean annual temperature in New Haven, CT (deg. F)")
> 
> 
> 
> cleanEx()
> nameEx("nottem")
> ### * nottem
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: nottem
> ### Title: Average Monthly Temperatures at Nottingham, 1920-1939
> ### Aliases: nottem
> ### Keywords: datasets
> 
> ### ** Examples
> 
> 
> 
> cleanEx()
> nameEx("npk")
> ### * npk
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: npk
> ### Title: Classical N, P, K Factorial Experiment
> ### Aliases: npk
> ### Keywords: datasets
> 
> ### ** Examples
> 
> 
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> cleanEx()
> nameEx("occupationalStatus")
> ### * occupationalStatus
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: occupationalStatus
> ### Title: Occupational Status of Fathers and their Sons
> ### Aliases: occupationalStatus
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> 
> plot(occupationalStatus)
> 
> ##  Fit a uniform association model separating diagonal effects
> Diag <- as.factor(diag(1:8))
> Rscore <- scale(as.numeric(row(occupationalStatus)), scale = FALSE)
> Cscore <- scale(as.numeric(col(occupationalStatus)), scale = FALSE)
> modUnif <- glm(Freq ~ origin + destination + Diag + Rscore:Cscore,
+                family = poisson, data = occupationalStatus)
> 
> summary(modUnif)

Call:
glm(formula = Freq ~ origin + destination + Diag + Rscore:Cscore, 
    family = poisson, data = occupationalStatus)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.6521  -0.6267   0.0000   0.5913   2.0964  

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)   0.568592   0.183358   3.101 0.001929 ** 
origin2       0.431314   0.149415   2.887 0.003893 ** 
origin3       1.461862   0.131141  11.147  < 2e-16 ***
origin4       1.788731   0.126588  14.130  < 2e-16 ***
origin5       0.441011   0.144844   3.045 0.002329 ** 
origin6       2.491735   0.121219  20.556  < 2e-16 ***
origin7       1.127536   0.129032   8.738  < 2e-16 ***
origin8       0.796445   0.131863   6.040 1.54e-09 ***
destination2  0.873202   0.166902   5.232 1.68e-07 ***
destination3  1.813992   0.153861  11.790  < 2e-16 ***
destination4  2.082515   0.150887  13.802  < 2e-16 ***
destination5  1.366383   0.155590   8.782  < 2e-16 ***
destination6  2.816369   0.146054  19.283  < 2e-16 ***
destination7  1.903918   0.147810  12.881  < 2e-16 ***
destination8  1.398585   0.151658   9.222  < 2e-16 ***
Diag1         1.665495   0.237383   7.016 2.28e-12 ***
Diag2         0.959681   0.212122   4.524 6.06e-06 ***
Diag3         0.021750   0.156530   0.139 0.889490    
Diag4         0.226399   0.124364   1.820 0.068689 .  
Diag5         0.808646   0.229754   3.520 0.000432 ***
Diag6         0.132277   0.077191   1.714 0.086597 .  
Diag7         0.506709   0.115936   4.371 1.24e-05 ***
Diag8         0.221880   0.134803   1.646 0.099771 .  
Rscore:Cscore 0.136974   0.007489  18.289  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 4679.004  on 63  degrees of freedom
Residual deviance:   58.436  on 40  degrees of freedom
AIC: 428.78

Number of Fisher Scoring iterations: 4

> plot(modUnif) # 4 plots, with warning about  h_ii ~= 1
Warning: not plotting observations with leverage one:
  1, 10, 19, 28, 37, 46, 55, 64
Warning: not plotting observations with leverage one:
  1, 10, 19, 28, 37, 46, 55, 64
> 
> 
> 
> cleanEx()
> nameEx("precip")
> ### * precip
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: precip
> ### Title: Annual Precipitation in US Cities
> ### Aliases: precip
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> dotchart(precip[order(precip)], main = "precip data")
> title(sub = "Average annual precipitation (in.)")
> 
> 
> 
> cleanEx()
> nameEx("presidents")
> ### * presidents
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: presidents
> ### Title: Quarterly Approval Ratings of US Presidents
> ### Aliases: presidents
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> plot(presidents, las = 1, ylab = "Approval rating (%)",
+      main = "presidents data")
> 
> 
> 
> cleanEx()
> nameEx("pressure")
> ### * pressure
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: pressure
> ### Title: Vapor Pressure of Mercury as a Function of Temperature
> ### Aliases: pressure
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> plot(pressure, xlab = "Temperature (deg C)",
+      ylab = "Pressure (mm of Hg)",
+      main = "pressure data: Vapor Pressure of Mercury")
> plot(pressure, xlab = "Temperature (deg C)",  log = "y",
+      ylab = "Pressure (mm of Hg)",
+      main = "pressure data: Vapor Pressure of Mercury")
> 
> 
> 
> cleanEx()
> nameEx("quakes")
> ### * quakes
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: quakes
> ### Title: Locations of Earthquakes off Fiji
> ### Aliases: quakes
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> pairs(quakes, main = "Fiji Earthquakes, N = 1000", cex.main = 1.2, pch = ".")
> 
> 
> 
> cleanEx()
> nameEx("randu")
> ### * randu
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: randu
> ### Title: Random Numbers from Congruential Generator RANDU
> ### Aliases: randu
> ### Keywords: datasets
> 
> ### ** Examples
> 
> 
> 
> 
> cleanEx()
> nameEx("sleep")
> ### * sleep
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: sleep
> ### Title: Student's Sleep Data
> ### Aliases: sleep
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats)
> ## Student's paired t-test
> with(sleep,
+      t.test(extra[group == 1],
+             extra[group == 2], paired = TRUE))

	Paired t-test

data:  extra[group == 1] and extra[group == 2]
t = -4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.4598858 -0.7001142
sample estimates:
mean of the differences 
                  -1.58 

> 
> ## The sleep *prolongations*
> sleep1 <- with(sleep, extra[group == 2] - extra[group == 1])
> summary(sleep1)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   0.00    1.05    1.30    1.58    1.70    4.60 
> stripchart(sleep1, method = "stack", xlab = "hours",
+            main = "Sleep prolongation (n = 10)")
> boxplot(sleep1, horizontal = TRUE, add = TRUE,
+         at = .6, pars = list(boxwex = 0.5, staplewex = 0.25))
> 
> 
> 
> cleanEx()
> nameEx("stackloss")
> ### * stackloss
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: stackloss
> ### Title: Brownlee's Stack Loss Plant Data
> ### Aliases: stackloss stack.loss stack.x
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats)
> summary(lm.stack <- lm(stack.loss ~ stack.x))

Call:
lm(formula = stack.loss ~ stack.x)

Residuals:
    Min      1Q  Median      3Q     Max 
-7.2377 -1.7117 -0.4551  2.3614  5.6978 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)       -39.9197    11.8960  -3.356  0.00375 ** 
stack.xAir.Flow     0.7156     0.1349   5.307  5.8e-05 ***
stack.xWater.Temp   1.2953     0.3680   3.520  0.00263 ** 
stack.xAcid.Conc.  -0.1521     0.1563  -0.973  0.34405    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.243 on 17 degrees of freedom
Multiple R-squared:  0.9136,	Adjusted R-squared:  0.8983 
F-statistic:  59.9 on 3 and 17 DF,  p-value: 3.016e-09

> 
> 
> 
> cleanEx()
> nameEx("sunspot.month")
> ### * sunspot.month
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: sunspot.month
> ### Title: Monthly Sunspot Data, from 1749 to "Present"
> ### Aliases: sunspot.month
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> ## Compare the monthly series
> plot (sunspot.month,
+       main="sunspot.month & sunspots [package'datasets']", col=2)
> lines(sunspots) # -> faint differences where they overlap
> 
> ## Now look at the difference :
> all(tsp(sunspots)     [c(1,3)] ==
+     tsp(sunspot.month)[c(1,3)]) ## Start & Periodicity are the same
[1] TRUE
> n1 <- length(sunspots)
> table(eq <- sunspots == sunspot.month[1:n1]) #>  132  are different !

FALSE  TRUE 
  143  2677 
> i <- which(!eq)
> rug(time(eq)[i])
> s1 <- sunspots[i] ; s2 <- sunspot.month[i]
> cbind(i = i, time = time(sunspots)[i], sunspots = s1, ss.month = s2,
+       perc.diff = round(100*2*abs(s1-s2)/(s1+s2), 1))
          i     time sunspots ss.month perc.diff
  [1,]   55 1753.500     22.2     22.0       0.9
  [2,]  838 1818.750     31.7     31.6       0.3
  [3,]  841 1819.000     32.5     32.8       0.9
  [4,]  862 1820.750      9.0      8.9       1.1
  [5,]  864 1820.917      9.7      9.1       6.4
  [6,]  866 1821.083      4.3      4.2       2.4
  [7,]  876 1821.917      0.0      0.2     200.0
  [8,]  901 1824.000     21.6     21.7       0.5
  [9,]  917 1825.333     15.4     15.5       0.6
 [10,]  920 1825.583     25.4     25.7       1.2
 [11,]  943 1827.500     42.9     42.3       1.4
 [12,]  946 1827.750     57.2     56.1       1.9
 [13,]  955 1828.500     54.3     54.2       0.2
 [14,]  960 1828.917     46.6     46.9       0.6
 [15,]  965 1829.333     67.5     67.4       0.1
 [16,]  968 1829.583     78.3     77.6       0.9
 [17,]  976 1830.250    107.1    106.3       0.7
 [18,]  988 1831.250     54.6     54.5       0.2
 [19,]  992 1831.583     54.9     55.0       0.2
 [20,]  994 1831.750     46.2     46.3       0.2
 [21,]  998 1832.083     55.5     55.6       0.2
 [22,] 1003 1832.500     13.9     14.0       0.7
 [23,] 1047 1836.167     98.1     98.2       0.1
 [24,] 1061 1837.333    111.3    111.7       0.4
 [25,] 1081 1839.000    107.6    105.6       1.9
 [26,] 1087 1839.500     84.7     84.8       0.1
 [27,] 1090 1839.750     90.8     90.9       0.1
 [28,] 1092 1839.917     63.6     63.7       0.2
 [29,] 1095 1840.167     55.5     67.8      20.0
 [30,] 1102 1840.750     49.8     55.0       9.9
 [31,] 1105 1841.000     24.0     24.1       0.4
 [32,] 1108 1841.250     42.6     40.2       5.8
 [33,] 1109 1841.333     67.4     67.5       0.1
 [34,] 1113 1841.667     35.1     36.5       3.9
 [35,] 1124 1842.583     26.5     26.6       0.4
 [36,] 1125 1842.667     18.5     18.4       0.5
 [37,] 1132 1843.250      8.8      9.5       7.7
 [38,] 1145 1844.333     12.0     11.6       3.4
 [39,] 1149 1844.667      6.9      7.0       1.4
 [40,] 1156 1845.250     56.9     57.0       0.2
 [41,] 1168 1846.250     69.2     69.3       0.1
 [42,] 1185 1847.667    161.2    160.9       0.2
 [43,] 1191 1848.167    108.9    108.6       0.3
 [44,] 1194 1848.417    123.8    129.0       4.1
 [45,] 1196 1848.583    132.5    132.6       0.1
 [46,] 1200 1848.917    159.9    159.5       0.3
 [47,] 1201 1849.000    156.7    157.0       0.2
 [48,] 1202 1849.083    131.7    131.8       0.1
 [49,] 1203 1849.167     96.5     96.2       0.3
 [50,] 1206 1849.417     81.2     81.1       0.1
 [51,] 1208 1849.583     61.3     67.7       9.9
 [52,] 1211 1849.833     99.7     99.0       0.7
 [53,] 1224 1850.917     60.0     61.0       1.7
 [54,] 1235 1851.833     50.9     51.0       0.2
 [55,] 1238 1852.083     67.5     66.4       1.6
 [56,] 1243 1852.500     42.0     42.1       0.2
 [57,] 1256 1853.583     50.4     50.5       0.2
 [58,] 1258 1853.750     42.3     42.4       0.2
 [59,] 1264 1854.250     26.4     26.5       0.4
 [60,] 1270 1854.750     12.7     12.6       0.8
 [61,] 1272 1854.917     21.4     21.6       0.9
 [62,] 1282 1855.750      9.7      9.6       1.0
 [63,] 1283 1855.833      4.3      4.2       2.4
 [64,] 1290 1856.417      5.0      5.2       3.9
 [65,] 1301 1857.333     29.2     28.5       2.4
 [66,] 1333 1860.000     81.5     82.4       1.1
 [67,] 1334 1860.083     88.0     88.3       0.3
 [68,] 1346 1861.083     77.8     77.7       0.1
 [69,] 1350 1861.417     87.8     88.1       0.3
 [70,] 1366 1862.750     42.0     41.9       0.2
 [71,] 1407 1866.167     24.6     24.5       0.4
 [72,] 1424 1867.583      4.9      4.8       2.1
 [73,] 1427 1867.833      9.3      9.6       3.2
 [74,] 1429 1868.000     15.6     15.5       0.6
 [75,] 1430 1868.083     15.8     15.7       0.6
 [76,] 1435 1868.500     28.6     29.0       1.4
 [77,] 1437 1868.667     43.8     47.2       7.5
 [78,] 1438 1868.750     61.7     61.6       0.2
 [79,] 1442 1869.083     59.3     59.9       1.0
 [80,] 1445 1869.333    104.0    103.9       0.1
 [81,] 1450 1869.750     59.4     59.3       0.2
 [82,] 1451 1869.833     77.4     78.1       0.9
 [83,] 1452 1869.917    104.3    104.4       0.1
 [84,] 1455 1870.167    159.4    157.5       1.2
 [85,] 1472 1871.583    110.0    110.1       0.1
 [86,] 1476 1871.917     90.3     90.4       0.1
 [87,] 1486 1872.750    103.5    102.6       0.9
 [88,] 1497 1873.667     47.5     47.1       0.8
 [89,] 1498 1873.750     47.4     47.1       0.6
 [90,] 1514 1875.083     22.2     21.5       3.2
 [91,] 1527 1876.167     31.2     30.6       1.9
 [92,] 1539 1877.167     11.7     11.9       1.7
 [93,] 1541 1877.333     21.2     21.6       1.9
 [94,] 1542 1877.417     13.4     14.2       5.8
 [95,] 1543 1877.500      5.9      6.0       1.7
 [96,] 1545 1877.667     16.4     16.9       3.0
 [97,] 1547 1877.833     14.5     14.2       2.1
 [98,] 1548 1877.917      2.3      2.2       4.4
 [99,] 1550 1878.083      6.0      6.6       9.5
[100,] 1553 1878.333      5.8      5.9       1.7
[101,] 1561 1879.000      0.8      1.0      22.2
[102,] 1571 1879.833     12.9     13.1       1.5
[103,] 1572 1879.917      7.2      7.3       1.4
[104,] 1574 1880.083     27.5     27.2       1.1
[105,] 1575 1880.167     19.5     19.3       1.0
[106,] 1576 1880.250     19.3     19.5       1.0
[107,] 1588 1881.250     51.7     51.6       0.2
[108,] 1592 1881.583     58.0     58.4       0.7
[109,] 1594 1881.750     64.0     64.4       0.6
[110,] 1598 1882.083     69.3     69.5       0.3
[111,] 1599 1882.167     67.5     66.8       1.0
[112,] 1613 1883.333     32.1     31.5       1.9
[113,] 1614 1883.417     76.5     76.3       0.3
[114,] 1623 1884.167     86.8     87.5       0.8
[115,] 1643 1885.833     33.3     30.9       7.5
[116,] 1656 1886.917     12.4     13.0       4.7
[117,] 1663 1887.500     23.3     23.4       0.4
[118,] 1683 1889.167      7.0      6.7       4.4
[119,] 1687 1889.500      9.7      9.4       3.1
[120,] 1712 1891.583     33.2     33.0       0.6
[121,] 1716 1891.917     32.3     32.5       0.6
[122,] 1723 1892.500     76.8     76.5       0.4
[123,] 1734 1893.417     88.2     89.9       1.9
[124,] 1735 1893.500     88.8     88.6       0.2
[125,] 1738 1893.750     79.7     80.0       0.4
[126,] 1774 1896.750     28.4     28.7       1.1
[127,] 1837 1902.000      5.2      5.5       5.6
[128,] 2126 1926.083     70.0     69.9       0.1
[129,] 2151 1928.167     85.4     85.5       0.1
[130,] 2153 1928.333     76.9     77.0       0.1
[131,] 2162 1929.083     64.1     62.8       2.0
[132,] 2174 1930.083     49.2     49.9       1.4
[133,] 2233 1935.000     18.9     18.6       1.6
[134,] 2315 1941.833     38.3     38.4       0.3
[135,] 2329 1943.000     12.4     12.5       0.8
[136,] 2378 1947.083    113.4    133.4      16.2
[137,] 2427 1951.167     59.9     55.9       6.9
[138,] 2498 1957.083    130.2    130.3       0.1
[139,] 2552 1961.583     55.9     55.8       0.2
[140,] 2556 1961.917     40.0     39.9       0.3
[141,] 2594 1965.083     14.2     14.3       0.7
[142,] 2790 1981.417     90.0     90.9       1.0
[143,] 2819 1983.833     33.3     33.4       0.3
> 
> ## How to recreate the "old" sunspot.month (R <= 3.0.3):
> .sunspot.diff <- cbind(
+     i = c(1202L, 1256L, 1258L, 1301L, 1407L, 1429L, 1452L, 1455L,
+           1663L, 2151L, 2329L, 2498L, 2594L, 2694L, 2819L),
+     res10 = c(1L, 1L, 1L, -1L, -1L, -1L, 1L, -1L,
+           1L, 1L, 1L, 1L, 1L, 20L, 1L))
> ssm0 <- sunspot.month[1:2988]
> with(as.data.frame(.sunspot.diff), ssm0[i] <<- ssm0[i] - res10/10)
> sunspot.month.0 <- ts(ssm0, start = 1749, frequency = 12)
> 
> 
> 
> cleanEx()
> nameEx("sunspot.year")
> ### * sunspot.year
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: sunspot.year
> ### Title: Yearly Sunspot Data, 1700-1988
> ### Aliases: sunspot.year
> ### Keywords: datasets
> 
> ### ** Examples
> 
> utils::str(sm <- sunspots)# the monthly version we keep unchanged
 Time-Series [1:2820] from 1749 to 1984: 58 62.6 70 55.7 85 83.5 94.8 66.3 75.9 75.5 ...
> utils::str(sy <- sunspot.year)
 Time-Series [1:289] from 1700 to 1988: 5 11 16 23 36 58 29 20 10 8 ...
> ## The common time interval
> (t1 <- c(max(start(sm), start(sy)),     1)) # Jan 1749
[1] 1749    1
> (t2 <- c(min(  end(sm)[1],end(sy)[1]), 12)) # Dec 1983
[1] 1983   12
> s.m <- window(sm, start=t1, end=t2)
> s.y <- window(sy, start=t1, end=t2[1]) # {irrelevant warning}
> stopifnot(length(s.y) * 12 == length(s.m),
+           ## The yearly series *is* close to the averages of the monthly one:
+           all.equal(s.y, aggregate(s.m, FUN = mean), tol = 0.0020))
> ## NOTE: Strangely, correctly weighting the number of days per month
> ##       (using 28.25 for February) is *not* closer than the simple mean:
> ndays <- c(31, 28.25, rep(c(31,30, 31,30, 31), 2))
> all.equal(s.y, aggregate(s.m, FUN = mean))                     # 0.0013
[1] "Mean relative difference: 0.001312539"
> all.equal(s.y, aggregate(s.m, FUN = weighted.mean, w = ndays)) # 0.0017
[1] "Mean relative difference: 0.001692215"
> 
> 
> 
> cleanEx()
> nameEx("sunspots")
> ### * sunspots
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: sunspots
> ### Title: Monthly Sunspot Numbers, 1749-1983
> ### Aliases: sunspots
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> plot(sunspots, main = "sunspots data", xlab = "Year",
+      ylab = "Monthly sunspot numbers")
> 
> 
> 
> cleanEx()
> nameEx("swiss")
> ### * swiss
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: swiss
> ### Title: Swiss Fertility and Socioeconomic Indicators (1888) Data
> ### Aliases: swiss
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> pairs(swiss, panel = panel.smooth, main = "swiss data",
+       col = 3 + (swiss$Catholic > 50))
> summary(lm(Fertility ~ . , data = swiss))

Call:
lm(formula = Fertility ~ ., data = swiss)

Residuals:
     Min       1Q   Median       3Q      Max 
-15.2743  -5.2617   0.5032   4.1198  15.3213 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)      66.91518   10.70604   6.250 1.91e-07 ***
Agriculture      -0.17211    0.07030  -2.448  0.01873 *  
Examination      -0.25801    0.25388  -1.016  0.31546    
Education        -0.87094    0.18303  -4.758 2.43e-05 ***
Catholic          0.10412    0.03526   2.953  0.00519 ** 
Infant.Mortality  1.07705    0.38172   2.822  0.00734 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.165 on 41 degrees of freedom
Multiple R-squared:  0.7067,	Adjusted R-squared:  0.671 
F-statistic: 19.76 on 5 and 41 DF,  p-value: 5.594e-10

> 
> 
> 
> cleanEx()
> nameEx("trees")
> ### * trees
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: trees
> ### Title: Girth, Height and Volume for Black Cherry Trees
> ### Aliases: trees
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> pairs(trees, panel = panel.smooth, main = "trees data")
> plot(Volume ~ Girth, data = trees, log = "xy")
> coplot(log(Volume) ~ log(Girth) | Height, data = trees,
+        panel = panel.smooth)
> summary(fm1 <- lm(log(Volume) ~ log(Girth), data = trees))

Call:
lm(formula = log(Volume) ~ log(Girth), data = trees)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.205999 -0.068702  0.001011  0.072585  0.247963 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.35332    0.23066  -10.20 4.18e-11 ***
log(Girth)   2.19997    0.08983   24.49  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.115 on 29 degrees of freedom
Multiple R-squared:  0.9539,	Adjusted R-squared:  0.9523 
F-statistic: 599.7 on 1 and 29 DF,  p-value: < 2.2e-16

> summary(fm2 <- update(fm1, ~ . + log(Height), data = trees))

Call:
lm(formula = log(Volume) ~ log(Girth) + log(Height), data = trees)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.168561 -0.048488  0.002431  0.063637  0.129223 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -6.63162    0.79979  -8.292 5.06e-09 ***
log(Girth)   1.98265    0.07501  26.432  < 2e-16 ***
log(Height)  1.11712    0.20444   5.464 7.81e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.08139 on 28 degrees of freedom
Multiple R-squared:  0.9777,	Adjusted R-squared:  0.9761 
F-statistic: 613.2 on 2 and 28 DF,  p-value: < 2.2e-16

> step(fm2)
Start:  AIC=-152.69
log(Volume) ~ log(Girth) + log(Height)

              Df Sum of Sq    RSS      AIC
<none>                     0.1855 -152.685
- log(Height)  1    0.1978 0.3832 -132.185
- log(Girth)   1    4.6275 4.8130  -53.743

Call:
lm(formula = log(Volume) ~ log(Girth) + log(Height), data = trees)

Coefficients:
(Intercept)   log(Girth)  log(Height)  
     -6.632        1.983        1.117  

> ## i.e., Volume ~= c * Height * Girth^2  seems reasonable
> 
> 
> 
> cleanEx()
> nameEx("uspop")
> ### * uspop
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: uspop
> ### Title: Populations Recorded by the US Census
> ### Aliases: uspop
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> plot(uspop, log = "y", main = "uspop data", xlab = "Year",
+      ylab = "U.S. Population (millions)")
> 
> 
> 
> cleanEx()
> nameEx("volcano")
> ### * volcano
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: volcano
> ### Title: Topographic Information on Auckland's Maunga Whau Volcano
> ### Aliases: volcano
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(grDevices); require(graphics)
> filled.contour(volcano, color.palette = terrain.colors, asp = 1)
> title(main = "volcano data: filled contour map")
> 
> 
> 
> cleanEx()
> nameEx("warpbreaks")
> ### * warpbreaks
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: warpbreaks
> ### Title: The Number of Breaks in Yarn during Weaving
> ### Aliases: warpbreaks
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> summary(warpbreaks)
     breaks      wool   tension
 Min.   :10.00   A:27   L:18   
 1st Qu.:18.25   B:27   M:18   
 Median :26.00          H:18   
 Mean   :28.15                 
 3rd Qu.:34.00                 
 Max.   :70.00                 
> opar <- par(mfrow = c(1, 2), oma = c(0, 0, 1.1, 0))
> plot(breaks ~ tension, data = warpbreaks, col = "lightgray",
+      varwidth = TRUE, subset = wool == "A", main = "Wool A")
> plot(breaks ~ tension, data = warpbreaks, col = "lightgray",
+      varwidth = TRUE, subset = wool == "B", main = "Wool B")
> mtext("warpbreaks data", side = 3, outer = TRUE)
> par(opar)
> summary(fm1 <- lm(breaks ~ wool*tension, data = warpbreaks))

Call:
lm(formula = breaks ~ wool * tension, data = warpbreaks)

Residuals:
     Min       1Q   Median       3Q      Max 
-19.5556  -6.8889  -0.6667   7.1944  25.4444 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)      44.556      3.647  12.218 2.43e-16 ***
woolB           -16.333      5.157  -3.167 0.002677 ** 
tensionM        -20.556      5.157  -3.986 0.000228 ***
tensionH        -20.000      5.157  -3.878 0.000320 ***
woolB:tensionM   21.111      7.294   2.895 0.005698 ** 
woolB:tensionH   10.556      7.294   1.447 0.154327    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.94 on 48 degrees of freedom
Multiple R-squared:  0.3778,	Adjusted R-squared:  0.3129 
F-statistic: 5.828 on 5 and 48 DF,  p-value: 0.0002772

> anova(fm1)
Analysis of Variance Table

Response: breaks
             Df Sum Sq Mean Sq F value    Pr(>F)    
wool          1  450.7  450.67  3.7653 0.0582130 .  
tension       2 2034.3 1017.13  8.4980 0.0006926 ***
wool:tension  2 1002.8  501.39  4.1891 0.0210442 *  
Residuals    48 5745.1  119.69                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> 
> 
> 
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("women")
> ### * women
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: women
> ### Title: Average Heights and Weights for American Women
> ### Aliases: women
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(graphics)
> plot(women, xlab = "Height (in)", ylab = "Weight (lb)",
+      main = "women data: American women aged 30-39")
> 
> 
> 
> cleanEx()
> nameEx("zCO2")
> ### * zCO2
> 
> flush(stderr()); flush(stdout())
> 
> ### Name: CO2
> ### Title: Carbon Dioxide Uptake in Grass Plants
> ### Aliases: CO2
> ### Keywords: datasets
> 
> ### ** Examples
> 
> require(stats); require(graphics)
> ## Don't show: 
> options(show.nls.convergence=FALSE)
> ## End Don't show
> coplot(uptake ~ conc | Plant, data = CO2, show.given = FALSE, type = "b")
> ## fit the data for the first plant
> fm1 <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),
+    data = CO2, subset = Plant == "Qn1")
> summary(fm1)

Formula: uptake ~ SSasymp(conc, Asym, lrc, c0)

Parameters:
     Estimate Std. Error t value Pr(>|t|)    
Asym  38.1398     0.9164  41.620 1.99e-06 ***
lrc  -34.2766    18.9661  -1.807    0.145    
c0    -4.3806     0.2042 -21.457 2.79e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.663 on 4 degrees of freedom

> ## fit each plant separately
> fmlist <- list()
> for (pp in levels(CO2$Plant)) {
+   fmlist[[pp]] <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),
+       data = CO2, subset = Plant == pp)
+ }
> ## check the coefficients by plant
> print(sapply(fmlist, coef), digits = 3)
        Qn1    Qn2    Qn3   Qc1    Qc3    Qc2    Mn3    Mn2   Mn1   Mc2     Mc3
Asym  38.14  42.87  44.23 36.43  40.68  39.82  28.48  32.13 34.08 13.56   18.54
lrc  -34.28 -29.66 -37.63 -9.90 -11.54 -51.53 -17.37 -29.04 -8.81 -1.98 -136.11
c0    -4.38  -4.67  -4.49 -4.86  -4.95  -4.46  -4.59  -4.47 -5.06 -4.56   -3.47
       Mc1
Asym 21.79
lrc   2.45
c0   -5.14
> 
> 
> 
> ### * <FOOTER>
> ###
> options(digits = 7L)
> base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
Time elapsed:  1.783 0.04 1.831 0 0 
> grDevices::dev.off()
null device 
          1 
> ###
> ### Local variables: ***
> ### mode: outline-minor ***
> ### outline-regexp: "\\(> \\)?### [*]+" ***
> ### End: ***
> quit('no')