1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
R version 3.1.1 RC (2014-07-04 r66081) -- "Sock it to Me"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-unknown-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> pkgname <- "splines"
> source(file.path(R.home("share"), "R", "examples-header.R"))
> options(warn = 1)
> library('splines')
>
> base::assign(".oldSearch", base::search(), pos = 'CheckExEnv')
> cleanEx()
> nameEx("asVector")
> ### * asVector
>
> flush(stderr()); flush(stdout())
>
> ### Name: asVector
> ### Title: Coerce an Object to a Vector
> ### Aliases: asVector
> ### Keywords: models
>
> ### ** Examples
>
> require(stats)
> ispl <- interpSpline( weight ~ height, women )
> pred <- predict(ispl)
> class(pred)
[1] "xyVector"
> utils::str(pred)
List of 2
$ x: num [1:51] 58 58.3 58.6 58.8 59.1 ...
$ y: num [1:51] 115 115 116 117 117 ...
- attr(*, "class")= chr "xyVector"
> asVector(pred)
[1] 115.0000 115.4908 116.0170 116.6137 117.3153 118.1214 118.9894 119.8747
[9] 120.7384 121.5787 122.4078 123.2380 124.0759 124.9181 125.7601 126.5980
[17] 127.4340 128.2735 129.1220 129.9792 130.8301 131.6572 132.4454 133.2228
[25] 134.0528 135.0000 136.1000 137.2727 138.4090 139.4026 140.2416 141.0276
[33] 141.8690 142.8564 143.9707 145.1507 146.3356 147.4868 148.6046 149.6935
[41] 150.7604 151.8353 152.9613 154.1817 155.5178 156.9329 158.3808 159.8173
[49] 161.2269 162.6180 164.0000
>
>
>
> cleanEx()
> nameEx("backSpline")
> ### * backSpline
>
> flush(stderr()); flush(stdout())
>
> ### Name: backSpline
> ### Title: Monotone Inverse Spline
> ### Aliases: backSpline
> ### Keywords: models
>
> ### ** Examples
>
> require(graphics)
> ispl <- interpSpline( women$height, women$weight )
> bspl <- backSpline( ispl )
> plot( bspl ) # plots over the range of the knots
> points( women$weight, women$height )
>
>
>
> cleanEx()
> nameEx("bs")
> ### * bs
>
> flush(stderr()); flush(stdout())
>
> ### Name: bs
> ### Title: B-Spline Basis for Polynomial Splines
> ### Aliases: bs
> ### Keywords: smooth
>
> ### ** Examples
>
> require(stats); require(graphics)
> bs(women$height, df = 5)
1 2 3 4 5
[1,] 0.000000e+00 0.000000000 0.000000000 0.000000e+00 0.000000000
[2,] 4.534439e-01 0.059857872 0.001639942 0.000000e+00 0.000000000
[3,] 5.969388e-01 0.203352770 0.013119534 0.000000e+00 0.000000000
[4,] 5.338010e-01 0.376366618 0.044278426 0.000000e+00 0.000000000
[5,] 3.673469e-01 0.524781341 0.104956268 0.000000e+00 0.000000000
[6,] 2.001640e-01 0.595025510 0.204719388 9.110787e-05 0.000000000
[7,] 9.110787e-02 0.566326531 0.336734694 5.830904e-03 0.000000000
[8,] 3.125000e-02 0.468750000 0.468750000 3.125000e-02 0.000000000
[9,] 5.830904e-03 0.336734694 0.566326531 9.110787e-02 0.000000000
[10,] 9.110787e-05 0.204719388 0.595025510 2.001640e-01 0.000000000
[11,] 0.000000e+00 0.104956268 0.524781341 3.673469e-01 0.002915452
[12,] 0.000000e+00 0.044278426 0.376366618 5.338010e-01 0.045553936
[13,] 0.000000e+00 0.013119534 0.203352770 5.969388e-01 0.186588921
[14,] 0.000000e+00 0.001639942 0.059857872 4.534439e-01 0.485058309
[15,] 0.000000e+00 0.000000000 0.000000000 0.000000e+00 1.000000000
attr(,"degree")
[1] 3
attr(,"knots")
33.33333% 66.66667%
62.66667 67.33333
attr(,"Boundary.knots")
[1] 58 72
attr(,"intercept")
[1] FALSE
attr(,"class")
[1] "bs" "basis" "matrix"
> summary(fm1 <- lm(weight ~ bs(height, df = 5), data = women))
Call:
lm(formula = weight ~ bs(height, df = 5), data = women)
Residuals:
Min 1Q Median 3Q Max
-0.31764 -0.13441 0.03922 0.11096 0.35086
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 114.8799 0.2167 530.146 < 2e-16 ***
bs(height, df = 5)1 3.4657 0.4595 7.543 3.53e-05 ***
bs(height, df = 5)2 13.0300 0.3965 32.860 1.10e-10 ***
bs(height, df = 5)3 27.6161 0.4571 60.415 4.70e-13 ***
bs(height, df = 5)4 40.8481 0.3866 105.669 3.09e-15 ***
bs(height, df = 5)5 49.1296 0.3090 158.979 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.2276 on 9 degrees of freedom
Multiple R-squared: 0.9999, Adjusted R-squared: 0.9998
F-statistic: 1.298e+04 on 5 and 9 DF, p-value: < 2.2e-16
>
> ## example of safe prediction
> plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
> ht <- seq(57, 73, length.out = 200)
> lines(ht, predict(fm1, data.frame(height = ht)))
Warning in bs(height, degree = 3L, knots = c(62.6666666666667, 67.3333333333333 :
some 'x' values beyond boundary knots may cause ill-conditioned bases
> ## Don't show:
> ## Consistency:
> x <- c(1:3, 5:6)
> stopifnot(identical(bs(x), bs(x, df = 3)),
+ identical(bs(x, df = 4), bs(x, df = 4, knots = NULL)), # not true till 2.15.2
+ !is.null(kk <- attr(bs(x), "knots")), # not true till 1.5.1
+ length(kk) == 0)
> ## End Don't show
>
>
> cleanEx()
> nameEx("interpSpline")
> ### * interpSpline
>
> flush(stderr()); flush(stdout())
>
> ### Name: interpSpline
> ### Title: Create an Interpolation Spline
> ### Aliases: interpSpline
> ### Keywords: models
>
> ### ** Examples
>
> require(graphics); require(stats)
> ispl <- interpSpline( women$height, women$weight )
> ispl2 <- interpSpline( weight ~ height, women )
> # ispl and ispl2 should be the same
> plot( predict( ispl, seq( 55, 75, length.out = 51 ) ), type = "l" )
> points( women$height, women$weight )
> plot( ispl ) # plots over the range of the knots
> points( women$height, women$weight )
> splineKnots( ispl )
[1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
>
>
>
> cleanEx()
> nameEx("ns")
> ### * ns
>
> flush(stderr()); flush(stdout())
>
> ### Name: ns
> ### Title: Generate a Basis Matrix for Natural Cubic Splines
> ### Aliases: ns
> ### Keywords: smooth
>
> ### ** Examples
>
> require(stats); require(graphics)
> ns(women$height, df = 5)
1 2 3 4 5
[1,] 0.000000e+00 0.000000e+00 0.00000000 0.00000000 0.0000000000
[2,] 7.592323e-03 0.000000e+00 -0.08670223 0.26010669 -0.1734044626
[3,] 6.073858e-02 0.000000e+00 -0.15030440 0.45091320 -0.3006088020
[4,] 2.047498e-01 6.073858e-05 -0.16778345 0.50335034 -0.3355668952
[5,] 4.334305e-01 1.311953e-02 -0.13244035 0.39732106 -0.2648807067
[6,] 6.256681e-01 8.084305e-02 -0.07399720 0.22199159 -0.1479943948
[7,] 6.477162e-01 2.468416e-01 -0.02616007 0.07993794 -0.0532919575
[8,] 4.791667e-01 4.791667e-01 0.01406302 0.02031093 -0.0135406187
[9,] 2.468416e-01 6.477162e-01 0.09733619 0.02286023 -0.0152401533
[10,] 8.084305e-02 6.256681e-01 0.27076826 0.06324188 -0.0405213106
[11,] 1.311953e-02 4.334305e-01 0.48059836 0.12526031 -0.0524087186
[12,] 6.073858e-05 2.047498e-01 0.59541597 0.19899261 0.0007809246
[13,] 0.000000e+00 6.073858e-02 0.50097182 0.27551020 0.1627793975
[14,] 0.000000e+00 7.592323e-03 0.22461127 0.35204082 0.4157555879
[15,] 0.000000e+00 0.000000e+00 -0.14285714 0.42857143 0.7142857143
attr(,"degree")
[1] 3
attr(,"knots")
20% 40% 60% 80%
60.8 63.6 66.4 69.2
attr(,"Boundary.knots")
[1] 58 72
attr(,"intercept")
[1] FALSE
attr(,"class")
[1] "ns" "basis" "matrix"
> summary(fm1 <- lm(weight ~ ns(height, df = 5), data = women))
Call:
lm(formula = weight ~ ns(height, df = 5), data = women)
Residuals:
Min 1Q Median 3Q Max
-0.38333 -0.12585 0.07083 0.15401 0.30426
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 114.7447 0.2338 490.88 < 2e-16 ***
ns(height, df = 5)1 15.9474 0.3699 43.12 9.69e-12 ***
ns(height, df = 5)2 25.1695 0.4323 58.23 6.55e-13 ***
ns(height, df = 5)3 33.2582 0.3541 93.93 8.91e-15 ***
ns(height, df = 5)4 50.7894 0.6062 83.78 2.49e-14 ***
ns(height, df = 5)5 45.0363 0.2784 161.75 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.2645 on 9 degrees of freedom
Multiple R-squared: 0.9998, Adjusted R-squared: 0.9997
F-statistic: 9609 on 5 and 9 DF, p-value: < 2.2e-16
>
> ## To see what knots were selected
> attr(terms(fm1), "predvars")
list(weight, ns(height, knots = c(60.8, 63.6, 66.4, 69.2), Boundary.knots = c(58,
72), intercept = FALSE))
>
> ## example of safe prediction
> plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
> ht <- seq(57, 73, length.out = 200)
> lines(ht, predict(fm1, data.frame(height = ht)))
> ## Don't show:
> ## Consistency:
> x <- c(1:3, 5:6)
> stopifnot(identical(ns(x), ns(x, df = 1)),
+ identical(ns(x, df = 2), ns(x, df = 2, knots = NULL)), # not true till 2.15.2
+ !is.null(kk <- attr(ns(x), "knots")), # not true till 1.5.1
+ length(kk) == 0)
> ## End Don't show
>
>
>
> cleanEx()
> nameEx("periodicSpline")
> ### * periodicSpline
>
> flush(stderr()); flush(stdout())
>
> ### Name: periodicSpline
> ### Title: Create a Periodic Interpolation Spline
> ### Aliases: periodicSpline
> ### Keywords: models
>
> ### ** Examples
>
> require(graphics); require(stats)
> xx <- seq( -pi, pi, length.out = 16 )[-1]
> yy <- sin( xx )
> frm <- data.frame( xx, yy )
> pispl <- periodicSpline( xx, yy, period = 2 * pi)
> pispl2 <- periodicSpline( yy ~ xx, frm, period = 2 * pi )
> stopifnot(all.equal(pispl, pispl2)) # pispl and pispl2 are the same
>
> plot( pispl ) # displays over one period
> points( yy ~ xx, col = "brown")
> plot( predict( pispl, seq(-3*pi, 3*pi, length.out = 101) ), type = "l" )
>
>
>
> cleanEx()
> nameEx("polySpline")
> ### * polySpline
>
> flush(stderr()); flush(stdout())
>
> ### Name: polySpline
> ### Title: Piecewise Polynomial Spline Representation
> ### Aliases: polySpline as.polySpline
> ### Keywords: models
>
> ### ** Examples
>
> require(graphics)
> ispl <- polySpline(interpSpline( weight ~ height, women, bSpline = TRUE))
> print( ispl ) # print the piecewise polynomial representation
polynomial representation of spline for weight ~ height
constant linear quadratic cubic
58 115 1.731918 0.00000000 0.26808191
59 117 2.536164 0.80424574 -0.34040957
60 120 3.123427 -0.21698298 0.09355638
61 123 2.970130 0.06368616 -0.03381595
62 126 2.996054 -0.03776168 0.04170740
63 129 3.045653 0.08736054 -0.13301367
64 132 2.821333 -0.31168048 0.49034728
65 135 3.669014 1.15936136 -0.82837545
66 139 3.502610 -1.32576498 0.82315452
67 142 3.320544 1.14369857 -0.46424262
68 146 4.215213 -0.24902928 0.03381595
69 150 3.818603 -0.14758144 0.32897883
70 154 4.510376 0.83935505 -0.34973127
71 159 5.139893 -0.20983876 0.06994625
72 164 4.930054 0.00000000 0.00000000
> plot( ispl ) # plots over the range of the knots
> points( women$height, women$weight )
>
>
>
> cleanEx()
> nameEx("predict.bSpline")
> ### * predict.bSpline
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict.bSpline
> ### Title: Evaluate a Spline at New Values of x
> ### Aliases: predict.bSpline predict.nbSpline predict.pbSpline
> ### predict.npolySpline predict.ppolySpline
> ### Keywords: models
>
> ### ** Examples
>
> require(graphics); require(stats)
> ispl <- interpSpline( weight ~ height, women )
> opar <- par(mfrow = c(2, 2), las = 1)
> plot(predict(ispl, nseg = 201), # plots over the range of the knots
+ main = "Original data with interpolating spline", type = "l",
+ xlab = "height", ylab = "weight")
> points(women$height, women$weight, col = 4)
> plot(predict(ispl, nseg = 201, deriv = 1),
+ main = "First derivative of interpolating spline", type = "l",
+ xlab = "height", ylab = "weight")
> plot(predict(ispl, nseg = 201, deriv = 2),
+ main = "Second derivative of interpolating spline", type = "l",
+ xlab = "height", ylab = "weight")
> plot(predict(ispl, nseg = 401, deriv = 3),
+ main = "Third derivative of interpolating spline", type = "l",
+ xlab = "height", ylab = "weight")
> par(opar)
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("predict.bs")
> ### * predict.bs
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict.bs
> ### Title: Evaluate a Spline Basis
> ### Aliases: predict.bs predict.ns
> ### Keywords: smooth
>
> ### ** Examples
>
> require(stats)
> basis <- ns(women$height, df = 5)
> newX <- seq(58, 72, length.out = 51)
> # evaluate the basis at the new data
> predict(basis, newX)
1 2 3 4 5
[1,] 0.0000000000 0.0000000000 0.000000000 0.00000000 0.000000000
[2,] 0.0001666667 0.0000000000 -0.025270112 0.07581034 -0.050540224
[3,] 0.0013333333 0.0000000000 -0.050033132 0.15009940 -0.100066264
[4,] 0.0045000000 0.0000000000 -0.073781966 0.22134590 -0.147563933
[5,] 0.0106666667 0.0000000000 -0.096009523 0.28802857 -0.192019047
[6,] 0.0208333333 0.0000000000 -0.116208710 0.34862613 -0.232417420
[7,] 0.0360000000 0.0000000000 -0.133872434 0.40161730 -0.267744868
[8,] 0.0571666667 0.0000000000 -0.148493603 0.44548081 -0.296987205
[9,] 0.0853333333 0.0000000000 -0.159565123 0.47869537 -0.319130247
[10,] 0.1215000000 0.0000000000 -0.166579904 0.49973971 -0.333159807
[11,] 0.1666666667 0.0000000000 -0.169030851 0.50709255 -0.338061702
[12,] 0.2211666667 0.0001666667 -0.166622161 0.49986648 -0.333244323
[13,] 0.2826666667 0.0013333333 -0.159903185 0.47970955 -0.319806370
[14,] 0.3481666667 0.0045000000 -0.149634561 0.44890368 -0.299269122
[15,] 0.4146666667 0.0106666667 -0.136576928 0.40973078 -0.273153855
[16,] 0.4791666667 0.0208333333 -0.121490924 0.36447277 -0.242981848
[17,] 0.5386666667 0.0360000000 -0.105137189 0.31541157 -0.210274379
[18,] 0.5901666667 0.0571666667 -0.088276362 0.26482909 -0.176552724
[19,] 0.6306666667 0.0853333333 -0.071669081 0.21500724 -0.143338162
[20,] 0.6571666667 0.1215000000 -0.056075985 0.16822795 -0.112151970
[21,] 0.6666666667 0.1666666667 -0.042257713 0.12677314 -0.084515425
[22,] 0.6571666667 0.2211666667 -0.030651111 0.09245333 -0.061635555
[23,] 0.6306666667 0.2826666667 -0.020397854 0.06519356 -0.043462374
[24,] 0.5901666667 0.3481666667 -0.010315824 0.04444747 -0.029631648
[25,] 0.5386666667 0.4146666667 0.000777096 0.02966871 -0.019779141
[26,] 0.4791666667 0.4791666667 0.014063024 0.02031093 -0.013540619
[27,] 0.4146666667 0.5386666667 0.030724078 0.01582777 -0.010551844
[28,] 0.3481666667 0.5901666667 0.051942375 0.01567287 -0.010448583
[29,] 0.2826666667 0.6306666667 0.078900034 0.01929990 -0.012866600
[30,] 0.2211666667 0.6571666667 0.112779171 0.02616249 -0.017441658
[31,] 0.1666666667 0.6666666667 0.154761905 0.03571429 -0.023809524
[32,] 0.1215000000 0.6571666667 0.205345238 0.04746429 -0.031476190
[33,] 0.0853333333 0.6306666667 0.262285714 0.06114286 -0.039428571
[34,] 0.0571666667 0.5901666667 0.322654762 0.07653571 -0.046523810
[35,] 0.0360000000 0.5386666667 0.383523810 0.09342857 -0.051619048
[36,] 0.0208333333 0.4791666667 0.441964286 0.11160714 -0.053571429
[37,] 0.0106666667 0.4146666667 0.495047619 0.13085714 -0.051238095
[38,] 0.0045000000 0.3481666667 0.539845238 0.15096429 -0.043476190
[39,] 0.0013333333 0.2826666667 0.573428571 0.17171429 -0.029142857
[40,] 0.0001666667 0.2211666667 0.592869048 0.19289286 -0.007095238
[41,] 0.0000000000 0.1666666667 0.595238095 0.21428571 0.023809524
[42,] 0.0000000000 0.1215000000 0.578428571 0.23571429 0.064357143
[43,] 0.0000000000 0.0853333333 0.543619048 0.25714286 0.113904762
[44,] 0.0000000000 0.0571666667 0.492809524 0.27857143 0.171452381
[45,] 0.0000000000 0.0360000000 0.428000000 0.30000000 0.236000000
[46,] 0.0000000000 0.0208333333 0.351190476 0.32142857 0.306547619
[47,] 0.0000000000 0.0106666667 0.264380952 0.34285714 0.382095238
[48,] 0.0000000000 0.0045000000 0.169571429 0.36428571 0.461642857
[49,] 0.0000000000 0.0013333333 0.068761905 0.38571429 0.544190476
[50,] 0.0000000000 0.0001666667 -0.036047619 0.40714286 0.628738095
[51,] 0.0000000000 0.0000000000 -0.142857143 0.42857143 0.714285714
attr(,"degree")
[1] 3
attr(,"knots")
20% 40% 60% 80%
60.8 63.6 66.4 69.2
attr(,"Boundary.knots")
[1] 58 72
attr(,"intercept")
[1] FALSE
attr(,"class")
[1] "ns" "basis" "matrix"
>
>
>
> cleanEx()
> nameEx("splineDesign")
> ### * splineDesign
>
> flush(stderr()); flush(stdout())
>
> ### Name: splineDesign
> ### Title: Design Matrix for B-splines
> ### Aliases: splineDesign spline.des
> ### Keywords: models
>
> ### ** Examples
>
> require(graphics)
> splineDesign(knots = 1:10, x = 4:7)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.1666667 0.6666667 0.1666667 0.0000000 0.0000000 0.0000000
[2,] 0.0000000 0.1666667 0.6666667 0.1666667 0.0000000 0.0000000
[3,] 0.0000000 0.0000000 0.1666667 0.6666667 0.1666667 0.0000000
[4,] 0.0000000 0.0000000 0.0000000 0.1666667 0.6666667 0.1666667
> ## visualize band structure
>
> knots <- c(1,1.8,3:5,6.5,7,8.1,9.2,10) # 10 => 10-4 = 6 Basis splines
> x <- seq(min(knots)-1, max(knots)+1, length.out = 501)
> bb <- splineDesign(knots, x = x, outer.ok = TRUE)
>
> plot(range(x), c(0,1), type = "n", xlab = "x", ylab = "",
+ main = "B-splines - sum to 1 inside inner knots")
> mtext(expression(B[j](x) *" and "* sum(B[j](x), j == 1, 6)), adj = 0)
> abline(v = knots, lty = 3, col = "light gray")
> abline(v = knots[c(4,length(knots)-3)], lty = 3, col = "gray10")
> lines(x, rowSums(bb), col = "gray", lwd = 2)
> matlines(x, bb, ylim = c(0,1), lty = 1)
>
>
>
> cleanEx()
> nameEx("splineKnots")
> ### * splineKnots
>
> flush(stderr()); flush(stdout())
>
> ### Name: splineKnots
> ### Title: Knot Vector from a Spline
> ### Aliases: splineKnots
> ### Keywords: models
>
> ### ** Examples
>
> ispl <- interpSpline( weight ~ height, women )
> splineKnots( ispl )
[1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
>
>
>
> cleanEx()
> nameEx("splineOrder")
> ### * splineOrder
>
> flush(stderr()); flush(stdout())
>
> ### Name: splineOrder
> ### Title: Determine the Order of a Spline
> ### Aliases: splineOrder
> ### Keywords: models
>
> ### ** Examples
>
> splineOrder( interpSpline( weight ~ height, women ) )
[1] 4
>
>
>
> cleanEx()
> nameEx("xyVector")
> ### * xyVector
>
> flush(stderr()); flush(stdout())
>
> ### Name: xyVector
> ### Title: Construct an 'xyVector' Object
> ### Aliases: xyVector
> ### Keywords: models
>
> ### ** Examples
>
> require(stats); require(graphics)
> ispl <- interpSpline( weight ~ height, women )
> weights <- predict( ispl, seq( 55, 75, length.out = 51 ))
> class( weights )
[1] "xyVector"
> plot( weights, type = "l", xlab = "height", ylab = "weight" )
> points( women$height, women$weight )
> weights
$x
[1] 55.0 55.4 55.8 56.2 56.6 57.0 57.4 57.8 58.2 58.6 59.0 59.4 59.8 60.2 60.6
[16] 61.0 61.4 61.8 62.2 62.6 63.0 63.4 63.8 64.2 64.6 65.0 65.4 65.8 66.2 66.6
[31] 67.0 67.4 67.8 68.2 68.6 69.0 69.4 69.8 70.2 70.6 71.0 71.4 71.8 72.2 72.6
[46] 73.0 73.4 73.8 74.2 74.6 75.0
$y
[1] 109.8042 110.4970 111.1898 111.8825 112.5753 113.2681 113.9608 114.6536
[9] 115.3485 116.0971 117.0000 118.1214 119.3694 120.6168 121.8162 123.0000
[17] 124.1961 125.3995 126.5980 127.7930 129.0000 130.2237 131.4243 132.5557
[25] 133.6865 135.0000 136.6001 138.2531 139.6541 140.8021 142.0000 143.4815
[33] 145.1507 146.8334 148.4468 150.0000 151.5249 153.1289 154.9329 156.9329
[41] 159.0000 161.0269 163.0134 164.9860 166.9580 168.9301 170.9021 172.8741
[49] 174.8461 176.8181 178.7902
attr(,"class")
[1] "xyVector"
>
>
>
> ### * <FOOTER>
> ###
> options(digits = 7L)
> base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
Time elapsed: 0.137 0.007 0.147 0 0
> grDevices::dev.off()
null device
1
> ###
> ### Local variables: ***
> ### mode: outline-minor ***
> ### outline-regexp: "\\(> \\)?### [*]+" ***
> ### End: ***
> quit('no')
|