1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811
|
R version 3.1.1 RC (2014-07-04 r66081) -- "Sock it to Me"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-unknown-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> pkgname <- "stats"
> source(file.path(R.home("share"), "R", "examples-header.R"))
> options(warn = 1)
> library('stats')
>
> base::assign(".oldSearch", base::search(), pos = 'CheckExEnv')
> cleanEx()
> nameEx("AIC")
> ### * AIC
>
> flush(stderr()); flush(stdout())
>
> ### Name: AIC
> ### Title: Akaike's An Information Criterion
> ### Aliases: AIC BIC
> ### Keywords: models
>
> ### ** Examples
>
> lm1 <- lm(Fertility ~ . , data = swiss)
> AIC(lm1)
[1] 326.0716
> stopifnot(all.equal(AIC(lm1),
+ AIC(logLik(lm1))))
> BIC(lm1)
[1] 339.0226
>
> lm2 <- update(lm1, . ~ . -Examination)
> AIC(lm1, lm2)
df AIC
lm1 7 326.0716
lm2 6 325.2408
> BIC(lm1, lm2)
df BIC
lm1 7 339.0226
lm2 6 336.3417
>
>
>
> cleanEx()
> nameEx("ARMAacf")
> ### * ARMAacf
>
> flush(stderr()); flush(stdout())
>
> ### Name: ARMAacf
> ### Title: Compute Theoretical ACF for an ARMA Process
> ### Aliases: ARMAacf
> ### Keywords: ts
>
> ### ** Examples
>
> ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10)
0 1 2 3 4 5
1.000000000 0.875000000 0.625000000 0.406250000 0.250000000 0.148437500
6 7 8 9 10
0.085937500 0.048828125 0.027343750 0.015136719 0.008300781
>
> ## Example from Brockwell & Davis (1991, pp.92-4)
> ## answer 2^(-n) * (32/3 + 8 * n) /(32/3)
> n <- 1:10; 2^(-n) * (32/3 + 8 * n) /(32/3)
[1] 0.875000000 0.625000000 0.406250000 0.250000000 0.148437500 0.085937500
[7] 0.048828125 0.027343750 0.015136719 0.008300781
> ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10, pacf = TRUE)
[1] 0.8750000 -0.6000000 0.3750000 -0.2727273 0.2142857 -0.1764706
[7] 0.1500000 -0.1304348 0.1153846 -0.1034483
> zapsmall(ARMAacf(c(1.0, -0.25), lag.max = 10, pacf = TRUE))
[1] 0.80 -0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
>
> ## Cov-Matrix of length-7 sub-sample of AR(1) example:
> toeplitz(ARMAacf(0.8, lag.max = 7))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1.0000000 0.800000 0.64000 0.5120 0.4096 0.32768 0.262144 0.2097152
[2,] 0.8000000 1.000000 0.80000 0.6400 0.5120 0.40960 0.327680 0.2621440
[3,] 0.6400000 0.800000 1.00000 0.8000 0.6400 0.51200 0.409600 0.3276800
[4,] 0.5120000 0.640000 0.80000 1.0000 0.8000 0.64000 0.512000 0.4096000
[5,] 0.4096000 0.512000 0.64000 0.8000 1.0000 0.80000 0.640000 0.5120000
[6,] 0.3276800 0.409600 0.51200 0.6400 0.8000 1.00000 0.800000 0.6400000
[7,] 0.2621440 0.327680 0.40960 0.5120 0.6400 0.80000 1.000000 0.8000000
[8,] 0.2097152 0.262144 0.32768 0.4096 0.5120 0.64000 0.800000 1.0000000
>
>
>
> cleanEx()
> nameEx("ARMAtoMA")
> ### * ARMAtoMA
>
> flush(stderr()); flush(stdout())
>
> ### Name: ARMAtoMA
> ### Title: Convert ARMA Process to Infinite MA Process
> ### Aliases: ARMAtoMA
> ### Keywords: ts
>
> ### ** Examples
>
> ARMAtoMA(c(1.0, -0.25), 1.0, 10)
[1] 2.00000000 1.75000000 1.25000000 0.81250000 0.50000000 0.29687500
[7] 0.17187500 0.09765625 0.05468750 0.03027344
> ## Example from Brockwell & Davis (1991, p.92)
> ## answer (1 + 3*n)*2^(-n)
> n <- 1:10; (1 + 3*n)*2^(-n)
[1] 2.00000000 1.75000000 1.25000000 0.81250000 0.50000000 0.29687500
[7] 0.17187500 0.09765625 0.05468750 0.03027344
>
>
>
> cleanEx()
> nameEx("Beta")
> ### * Beta
>
> flush(stderr()); flush(stdout())
>
> ### Name: Beta
> ### Title: The Beta Distribution
> ### Aliases: Beta dbeta pbeta qbeta rbeta
> ### Keywords: distribution
>
> ### ** Examples
>
> x <- seq(0, 1, length = 21)
> dbeta(x, 1, 1)
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
> pbeta(x, 1, 1)
[1] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
[16] 0.75 0.80 0.85 0.90 0.95 1.00
>
> ## Visualization, including limit cases:
> pl.beta <- function(a,b, asp = if(isLim) 1, ylim = if(isLim) c(0,1.1)) {
+ if(isLim <- a == 0 || b == 0 || a == Inf || b == Inf) {
+ eps <- 1e-10
+ x <- c(0, eps, (1:7)/16, 1/2+c(-eps,0,eps), (9:15)/16, 1-eps, 1)
+ } else {
+ x <- seq(0, 1, length = 1025)
+ }
+ fx <- cbind(dbeta(x, a,b), pbeta(x, a,b), qbeta(x, a,b))
+ f <- fx; f[fx == Inf] <- 1e100
+ matplot(x, f, ylab="", type="l", ylim=ylim, asp=asp,
+ main = sprintf("[dpq]beta(x, a=%g, b=%g)", a,b))
+ abline(0,1, col="gray", lty=3)
+ abline(h = 0:1, col="gray", lty=3)
+ legend("top", paste0(c("d","p","q"), "beta(x, a,b)"),
+ col=1:3, lty=1:3, bty = "n")
+ invisible(cbind(x, fx))
+ }
> pl.beta(3,1)
>
> pl.beta(2, 4)
> pl.beta(3, 7)
> pl.beta(3, 7, asp=1)
>
> pl.beta(0, 0) ## point masses at {0, 1}
>
> pl.beta(0, 2) ## point mass at 0 ; the same as
> pl.beta(1, Inf)
>
> pl.beta(Inf, 2) ## point mass at 1 ; the same as
> pl.beta(3, 0)
>
> pl.beta(Inf, Inf)# point mass at 1/2
>
>
>
> cleanEx()
> nameEx("Binomial")
> ### * Binomial
>
> flush(stderr()); flush(stdout())
>
> ### Name: Binomial
> ### Title: The Binomial Distribution
> ### Aliases: Binomial dbinom pbinom qbinom rbinom
> ### Keywords: distribution
>
> ### ** Examples
>
> require(graphics)
> # Compute P(45 < X < 55) for X Binomial(100,0.5)
> sum(dbinom(46:54, 100, 0.5))
[1] 0.6317984
>
> ## Using "log = TRUE" for an extended range :
> n <- 2000
> k <- seq(0, n, by = 20)
> plot (k, dbinom(k, n, pi/10, log = TRUE), type = "l", ylab = "log density",
+ main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")
> lines(k, log(dbinom(k, n, pi/10)), col = "red", lwd = 2)
> ## extreme points are omitted since dbinom gives 0.
> mtext("dbinom(k, log=TRUE)", adj = 0)
> mtext("extended range", adj = 0, line = -1, font = 4)
> mtext("log(dbinom(k))", col = "red", adj = 1)
>
>
>
> cleanEx()
> nameEx("Cauchy")
> ### * Cauchy
>
> flush(stderr()); flush(stdout())
>
> ### Name: Cauchy
> ### Title: The Cauchy Distribution
> ### Aliases: Cauchy dcauchy pcauchy qcauchy rcauchy
> ### Keywords: distribution
>
> ### ** Examples
>
> dcauchy(-1:4)
[1] 0.15915494 0.31830989 0.15915494 0.06366198 0.03183099 0.01872411
>
>
>
> cleanEx()
> nameEx("Chisquare")
> ### * Chisquare
>
> flush(stderr()); flush(stdout())
>
> ### Name: Chisquare
> ### Title: The (non-central) Chi-Squared Distribution
> ### Aliases: Chisquare dchisq pchisq qchisq rchisq
> ### Keywords: distribution
>
> ### ** Examples
>
> require(graphics)
>
> dchisq(1, df = 1:3)
[1] 0.2419707 0.3032653 0.2419707
> pchisq(1, df = 3)
[1] 0.198748
> pchisq(1, df = 3, ncp = 0:4) # includes the above
[1] 0.19874804 0.13229855 0.08787311 0.05824691 0.03853592
>
> x <- 1:10
> ## Chi-squared(df = 2) is a special exponential distribution
> all.equal(dchisq(x, df = 2), dexp(x, 1/2))
[1] TRUE
> all.equal(pchisq(x, df = 2), pexp(x, 1/2))
[1] TRUE
>
> ## non-central RNG -- df = 0 with ncp > 0: Z0 has point mass at 0!
> Z0 <- rchisq(100, df = 0, ncp = 2.)
> graphics::stem(Z0)
The decimal point is at the |
0 | 0000000000000000000000000000000000000013356778899
1 | 0001333456678888899
2 | 0011444467
3 | 00233345888
4 | 111246
5 |
6 |
7 | 178
8 | 23
>
>
> ## "analytical" test
> lam <- seq(0, 100, by = .25)
> p00 <- pchisq(0, df = 0, ncp = lam)
> p.0 <- pchisq(1e-300, df = 0, ncp = lam)
> stopifnot(all.equal(p00, exp(-lam/2)),
+ all.equal(p.0, exp(-lam/2)))
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("Exponential")
> ### * Exponential
>
> flush(stderr()); flush(stdout())
>
> ### Name: Exponential
> ### Title: The Exponential Distribution
> ### Aliases: Exponential dexp pexp qexp rexp
> ### Keywords: distribution
>
> ### ** Examples
>
> dexp(1) - exp(-1) #-> 0
[1] 0
>
> ## a fast way to generate *sorted* U[0,1] random numbers:
> rsunif <- function(n) { n1 <- n+1
+ cE <- cumsum(rexp(n1)); cE[seq_len(n)]/cE[n1] }
> plot(rsunif(1000), ylim=0:1, pch=".")
> abline(0,1/(1000+1), col=adjustcolor(1, 0.5))
>
>
>
> cleanEx()
> nameEx("Fdist")
> ### * Fdist
>
> flush(stderr()); flush(stdout())
>
> ### Name: FDist
> ### Title: The F Distribution
> ### Aliases: FDist df pf qf rf
> ### Keywords: distribution
>
> ### ** Examples
>
> ## Equivalence of pt(.,nu) with pf(.^2, 1,nu):
> x <- seq(0.001, 5, len = 100)
> nu <- 4
> stopifnot(all.equal(2*pt(x,nu) - 1, pf(x^2, 1,nu)),
+ ## upper tails:
+ all.equal(2*pt(x, nu, lower=FALSE),
+ pf(x^2, 1,nu, lower=FALSE)))
>
> ## the density of the square of a t_m is 2*dt(x, m)/(2*x)
> # check this is the same as the density of F_{1,m}
> all.equal(df(x^2, 1, 5), dt(x, 5)/x)
[1] TRUE
>
> ## Identity: qf(2*p - 1, 1, df)) == qt(p, df)^2) for p >= 1/2
> p <- seq(1/2, .99, length = 50); df <- 10
> rel.err <- function(x, y) ifelse(x == y, 0, abs(x-y)/mean(abs(c(x,y))))
>
>
>
> cleanEx()
> nameEx("GammaDist")
> ### * GammaDist
>
> flush(stderr()); flush(stdout())
>
> ### Name: GammaDist
> ### Title: The Gamma Distribution
> ### Aliases: GammaDist dgamma pgamma qgamma rgamma
> ### Keywords: distribution
>
> ### ** Examples
>
> -log(dgamma(1:4, shape = 1))
[1] 1 2 3 4
> p <- (1:9)/10
> pgamma(qgamma(p, shape = 2), shape = 2)
[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
> 1 - 1/exp(qgamma(p, shape = 1))
[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
>
>
>
> cleanEx()
> nameEx("Geometric")
> ### * Geometric
>
> flush(stderr()); flush(stdout())
>
> ### Name: Geometric
> ### Title: The Geometric Distribution
> ### Aliases: Geometric dgeom pgeom qgeom rgeom
> ### Keywords: distribution
>
> ### ** Examples
>
> qgeom((1:9)/10, prob = .2)
[1] 0 0 1 2 3 4 5 7 10
> Ni <- rgeom(20, prob = 1/4); table(factor(Ni, 0:max(Ni)))
0 1 2 3 4 5 6 7 8 9 10 11
5 3 3 1 2 2 0 1 0 1 1 1
>
>
>
> cleanEx()
> nameEx("HoltWinters")
> ### * HoltWinters
>
> flush(stderr()); flush(stdout())
>
> ### Name: HoltWinters
> ### Title: Holt-Winters Filtering
> ### Aliases: HoltWinters print.HoltWinters residuals.HoltWinters
> ### Keywords: ts
>
> ### ** Examples
>
> ## Don't show:
> od <- options(digits = 5)
> ## End Don't show
> require(graphics)
>
> ## Seasonal Holt-Winters
> (m <- HoltWinters(co2))
Holt-Winters exponential smoothing with trend and additive seasonal component.
Call:
HoltWinters(x = co2)
Smoothing parameters:
alpha: 0.51265
beta : 0.0094977
gamma: 0.47289
Coefficients:
[,1]
a 364.76162
b 0.12474
s1 0.22153
s2 0.95528
s3 1.59847
s4 2.87580
s5 3.28201
s6 2.44070
s7 0.89694
s8 -1.37964
s9 -3.41124
s10 -3.25702
s11 -1.91349
s12 -0.58442
> plot(m)
> plot(fitted(m))
>
> (m <- HoltWinters(AirPassengers, seasonal = "mult"))
Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
Call:
HoltWinters(x = AirPassengers, seasonal = "mult")
Smoothing parameters:
alpha: 0.27559
beta : 0.032693
gamma: 0.87073
Coefficients:
[,1]
a 469.32322
b 3.02154
s1 0.94646
s2 0.88292
s3 0.97174
s4 1.03048
s5 1.04769
s6 1.18053
s7 1.35908
s8 1.33317
s9 1.10834
s10 0.98688
s11 0.83613
s12 0.92099
> plot(m)
>
> ## Non-Seasonal Holt-Winters
> x <- uspop + rnorm(uspop, sd = 5)
> m <- HoltWinters(x, gamma = FALSE)
> plot(m)
>
> ## Exponential Smoothing
> m2 <- HoltWinters(x, gamma = FALSE, beta = FALSE)
> lines(fitted(m2)[,1], col = 3)
> ## Don't show:
> options(od)
> ## End Don't show
>
>
>
> cleanEx()
> nameEx("Hypergeometric")
> ### * Hypergeometric
>
> flush(stderr()); flush(stdout())
>
> ### Name: Hypergeometric
> ### Title: The Hypergeometric Distribution
> ### Aliases: Hypergeometric dhyper phyper qhyper rhyper
> ### Keywords: distribution
>
> ### ** Examples
>
> m <- 10; n <- 7; k <- 8
> x <- 0:(k+1)
> rbind(phyper(x, m, n, k), dhyper(x, m, n, k))
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0 0.0004113534 0.01336898 0.117030 0.4193747 0.7821884 0.9635952
[2,] 0 0.0004113534 0.01295763 0.103661 0.3023447 0.3628137 0.1814068
[,8] [,9] [,10]
[1,] 0.99814891 1.00000000 1
[2,] 0.03455368 0.00185109 0
> all(phyper(x, m, n, k) == cumsum(dhyper(x, m, n, k))) # FALSE
[1] FALSE
>
>
> cleanEx()
> nameEx("IQR")
> ### * IQR
>
> flush(stderr()); flush(stdout())
>
> ### Name: IQR
> ### Title: The Interquartile Range
> ### Aliases: IQR
> ### Keywords: univar robust distribution
>
> ### ** Examples
>
> IQR(rivers)
[1] 370
>
>
>
> cleanEx()
> nameEx("KalmanLike")
> ### * KalmanLike
>
> flush(stderr()); flush(stdout())
>
> ### Name: KalmanLike
> ### Title: Kalman Filtering
> ### Aliases: KalmanLike KalmanRun KalmanSmooth KalmanForecast makeARIMA
> ### Keywords: ts
>
> ### ** Examples
>
> ## an ARIMA fit
> fit3 <- arima(presidents, c(3, 0, 0))
> predict(fit3, 12)
$pred
Qtr1 Qtr2 Qtr3 Qtr4
1975 29.84194 34.41014 39.30815 43.02779
1976 46.18808 48.56947 50.44866 51.86064
1977 52.94295 53.75521 54.37019 54.83150
$se
Qtr1 Qtr2 Qtr3 Qtr4
1975 9.00655 11.25606 13.43389 14.51516
1976 15.25538 15.65611 15.90158 16.03792
1977 16.11764 16.16229 16.18785 16.20220
> ## reconstruct this
> pr <- KalmanForecast(12, fit3$model)
> pr$pred + fit3$coef[4]
[1] 29.84194 34.41014 39.30815 43.02779 46.18808 48.56947 50.44866 51.86064
[9] 52.94295 53.75521 54.37019 54.83150
> sqrt(pr$var * fit3$sigma2)
[1] 9.00655 11.25606 13.43389 14.51516 15.25538 15.65611 15.90158 16.03792
[9] 16.11764 16.16229 16.18785 16.20220
> ## and now do it year by year
> mod <- fit3$model
> for(y in 1:3) {
+ pr <- KalmanForecast(4, mod, TRUE)
+ print(list(pred = pr$pred + fit3$coef["intercept"],
+ se = sqrt(pr$var * fit3$sigma2)))
+ mod <- attr(pr, "mod")
+ }
$pred
[1] 29.84194 34.41014 39.30815 43.02779
$se
[1] 9.00655 11.25606 13.43389 14.51516
$pred
[1] 46.18808 48.56947 50.44866 51.86064
$se
[1] 15.25538 15.65611 15.90158 16.03792
$pred
[1] 52.94295 53.75521 54.37019 54.83150
$se
[1] 16.11764 16.16229 16.18785 16.20220
>
>
>
> cleanEx()
> nameEx("Logistic")
> ### * Logistic
>
> flush(stderr()); flush(stdout())
>
> ### Name: Logistic
> ### Title: The Logistic Distribution
> ### Aliases: Logistic dlogis plogis qlogis rlogis
> ### Keywords: distribution
>
> ### ** Examples
>
> var(rlogis(4000, 0, scale = 5)) # approximately (+/- 3)
[1] 86.93007
> pi^2/3 * 5^2
[1] 82.2467
>
>
>
> cleanEx()
> nameEx("Lognormal")
> ### * Lognormal
>
> flush(stderr()); flush(stdout())
>
> ### Name: Lognormal
> ### Title: The Log Normal Distribution
> ### Aliases: Lognormal dlnorm plnorm qlnorm rlnorm
> ### Keywords: distribution
>
> ### ** Examples
>
> dlnorm(1) == dnorm(0)
[1] TRUE
>
>
>
> cleanEx()
> nameEx("Multinom")
> ### * Multinom
>
> flush(stderr()); flush(stdout())
>
> ### Name: Multinom
> ### Title: The Multinomial Distribution
> ### Aliases: Multinomial rmultinom dmultinom
> ### Keywords: distribution
>
> ### ** Examples
>
> rmultinom(10, size = 12, prob = c(0.1,0.2,0.8))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 1 0 3 1 0 1 2 2 1
[2,] 2 4 4 2 0 1 2 2 5 3
[3,] 10 7 8 7 11 11 9 8 5 8
>
> pr <- c(1,3,6,10) # normalization not necessary for generation
> rmultinom(10, 20, prob = pr)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 3 0 0 0 1 1 1 1 1 1
[2,] 1 2 3 3 2 4 3 4 4 4
[3,] 7 6 9 7 8 3 8 6 2 7
[4,] 9 12 8 10 9 12 8 9 13 8
>
> ## all possible outcomes of Multinom(N = 3, K = 3)
> X <- t(as.matrix(expand.grid(0:3, 0:3))); X <- X[, colSums(X) <= 3]
> X <- rbind(X, 3:3 - colSums(X)); dimnames(X) <- list(letters[1:3], NULL)
> X
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
a 0 1 2 3 0 1 2 0 1 0
b 0 0 0 0 1 1 1 2 2 3
c 3 2 1 0 2 1 0 1 0 0
> round(apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5))), 3)
[1] 0.244 0.146 0.029 0.002 0.293 0.117 0.012 0.117 0.023 0.016
>
>
>
> cleanEx()
> nameEx("NLSstAsymptotic")
> ### * NLSstAsymptotic
>
> flush(stderr()); flush(stdout())
>
> ### Name: NLSstAsymptotic
> ### Title: Fit the Asymptotic Regression Model
> ### Aliases: NLSstAsymptotic NLSstAsymptotic.sortedXyData
> ### Keywords: manip
>
> ### ** Examples
>
> Lob.329 <- Loblolly[ Loblolly$Seed == "329", ]
> print(NLSstAsymptotic(sortedXyData(expression(age),
+ expression(height),
+ Lob.329)), digits = 3)
b0 b1 lrc
-8.25 102.38 -3.22
>
>
>
> cleanEx()
> nameEx("NLSstClosestX")
> ### * NLSstClosestX
>
> flush(stderr()); flush(stdout())
>
> ### Name: NLSstClosestX
> ### Title: Inverse Interpolation
> ### Aliases: NLSstClosestX NLSstClosestX.sortedXyData
> ### Keywords: manip
>
> ### ** Examples
>
> DNase.2 <- DNase[ DNase$Run == "2", ]
> DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
> NLSstClosestX(DN.srt, 1.0)
[1] 0.9795406
>
>
>
> cleanEx()
> nameEx("NLSstLfAsymptote")
> ### * NLSstLfAsymptote
>
> flush(stderr()); flush(stdout())
>
> ### Name: NLSstLfAsymptote
> ### Title: Horizontal Asymptote on the Left Side
> ### Aliases: NLSstLfAsymptote NLSstLfAsymptote.sortedXyData
> ### Keywords: manip
>
> ### ** Examples
>
> DNase.2 <- DNase[ DNase$Run == "2", ]
> DN.srt <- sortedXyData( expression(log(conc)), expression(density), DNase.2 )
> NLSstLfAsymptote( DN.srt )
[1] -0.1869375
>
>
>
> cleanEx()
> nameEx("NLSstRtAsymptote")
> ### * NLSstRtAsymptote
>
> flush(stderr()); flush(stdout())
>
> ### Name: NLSstRtAsymptote
> ### Title: Horizontal Asymptote on the Right Side
> ### Aliases: NLSstRtAsymptote NLSstRtAsymptote.sortedXyData
> ### Keywords: manip
>
> ### ** Examples
>
> DNase.2 <- DNase[ DNase$Run == "2", ]
> DN.srt <- sortedXyData( expression(log(conc)), expression(density), DNase.2 )
> NLSstRtAsymptote( DN.srt )
[1] 2.157437
>
>
>
> cleanEx()
> nameEx("NegBinomial")
> ### * NegBinomial
>
> flush(stderr()); flush(stdout())
>
> ### Name: NegBinomial
> ### Title: The Negative Binomial Distribution
> ### Aliases: NegBinomial dnbinom pnbinom qnbinom rnbinom
> ### Keywords: distribution
>
> ### ** Examples
>
> require(graphics)
> x <- 0:11
> dnbinom(x, size = 1, prob = 1/2) * 2^(1 + x) # == 1
[1] 1 1 1 1 1 1 1 1 1 1 1 1
> 126 / dnbinom(0:8, size = 2, prob = 1/2) #- theoretically integer
[1] 504.0 504.0 672.0 1008.0 1612.8 2688.0 4608.0 8064.0 14336.0
>
>
> x <- 0:15
> size <- (1:20)/4
> persp(x, size, dnb <- outer(x, size, function(x,s) dnbinom(x, s, prob = 0.4)),
+ xlab = "x", ylab = "s", zlab = "density", theta = 150)
> title(tit <- "negative binomial density(x,s, pr = 0.4) vs. x & s")
>
> image (x, size, log10(dnb), main = paste("log [", tit, "]"))
> contour(x, size, log10(dnb), add = TRUE)
>
> ## Alternative parametrization
> x1 <- rnbinom(500, mu = 4, size = 1)
> x2 <- rnbinom(500, mu = 4, size = 10)
> x3 <- rnbinom(500, mu = 4, size = 100)
> h1 <- hist(x1, breaks = 20, plot = FALSE)
> h2 <- hist(x2, breaks = h1$breaks, plot = FALSE)
> h3 <- hist(x3, breaks = h1$breaks, plot = FALSE)
> barplot(rbind(h1$counts, h2$counts, h3$counts),
+ beside = TRUE, col = c("red","blue","cyan"),
+ names.arg = round(h1$breaks[-length(h1$breaks)]))
>
>
>
> cleanEx()
> nameEx("Normal")
> ### * Normal
>
> flush(stderr()); flush(stdout())
>
> ### Name: Normal
> ### Title: The Normal Distribution
> ### Aliases: Normal dnorm pnorm qnorm rnorm
> ### Keywords: distribution
>
> ### ** Examples
>
> require(graphics)
>
> dnorm(0) == 1/sqrt(2*pi)
[1] TRUE
> dnorm(1) == exp(-1/2)/sqrt(2*pi)
[1] TRUE
> dnorm(1) == 1/sqrt(2*pi*exp(1))
[1] TRUE
>
> ## Using "log = TRUE" for an extended range :
> par(mfrow = c(2,1))
> plot(function(x) dnorm(x, log = TRUE), -60, 50,
+ main = "log { Normal density }")
> curve(log(dnorm(x)), add = TRUE, col = "red", lwd = 2)
> mtext("dnorm(x, log=TRUE)", adj = 0)
> mtext("log(dnorm(x))", col = "red", adj = 1)
>
> plot(function(x) pnorm(x, log.p = TRUE), -50, 10,
+ main = "log { Normal Cumulative }")
> curve(log(pnorm(x)), add = TRUE, col = "red", lwd = 2)
> mtext("pnorm(x, log=TRUE)", adj = 0)
> mtext("log(pnorm(x))", col = "red", adj = 1)
>
> ## if you want the so-called 'error function'
> erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1
> ## (see Abramowitz and Stegun 29.2.29)
> ## and the so-called 'complementary error function'
> erfc <- function(x) 2 * pnorm(x * sqrt(2), lower = FALSE)
> ## and the inverses
> erfinv <- function (x) qnorm((1 + x)/2)/sqrt(2)
> erfcinv <- function (x) qnorm(x/2, lower = FALSE)/sqrt(2)
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("Poisson")
> ### * Poisson
>
> flush(stderr()); flush(stdout())
>
> ### Name: Poisson
> ### Title: The Poisson Distribution
> ### Aliases: Poisson dpois ppois qpois rpois
> ### Keywords: distribution
>
> ### ** Examples
>
> require(graphics)
>
> -log(dpois(0:7, lambda = 1) * gamma(1+ 0:7)) # == 1
[1] 1 1 1 1 1 1 1 1
> Ni <- rpois(50, lambda = 4); table(factor(Ni, 0:max(Ni)))
0 1 2 3 4 5 6 7 8 9 10
1 2 7 9 8 13 5 4 0 0 1
>
> 1 - ppois(10*(15:25), lambda = 100) # becomes 0 (cancellation)
[1] 1.233094e-06 1.261664e-08 7.085799e-11 2.252643e-13 4.440892e-16
[6] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
[11] 0.000000e+00
> ppois(10*(15:25), lambda = 100, lower.tail = FALSE) # no cancellation
[1] 1.233094e-06 1.261664e-08 7.085800e-11 2.253110e-13 4.174239e-16
[6] 4.626179e-19 3.142097e-22 1.337219e-25 3.639328e-29 6.453883e-33
[11] 7.587807e-37
>
> par(mfrow = c(2, 1))
> x <- seq(-0.01, 5, 0.01)
> plot(x, ppois(x, 1), type = "s", ylab = "F(x)", main = "Poisson(1) CDF")
> plot(x, pbinom(x, 100, 0.01), type = "s", ylab = "F(x)",
+ main = "Binomial(100, 0.01) CDF")
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("SSD")
> ### * SSD
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSD
> ### Title: SSD Matrix and Estimated Variance Matrix in Multivariate Models
> ### Aliases: SSD estVar
> ### Keywords: models multivariate
>
> ### ** Examples
>
> # Lifted from Baron+Li:
> # "Notes on the use of R for psychology experiments and questionnaires"
> # Maxwell and Delaney, p. 497
> reacttime <- matrix(c(
+ 420, 420, 480, 480, 600, 780,
+ 420, 480, 480, 360, 480, 600,
+ 480, 480, 540, 660, 780, 780,
+ 420, 540, 540, 480, 780, 900,
+ 540, 660, 540, 480, 660, 720,
+ 360, 420, 360, 360, 480, 540,
+ 480, 480, 600, 540, 720, 840,
+ 480, 600, 660, 540, 720, 900,
+ 540, 600, 540, 480, 720, 780,
+ 480, 420, 540, 540, 660, 780),
+ ncol = 6, byrow = TRUE,
+ dimnames = list(subj = 1:10,
+ cond = c("deg0NA", "deg4NA", "deg8NA",
+ "deg0NP", "deg4NP", "deg8NP")))
>
> mlmfit <- lm(reacttime ~ 1)
> SSD(mlmfit)
$SSD
cond
cond deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP
deg0NA 29160 30600 26640 23760 32400 25560
deg4NA 30600 66600 32400 7200 36000 30600
deg8NA 26640 32400 56160 41040 57600 69840
deg0NP 23760 7200 41040 70560 72000 63360
deg4NP 32400 36000 57600 72000 108000 100800
deg8NP 25560 30600 69840 63360 100800 122760
$call
lm(formula = reacttime ~ 1)
$df
[1] 9
attr(,"class")
[1] "SSD"
> estVar(mlmfit)
cond
cond deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP
deg0NA 3240 3400 2960 2640 3600 2840
deg4NA 3400 7400 3600 800 4000 3400
deg8NA 2960 3600 6240 4560 6400 7760
deg0NP 2640 800 4560 7840 8000 7040
deg4NP 3600 4000 6400 8000 12000 11200
deg8NP 2840 3400 7760 7040 11200 13640
>
>
>
> cleanEx()
> nameEx("SSasymp")
> ### * SSasymp
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSasymp
> ### Title: Self-Starting Nls Asymptotic Regression Model
> ### Aliases: SSasymp
> ### Keywords: models
>
> ### ** Examples
>
> ## Don't show:
> options(show.nls.convergence=FALSE)
> ## End Don't show
> Lob.329 <- Loblolly[ Loblolly$Seed == "329", ]
> SSasymp( Lob.329$age, 100, -8.5, -3.2 ) # response only
[1] 3.988924 11.505611 27.822517 41.130854 51.985354 60.838463
> Asym <- 100
> resp0 <- -8.5
> lrc <- -3.2
> SSasymp( Lob.329$age, Asym, resp0, lrc ) # response and gradient
[1] 3.988924 11.505611 27.822517 41.130854 51.985354 60.838463
attr(,"gradient")
Asym resp0 lrc
[1,] 0.1151053 0.8848947 11.74087
[2,] 0.1843835 0.8156165 18.03613
[3,] 0.3347697 0.6652303 29.42113
[4,] 0.4574272 0.5425728 35.99454
[5,] 0.5574687 0.4425313 39.14366
[6,] 0.6390642 0.3609358 39.90776
> getInitial(height ~ SSasymp( age, Asym, resp0, lrc), data = Lob.329)
$Asym
[1] 94.1282
$resp0
[1] -8.250753
$lrc
[1] -3.217578
> ## Initial values are in fact the converged values
> fm1 <- nls(height ~ SSasymp( age, Asym, resp0, lrc), data = Lob.329)
> summary(fm1)
Formula: height ~ SSasymp(age, Asym, resp0, lrc)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Asym 94.1282 8.4030 11.202 0.001525 **
resp0 -8.2508 1.2261 -6.729 0.006700 **
lrc -3.2176 0.1386 -23.218 0.000175 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7493 on 3 degrees of freedom
> ## Don't show:
> require(graphics)
>
> xx <- seq(0, 5, len = 101)
> yy <- 5 - 4 * exp(-xx/(2*log(2)))
> par(mar = c(0, 0, 4.1, 0))
> plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),
+ xlab = "", ylab = "", lwd = 2,
+ main = "Parameters in the SSasymp model")
> usr <- par("usr")
> arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
> arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
> text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
> text(-0.1, usr[4], "y", adj = c(1, 1))
> abline(h = 5, lty = 2, lwd = 0)
> arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
> arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
> text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
> segments(-0.4, 1, 0, 1, lty = 2, lwd = 0.75)
> arrows(-0.3, 0.25, -0.3, 0, length = 0.07, angle = 25)
> arrows(-0.3, 0.75, -0.3, 1, length = 0.07, angle = 25)
> text(-0.3, 0.5, expression(phi[2]), adj = c(0.5, 0.5))
> segments(1, 3.025, 1, 4, lty = 2, lwd = 0.75)
> arrows(0.2, 3.5, 0, 3.5, length = 0.08, angle = 25)
> arrows(0.8, 3.5, 1, 3.5, length = 0.08, angle = 25)
> text(0.5, 3.5, expression(t[0.5]), adj = c(0.5, 0.5))
> ## End Don't show
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("SSasympOff")
> ### * SSasympOff
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSasympOff
> ### Title: Self-Starting Nls Asymptotic Regression Model with an Offset
> ### Aliases: SSasympOff
> ### Keywords: models
>
> ### ** Examples
>
> CO2.Qn1 <- CO2[CO2$Plant == "Qn1", ]
> SSasympOff(CO2.Qn1$conc, 32, -4, 43) # response only
[1] 19.65412 29.14785 31.27791 31.88435 31.99259 31.99970 32.00000
> Asym <- 32; lrc <- -4; c0 <- 43
> SSasympOff(CO2.Qn1$conc, Asym, lrc, c0) # response and gradient
[1] 19.65412 29.14785 31.27791 31.88435 31.99259 31.99970 32.00000
attr(,"gradient")
Asym lrc c0
[1,] 0.6141911 1.175838e+01 -2.261227e-01
[2,] 0.9108704 6.895531e+00 -5.223887e-02
[3,] 0.9774346 2.737698e+00 -1.322559e-02
[4,] 0.9963859 6.503026e-01 -2.118250e-03
[5,] 0.9997683 6.204920e-02 -1.357751e-04
[6,] 0.9999906 3.479529e-03 -5.505583e-06
[7,] 1.0000000 1.369435e-05 -1.430967e-08
> getInitial(uptake ~ SSasympOff(conc, Asym, lrc, c0), data = CO2.Qn1)
$Asym
[1] 38.13978
$lrc
[1] -4.380647
$c0
[1] 51.22324
> ## Initial values are in fact the converged values
> fm1 <- nls(uptake ~ SSasympOff(conc, Asym, lrc, c0), data = CO2.Qn1)
> summary(fm1)
Formula: uptake ~ SSasympOff(conc, Asym, lrc, c0)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Asym 38.1398 0.9164 41.620 1.99e-06 ***
lrc -4.3806 0.2042 -21.457 2.79e-05 ***
c0 51.2232 11.6698 4.389 0.0118 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.663 on 4 degrees of freedom
> ## Don't show:
> require(graphics)
>
> xx <- seq(0.5, 5, len = 101)
> yy <- 5 * (1 - exp(-(xx - 0.5)/(2*log(2))))
> par(mar = c(0, 0, 4.0, 0))
> plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),
+ xlab = "", ylab = "", lwd = 2,
+ main = "Parameters in the SSasympOff model")
> usr <- par("usr")
> arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
> arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
> text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
> text(-0.1, usr[4], "y", adj = c(1, 1))
> abline(h = 5, lty = 2, lwd = 0)
> arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
> arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
> text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
> segments(0.5, 0, 0.5, 3, lty = 2, lwd = 0.75)
> text(0.5, 3.1, expression(phi[3]), adj = c(0.5, 0))
> segments(1.5, 2.525, 1.5, 3, lty = 2, lwd = 0.75)
> arrows(0.7, 2.65, 0.5, 2.65, length = 0.08, angle = 25)
> arrows(1.3, 2.65, 1.5, 2.65, length = 0.08, angle = 25)
> text(1.0, 2.65, expression(t[0.5]), adj = c(0.5, 0.5))
> ## End Don't show
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("SSasympOrig")
> ### * SSasympOrig
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSasympOrig
> ### Title: Self-Starting Nls Asymptotic Regression Model through the Origin
> ### Aliases: SSasympOrig
> ### Keywords: models
>
> ### ** Examples
> ## Don't show:
> require(graphics)
>
> xx <- seq(0, 5, len = 101)
> yy <- 5 * (1- exp(-xx/(2*log(2))))
> par(mar = c(0, 0, 3.5, 0))
> plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),
+ xlab = "", ylab = "", lwd = 2,
+ main = "Parameters in the SSasympOrig model")
> usr <- par("usr")
> arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
> arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
> text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
> text(-0.1, usr[4], "y", adj = c(1, 1))
> abline(h = 5, lty = 2, lwd = 0)
> arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
> arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
> text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
> segments(1, 2.525, 1, 3.5, lty = 2, lwd = 0.75)
> arrows(0.2, 3.0, 0, 3.0, length = 0.08, angle = 25)
> arrows(0.8, 3.0, 1, 3.0, length = 0.08, angle = 25)
> text(0.5, 3.0, expression(t[0.5]), adj = c(0.5, 0.5))
> ## End Don't show
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("SSbiexp")
> ### * SSbiexp
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSbiexp
> ### Title: Self-Starting Nls Biexponential model
> ### Aliases: SSbiexp
> ### Keywords: models
>
> ### ** Examples
>
> Indo.1 <- Indometh[Indometh$Subject == 1, ]
> SSbiexp( Indo.1$time, 3, 1, 0.6, -1.3 ) # response only
[1] 2.08098572 1.29421044 0.87967145 0.65483364 0.52711347 0.36094621
[7] 0.26575722 0.20176113 0.15359129 0.11694936 0.06780767
> A1 <- 3; lrc1 <- 1; A2 <- 0.6; lrc2 <- -1.3
> SSbiexp( Indo.1$time, A1, lrc1, A2, lrc2 ) # response and gradient
[1] 2.08098572 1.29421044 0.87967145 0.65483364 0.52711347 0.36094621
[7] 0.26575722 0.20176113 0.15359129 0.11694936 0.06780767
attr(,"gradient")
A1 lrc1 A2 lrc2
[1,] 5.068347e-01 -1.033290e+00 0.9341363 -0.03818728
[2,] 2.568814e-01 -1.047414e+00 0.8726106 -0.07134424
[3,] 1.301964e-01 -7.962985e-01 0.8151372 -0.09996786
[4,] 6.598804e-02 -5.381222e-01 0.7614492 -0.12451147
[5,] 3.344502e-02 -3.409237e-01 0.7112973 -0.14538835
[6,] 4.354421e-03 -7.101926e-02 0.5798049 -0.18961833
[7,] 2.873397e-04 -7.029632e-03 0.4414920 -0.21657709
[8,] 1.896098e-05 -6.184955e-04 0.3361737 -0.21988328
[9,] 1.251198e-06 -5.101663e-05 0.2559792 -0.20928744
[10,] 8.256409e-08 -4.039784e-06 0.1949152 -0.19123411
[11,] 3.595188e-10 -2.345456e-08 0.1130128 -0.14783797
> print(getInitial(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1),
+ digits = 5)
A1 lrc1 A2 lrc2
2.02928 0.57939 0.19155 -1.78778
> ## Initial values are in fact the converged values
> fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1)
> summary(fm1)
Formula: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)
Parameters:
Estimate Std. Error t value Pr(>|t|)
A1 2.0293 0.1099 18.464 3.39e-07 ***
lrc1 0.5794 0.1247 4.648 0.00235 **
A2 0.1915 0.1106 1.731 0.12698
lrc2 -1.7878 0.7871 -2.271 0.05737 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.04103 on 7 degrees of freedom
>
> ## Show the model components visually
> require(graphics)
>
> xx <- seq(0, 5, len = 101)
> y1 <- 3.5 * exp(-4*xx)
> y2 <- 1.5 * exp(-xx)
> plot(xx, y1 + y2, type = "l", lwd=2, ylim = c(-0.2,6), xlim = c(0, 5),
+ main = "Components of the SSbiexp model")
> lines(xx, y1, lty = 2, col="tomato"); abline(v=0, h=0, col="gray40")
> lines(xx, y2, lty = 3, col="blue2" )
> legend("topright", c("y1+y2", "y1 = 3.5 * exp(-4*x)", "y2 = 1.5 * exp(-x)"),
+ lty=1:3, col=c("black","tomato","blue2"), bty="n")
> axis(2, pos=0, at = c(3.5, 1.5), labels = c("A1","A2"), las=2)
>
> ## and how you could have got their sum via SSbiexp():
> ySS <- SSbiexp(xx, 3.5, log(4), 1.5, log(1))
> ## --- ---
> stopifnot(all.equal(y1+y2, ySS, tolerance = 1e-15))
>
>
>
> cleanEx()
> nameEx("SSfol")
> ### * SSfol
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSfol
> ### Title: Self-Starting Nls First-order Compartment Model
> ### Aliases: SSfol
> ### Keywords: models
>
> ### ** Examples
>
> Theoph.1 <- Theoph[ Theoph$Subject == 1, ]
> SSfol(Theoph.1$Dose, Theoph.1$Time, -2.5, 0.5, -3) # response only
[1] 0.000000 2.214486 3.930988 5.261945 5.659813 5.084852 4.587699 3.916808
[9] 3.318395 2.579204 0.943593
> lKe <- -2.5; lKa <- 0.5; lCl <- -3
> SSfol(Theoph.1$Dose, Theoph.1$Time, lKe, lKa, lCl) # response and gradient
[1] 0.000000 2.214486 3.930988 5.261945 5.659813 5.084852 4.587699 3.916808
[9] 3.318395 2.579204 0.943593
attr(,"gradient")
lKe lKa lCl
[1,] 0.000000 0.00000000 0.000000
[2,] 2.190284 1.78781716 -2.214486
[3,] 3.825518 2.35519507 -3.930988
[4,] 4.952713 1.75648252 -5.261945
[5,] 4.976520 0.53458070 -5.659813
[6,] 3.752822 -0.18560297 -5.084852
[7,] 2.906859 -0.22729852 -4.587699
[8,] 1.861771 -0.20447579 -3.916808
[9,] 1.027129 -0.17383515 -3.318395
[10,] 0.148370 -0.13513891 -2.579204
[11,] -0.894541 -0.04944021 -0.943593
> getInitial(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)
$lKe
[1] -2.994845
$lKa
[1] 0.609169
$lCl
[1] -3.971003
> ## Initial values are in fact the converged values
> fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)
> summary(fm1)
Formula: conc ~ SSfol(Dose, Time, lKe, lKa, lCl)
Parameters:
Estimate Std. Error t value Pr(>|t|)
lKe -2.9196 0.1709 -17.085 1.40e-07 ***
lKa 0.5752 0.1728 3.328 0.0104 *
lCl -3.9159 0.1273 -30.768 1.35e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.732 on 8 degrees of freedom
>
>
>
> cleanEx()
> nameEx("SSfpl")
> ### * SSfpl
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSfpl
> ### Title: Self-Starting Nls Four-Parameter Logistic Model
> ### Aliases: SSfpl
> ### Keywords: models
>
> ### ** Examples
>
> Chick.1 <- ChickWeight[ChickWeight$Chick == 1, ]
> SSfpl(Chick.1$Time, 13, 368, 14, 6) # response only
[1] 44.38189 55.31704 69.39853 87.05603 108.47420 133.43149 161.18758
[8] 190.50000 219.81242 247.56851 272.52580 283.70240
> A <- 13; B <- 368; xmid <- 14; scal <- 6
> SSfpl(Chick.1$Time, A, B, xmid, scal) # response and gradient
[1] 44.38189 55.31704 69.39853 87.05603 108.47420 133.43149 161.18758
[8] 190.50000 219.81242 247.56851 272.52580 283.70240
attr(,"gradient")
A B xmid scal
[1,] 0.9116003 0.08839968 -4.767956 11.125231
[2,] 0.8807971 0.11920292 -6.212120 12.424241
[3,] 0.8411309 0.15886910 -7.906425 13.177374
[4,] 0.7913915 0.20860853 -9.767885 13.023846
[5,] 0.7310586 0.26894142 -11.632873 11.632873
[6,] 0.6607564 0.33924363 -13.262646 8.841764
[7,] 0.5825702 0.41742979 -14.388278 4.796093
[8,] 0.5000000 0.50000000 -14.791667 0.000000
[9,] 0.4174298 0.58257021 -14.388278 -4.796093
[10,] 0.3392436 0.66075637 -13.262646 -8.841764
[11,] 0.2689414 0.73105858 -11.632873 -11.632873
[12,] 0.2374580 0.76254197 -10.713410 -12.498978
> print(getInitial(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1),
+ digits = 5)
A B xmid scal
27.4532 348.9712 19.3905 6.6726
> ## Initial values are in fact the converged values
> fm1 <- nls(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1)
> summary(fm1)
Formula: weight ~ SSfpl(Time, A, B, xmid, scal)
Parameters:
Estimate Std. Error t value Pr(>|t|)
A 27.453 6.601 4.159 0.003169 **
B 348.971 57.899 6.027 0.000314 ***
xmid 19.391 2.194 8.836 2.12e-05 ***
scal 6.673 1.002 6.662 0.000159 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.351 on 8 degrees of freedom
> ## Don't show:
> require(graphics)
>
> xx <- seq(-0.5, 5, len = 101)
> yy <- 1 + 4 / ( 1 + exp((2-xx)))
> par(mar = c(0, 0, 3.5, 0))
> plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),
+ xlab = "", ylab = "", lwd = 2,
+ main = "Parameters in the SSfpl model")
> usr <- par("usr")
> arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
> arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
> text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
> text(-0.1, usr[4], "y", adj = c(1, 1))
> abline(h = 5, lty = 2, lwd = 0)
> arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
> arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
> text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
> abline(h = 1, lty = 2, lwd = 0)
> arrows(-0.3, 0.25, -0.3, 0, length = 0.07, angle = 25)
> arrows(-0.3, 0.75, -0.3, 1, length = 0.07, angle = 25)
> text(-0.3, 0.5, expression(phi[2]), adj = c(0.5, 0.5))
> segments(2, 0, 2, 3.3, lty = 2, lwd = 0.75)
> text(2, 3.3, expression(phi[3]), adj = c(0.5, 0))
> segments(3, 1+4/(1+exp(-1)) - 0.025, 3, 2.5, lty = 2, lwd = 0.75)
> arrows(2.3, 2.7, 2.0, 2.7, length = 0.08, angle = 25)
> arrows(2.7, 2.7, 3.0, 2.7, length = 0.08, angle = 25)
> text(2.5, 2.7, expression(phi[4]), adj = c(0.5, 0.5))
> ## End Don't show
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("SSgompertz")
> ### * SSgompertz
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSgompertz
> ### Title: Self-Starting Nls Gompertz Growth Model
> ### Aliases: SSgompertz
> ### Keywords: models
>
> ### ** Examples
>
> DNase.1 <- subset(DNase, Run == 1)
> SSgompertz(log(DNase.1$conc), 4.5, 2.3, 0.7) # response only
[1] 0.00525729 0.00525729 0.07323255 0.07323255 0.18049064 0.18049064
[7] 0.36508763 0.36508763 0.63288772 0.63288772 0.97257180 0.97257180
[13] 1.36033340 1.36033340 1.76786902 1.76786902
> Asym <- 4.5; b2 <- 2.3; b3 <- 0.7
> SSgompertz(log(DNase.1$conc), Asym, b2, b3) # response and gradient
[1] 0.00525729 0.00525729 0.07323255 0.07323255 0.18049064 0.18049064
[7] 0.36508763 0.36508763 0.63288772 0.63288772 0.97257180 0.97257180
[13] 1.36033340 1.36033340 1.76786902 1.76786902
attr(,"gradient")
Asym b2 b3
[1,] 0.001168287 -0.01543407 0.1531221
[2,] 0.001168287 -0.01543407 0.1531221
[3,] 0.016273900 -0.13112424 0.7036230
[4,] 0.016273900 -0.13112424 0.7036230
[5,] 0.040109031 -0.25238507 0.7795153
[6,] 0.040109031 -0.25238507 0.7795153
[7,] 0.081130585 -0.39869082 0.3233828
[8,] 0.081130585 -0.39869082 0.3233828
[9,] 0.140641716 -0.53975407 -0.7914802
[10,] 0.140641716 -0.53975407 -0.7914802
[11,] 0.216127067 -0.64777036 -2.4251586
[12,] 0.216127067 -0.64777036 -2.4251586
[13,] 0.302296311 -0.70757894 -4.2605728
[14,] 0.302296311 -0.70757894 -4.2605728
[15,] 0.392859783 -0.71814108 -5.9597255
[16,] 0.392859783 -0.71814108 -5.9597255
> print(getInitial(density ~ SSgompertz(log(conc), Asym, b2, b3),
+ data = DNase.1), digits = 5)
Asym b2 b3
4.60333 2.27134 0.71647
> ## Initial values are in fact the converged values
> fm1 <- nls(density ~ SSgompertz(log(conc), Asym, b2, b3),
+ data = DNase.1)
> summary(fm1)
Formula: density ~ SSgompertz(log(conc), Asym, b2, b3)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Asym 4.60333 0.65321 7.047 8.71e-06 ***
b2 2.27134 0.14373 15.803 7.24e-10 ***
b3 0.71647 0.02206 32.475 7.85e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.02684 on 13 degrees of freedom
>
>
>
> cleanEx()
> nameEx("SSlogis")
> ### * SSlogis
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSlogis
> ### Title: Self-Starting Nls Logistic Model
> ### Aliases: SSlogis
> ### Keywords: models
>
> ### ** Examples
> ## Don't show:
> require(graphics)
>
> xx <- seq(-0.5, 5, len = 101)
> yy <- 5 / ( 1 + exp((2-xx)))
> par(mar = c(0, 0, 3.5, 0))
> plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),
+ xlab = "", ylab = "", lwd = 2,
+ main = "Parameters in the SSlogis model")
> usr <- par("usr")
> arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
> arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
> text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
> text(-0.1, usr[4], "y", adj = c(1, 1))
> abline(h = 5, lty = 2, lwd = 0)
> arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
> arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
> text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
> segments(2, 0, 2, 4.0, lty = 2, lwd = 0.75)
> text(2, 4.0, expression(phi[2]), adj = c(0.5, 0))
> segments(3, 5/(1+exp(-1)) + 0.025, 3, 4.0, lty = 2, lwd = 0.75)
> arrows(2.3, 3.8, 2.0, 3.8, length = 0.08, angle = 25)
> arrows(2.7, 3.8, 3.0, 3.8, length = 0.08, angle = 25)
> text(2.5, 3.8, expression(phi[3]), adj = c(0.5, 0.5))
> ## End Don't show
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("SSmicmen")
> ### * SSmicmen
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSmicmen
> ### Title: Self-Starting Nls Michaelis-Menten Model
> ### Aliases: SSmicmen
> ### Keywords: models
>
> ### ** Examples
>
> PurTrt <- Puromycin[ Puromycin$state == "treated", ]
> SSmicmen(PurTrt$conc, 200, 0.05) # response only
[1] 57.14286 57.14286 109.09091 109.09091 137.50000 137.50000 162.96296
[8] 162.96296 183.60656 183.60656 191.30435 191.30435
> Vm <- 200; K <- 0.05
> SSmicmen(PurTrt$conc, Vm, K) # response and gradient
[1] 57.14286 57.14286 109.09091 109.09091 137.50000 137.50000 162.96296
[8] 162.96296 183.60656 183.60656 191.30435 191.30435
attr(,"gradient")
Vm K
[1,] 0.2857143 -816.3265
[2,] 0.2857143 -816.3265
[3,] 0.5454545 -991.7355
[4,] 0.5454545 -991.7355
[5,] 0.6875000 -859.3750
[6,] 0.6875000 -859.3750
[7,] 0.8148148 -603.5665
[8,] 0.8148148 -603.5665
[9,] 0.9180328 -300.9944
[10,] 0.9180328 -300.9944
[11,] 0.9565217 -166.3516
[12,] 0.9565217 -166.3516
> print(getInitial(rate ~ SSmicmen(conc, Vm, K), data = PurTrt), digits = 3)
Vm K
212.6837 0.0641
> ## Initial values are in fact the converged values
> fm1 <- nls(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)
> summary(fm1)
Formula: rate ~ SSmicmen(conc, Vm, K)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Vm 2.127e+02 6.947e+00 30.615 3.24e-11 ***
K 6.412e-02 8.281e-03 7.743 1.57e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 10.93 on 10 degrees of freedom
> ## Alternative call using the subset argument
> fm2 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,
+ subset = state == "treated")
> summary(fm2)
Formula: rate ~ SSmicmen(conc, Vm, K)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Vm 2.127e+02 6.947e+00 30.615 3.24e-11 ***
K 6.412e-02 8.281e-03 7.743 1.57e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 10.93 on 10 degrees of freedom
> ## Don't show:
> require(graphics)
>
> xx <- seq(0, 5, len = 101)
> yy <- 5 * xx/(1+xx)
> par(mar = c(0, 0, 3.5, 0))
> plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5),
+ xlab = "", ylab = "", lwd = 2,
+ main = "Parameters in the SSmicmen model")
> usr <- par("usr")
> arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25)
> arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25)
> text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0))
> text(-0.1, usr[4], "y", adj = c(1, 1))
> abline(h = 5, lty = 2, lwd = 0)
> arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25)
> arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25)
> text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5))
> segments(1, 0, 1, 2.7, lty = 2, lwd = 0.75)
> text(1, 2.7, expression(phi[2]), adj = c(0.5, 0))
> ## End Don't show
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("SSweibull")
> ### * SSweibull
>
> flush(stderr()); flush(stdout())
>
> ### Name: SSweibull
> ### Title: Self-Starting Nls Weibull Growth Curve Model
> ### Aliases: SSweibull
> ### Keywords: models
>
> ### ** Examples
>
> Chick.6 <- subset(ChickWeight, (Chick == 6) & (Time > 0))
> SSweibull(Chick.6$Time, 160, 115, -5.5, 2.5) # response only
[1] 47.62811 59.09743 79.79756 105.12008 128.41818 145.02585 154.25783
[8] 158.24919 159.58222 159.92314 159.97023
> Asym <- 160; Drop <- 115; lrc <- -5.5; pwr <- 2.5
> SSweibull(Chick.6$Time, Asym, Drop, lrc, pwr) # response and gradient
[1] 47.62811 59.09743 79.79756 105.12008 128.41818 145.02585 154.25783
[8] 158.24919 159.58222 159.92314 159.97023
attr(,"gradient")
Asym Drop lrc pwr
[1,] 1 -0.9771469094 2.5978438 1.8006881
[2,] 1 -0.8774136912 13.1957043 18.2931305
[3,] 1 -0.6974125358 28.9032091 51.7875987
[4,] 1 -0.4772166721 40.5993205 84.4239136
[5,] 1 -0.2746244909 40.8147795 93.9795029
[6,] 1 -0.1302099955 30.5264027 75.8552610
[7,] 1 -0.0499319343 17.2098335 45.4177374
[8,] 1 -0.0152244293 7.3268815 20.3144290
[9,] 1 -0.0036328431 2.3469622 6.7835933
[10,] 1 -0.0006683898 0.5619310 1.6833949
[11,] 1 -0.0002589123 0.2459116 0.7486834
> getInitial(weight ~ SSweibull(Time, Asym, Drop, lrc, pwr), data = Chick.6)
Asym Drop lrc pwr
158.501204 110.997081 -5.993421 2.646141
> ## Initial values are in fact the converged values
> fm1 <- nls(weight ~ SSweibull(Time, Asym, Drop, lrc, pwr), data = Chick.6)
> summary(fm1)
Formula: weight ~ SSweibull(Time, Asym, Drop, lrc, pwr)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Asym 158.5012 1.1769 134.67 3.28e-13 ***
Drop 110.9971 2.6330 42.16 1.10e-09 ***
lrc -5.9934 0.3733 -16.05 8.83e-07 ***
pwr 2.6461 0.1613 16.41 7.62e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.061 on 7 degrees of freedom
>
>
>
> cleanEx()
> nameEx("SignRank")
> ### * SignRank
>
> flush(stderr()); flush(stdout())
>
> ### Name: SignRank
> ### Title: Distribution of the Wilcoxon Signed Rank Statistic
> ### Aliases: SignRank dsignrank psignrank qsignrank rsignrank
> ### Keywords: distribution
>
> ### ** Examples
>
> require(graphics)
>
> par(mfrow = c(2,2))
> for(n in c(4:5,10,40)) {
+ x <- seq(0, n*(n+1)/2, length = 501)
+ plot(x, dsignrank(x, n = n), type = "l",
+ main = paste0("dsignrank(x, n = ", n, ")"))
+ }
> ## Don't show:
> p <- c(1, 1, 1, 2, 2:6, 8, 10, 11, 13, 15, 17, 20, 22, 24,
+ 27, 29, 31, 33, 35, 36, 38, 39, 39, 40)
> stopifnot(round(dsignrank(0:56, n = 10)* 2^10) == c(p, rev(p), 0),
+ qsignrank((1:16)/ 16, n = 4) == c(0:2, rep(3:7, each = 2), 8:10))
> ## End Don't show
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("StructTS")
> ### * StructTS
>
> flush(stderr()); flush(stdout())
>
> ### Name: StructTS
> ### Title: Fit Structural Time Series
> ### Aliases: StructTS print.StructTS predict.StructTS
> ### Keywords: ts
>
> ### ** Examples
>
> ## see also JohnsonJohnson, Nile and AirPassengers
> require(graphics)
>
> trees <- window(treering, start = 0)
> (fit <- StructTS(trees, type = "level"))
Call:
StructTS(x = trees, type = "level")
Variances:
level epsilon
0.00037 0.07199
> plot(trees)
> lines(fitted(fit), col = "green")
> tsdiag(fit)
>
> (fit <- StructTS(log10(UKgas), type = "BSM"))
Call:
StructTS(x = log10(UKgas), type = "BSM")
Variances:
level slope seas epsilon
0.000e+00 1.733e-05 7.137e-04 3.678e-04
> par(mfrow = c(4, 1)) # to give appropriate aspect ratio for next plot.
> plot(log10(UKgas))
> plot(cbind(fitted(fit), resids=resid(fit)), main = "UK gas consumption")
>
> ## keep some parameters fixed; trace optimizer:
> StructTS(log10(UKgas), type = "BSM", fixed = c(0.1,0.001,NA,NA),
+ optim.control = list(trace = TRUE))
iter 10 value -0.936176
final value -0.936176
converged
Call:
StructTS(x = log10(UKgas), type = "BSM", fixed = c(0.1, 0.001, NA, NA), optim.control = list(trace = TRUE))
Variances:
level slope seas epsilon
0.1000000 0.0010000 0.0003012 0.0000000
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("TDist")
> ### * TDist
>
> flush(stderr()); flush(stdout())
>
> ### Name: TDist
> ### Title: The Student t Distribution
> ### Aliases: TDist dt pt qt rt
> ### Keywords: distribution
>
> ### ** Examples
>
> require(graphics)
>
> 1 - pt(1:5, df = 1)
[1] 0.25000000 0.14758362 0.10241638 0.07797913 0.06283296
> qt(.975, df = c(1:10,20,50,100,1000))
[1] 12.706205 4.302653 3.182446 2.776445 2.570582 2.446912 2.364624
[8] 2.306004 2.262157 2.228139 2.085963 2.008559 1.983972 1.962339
>
> tt <- seq(0, 10, len = 21)
> ncp <- seq(0, 6, len = 31)
> ptn <- outer(tt, ncp, function(t, d) pt(t, df = 3, ncp = d))
> t.tit <- "Non-central t - Probabilities"
> image(tt, ncp, ptn, zlim = c(0,1), main = t.tit)
> persp(tt, ncp, ptn, zlim = 0:1, r = 2, phi = 20, theta = 200, main = t.tit,
+ xlab = "t", ylab = "non-centrality parameter",
+ zlab = "Pr(T <= t)")
>
> plot(function(x) dt(x, df = 3, ncp = 2), -3, 11, ylim = c(0, 0.32),
+ main = "Non-central t - Density", yaxs = "i")
>
>
>
> cleanEx()
> nameEx("Tukey")
> ### * Tukey
>
> flush(stderr()); flush(stdout())
>
> ### Name: Tukey
> ### Title: The Studentized Range Distribution
> ### Aliases: Tukey ptukey qtukey
> ### Keywords: distribution
>
> ### ** Examples
>
> if(interactive())
+ curve(ptukey(x, nm = 6, df = 5), from = -1, to = 8, n = 101)
> (ptt <- ptukey(0:10, 2, df = 5))
[1] 0.0000000 0.4889159 0.7835628 0.9126407 0.9632574 0.9833586 0.9918510
[8] 0.9957141 0.9976011 0.9985838 0.9991249
> (qtt <- qtukey(.95, 2, df = 2:11))
[1] 6.079637 4.500659 3.926503 3.635351 3.460456 3.344084 3.261182 3.199173
[9] 3.151064 3.112663
> ## The precision may be not much more than about 8 digits:
>
>
>
> cleanEx()
> nameEx("TukeyHSD")
> ### * TukeyHSD
>
> flush(stderr()); flush(stdout())
>
> ### Name: TukeyHSD
> ### Title: Compute Tukey Honest Significant Differences
> ### Aliases: TukeyHSD
> ### Keywords: models design
>
> ### ** Examples
>
> require(graphics)
>
> summary(fm1 <- aov(breaks ~ wool + tension, data = warpbreaks))
Df Sum Sq Mean Sq F value Pr(>F)
wool 1 451 450.7 3.339 0.07361 .
tension 2 2034 1017.1 7.537 0.00138 **
Residuals 50 6748 135.0
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> TukeyHSD(fm1, "tension", ordered = TRUE)
Tukey multiple comparisons of means
95% family-wise confidence level
factor levels have been ordered
Fit: aov(formula = breaks ~ wool + tension, data = warpbreaks)
$tension
diff lwr upr p adj
M-H 4.722222 -4.6311985 14.07564 0.4474210
L-H 14.722222 5.3688015 24.07564 0.0011218
L-M 10.000000 0.6465793 19.35342 0.0336262
> plot(TukeyHSD(fm1, "tension"))
>
>
>
> cleanEx()
> nameEx("Uniform")
> ### * Uniform
>
> flush(stderr()); flush(stdout())
>
> ### Name: Uniform
> ### Title: The Uniform Distribution
> ### Aliases: Uniform dunif punif qunif runif
> ### Keywords: distribution
>
> ### ** Examples
>
> u <- runif(20)
>
> ## The following relations always hold :
> punif(u) == u
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE TRUE TRUE TRUE TRUE
> dunif(u) == 1
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE TRUE TRUE TRUE TRUE
>
> var(runif(10000)) #- ~ = 1/12 = .08333
[1] 0.08475621
>
>
>
> cleanEx()
> nameEx("Weibull")
> ### * Weibull
>
> flush(stderr()); flush(stdout())
>
> ### Name: Weibull
> ### Title: The Weibull Distribution
> ### Aliases: Weibull dweibull pweibull qweibull rweibull
> ### Keywords: distribution
>
> ### ** Examples
>
> x <- c(0, rlnorm(50))
> all.equal(dweibull(x, shape = 1), dexp(x))
[1] TRUE
> all.equal(pweibull(x, shape = 1, scale = pi), pexp(x, rate = 1/pi))
[1] TRUE
> ## Cumulative hazard H():
> all.equal(pweibull(x, 2.5, pi, lower.tail = FALSE, log.p = TRUE),
+ -(x/pi)^2.5, tolerance = 1e-15)
[1] TRUE
> all.equal(qweibull(x/11, shape = 1, scale = pi), qexp(x/11, rate = 1/pi))
[1] TRUE
>
>
>
> cleanEx()
> nameEx("Wilcoxon")
> ### * Wilcoxon
>
> flush(stderr()); flush(stdout())
>
> ### Name: Wilcoxon
> ### Title: Distribution of the Wilcoxon Rank Sum Statistic
> ### Aliases: Wilcoxon dwilcox pwilcox qwilcox rwilcox
> ### Keywords: distribution
>
> ### ** Examples
>
> require(graphics)
>
> x <- -1:(4*6 + 1)
> fx <- dwilcox(x, 4, 6)
> Fx <- pwilcox(x, 4, 6)
>
> layout(rbind(1,2), widths = 1, heights = c(3,2))
> plot(x, fx, type = "h", col = "violet",
+ main = "Probabilities (density) of Wilcoxon-Statist.(n=6, m=4)")
> plot(x, Fx, type = "s", col = "blue",
+ main = "Distribution of Wilcoxon-Statist.(n=6, m=4)")
> abline(h = 0:1, col = "gray20", lty = 2)
> layout(1) # set back
>
> N <- 200
> hist(U <- rwilcox(N, m = 4,n = 6), breaks = 0:25 - 1/2,
+ border = "red", col = "pink", sub = paste("N =",N))
> mtext("N * f(x), f() = true \"density\"", side = 3, col = "blue")
> lines(x, N*fx, type = "h", col = "blue", lwd = 2)
> points(x, N*fx, cex = 2)
>
> ## Better is a Quantile-Quantile Plot
> qqplot(U, qw <- qwilcox((1:N - 1/2)/N, m = 4, n = 6),
+ main = paste("Q-Q-Plot of empirical and theoretical quantiles",
+ "Wilcoxon Statistic, (m=4, n=6)", sep = "\n"))
> n <- as.numeric(names(print(tU <- table(U))))
U
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1 4 6 7 10 8 12 14 22 13 16 13 23 16 11 7 4 4 3 3 1 1
> text(n+.2, n+.5, labels = tU, col = "red")
>
>
>
> cleanEx()
> nameEx("acf")
> ### * acf
>
> flush(stderr()); flush(stdout())
>
> ### Name: acf
> ### Title: Auto- and Cross- Covariance and -Correlation Function Estimation
> ### Aliases: acf ccf pacf pacf.default [.acf
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> ## Examples from Venables & Ripley
> acf(lh)
> acf(lh, type = "covariance")
> pacf(lh)
>
> acf(ldeaths)
> acf(ldeaths, ci.type = "ma")
> acf(ts.union(mdeaths, fdeaths))
> ccf(mdeaths, fdeaths, ylab = "cross-correlation")
> # (just the cross-correlations)
>
> presidents # contains missing values
Qtr1 Qtr2 Qtr3 Qtr4
1945 NA 87 82 75
1946 63 50 43 32
1947 35 60 54 55
1948 36 39 NA NA
1949 69 57 57 51
1950 45 37 46 39
1951 36 24 32 23
1952 25 32 NA 32
1953 59 74 75 60
1954 71 61 71 57
1955 71 68 79 73
1956 76 71 67 75
1957 79 62 63 57
1958 60 49 48 52
1959 57 62 61 66
1960 71 62 61 57
1961 72 83 71 78
1962 79 71 62 74
1963 76 64 62 57
1964 80 73 69 69
1965 71 64 69 62
1966 63 46 56 44
1967 44 52 38 46
1968 36 49 35 44
1969 59 65 65 56
1970 66 53 61 52
1971 51 48 54 49
1972 49 61 NA NA
1973 68 44 40 27
1974 28 25 24 24
> acf(presidents, na.action = na.pass)
> pacf(presidents, na.action = na.pass)
>
>
>
> cleanEx()
> nameEx("acf2AR")
> ### * acf2AR
>
> flush(stderr()); flush(stdout())
>
> ### Name: acf2AR
> ### Title: Compute an AR Process Exactly Fitting an ACF
> ### Aliases: acf2AR
> ### Keywords: ts
>
> ### ** Examples
>
> (Acf <- ARMAacf(c(0.6, 0.3, -0.2)))
0 1 2 3
1.0000000 0.6923077 0.5769231 0.3538462
> acf2AR(Acf)
1 2 3
ar(1) 0.6923077 0.0000 0.0
ar(2) 0.5625000 0.1875 0.0
ar(3) 0.6000000 0.3000 -0.2
>
>
>
> cleanEx()
> nameEx("add1")
> ### * add1
>
> flush(stderr()); flush(stdout())
>
> ### Name: add1
> ### Title: Add or Drop All Possible Single Terms to a Model
> ### Aliases: add1 add1.default add1.lm add1.glm drop1 drop1.default
> ### drop1.lm drop1.glm
> ### Keywords: models
>
> ### ** Examples
>
> ## Don't show:
> od <- options(digits = 5)
> ## End Don't show
> require(graphics); require(utils)
> ## following example(swiss)
> lm1 <- lm(Fertility ~ ., data = swiss)
> add1(lm1, ~ I(Education^2) + .^2)
Single term additions
Model:
Fertility ~ Agriculture + Examination + Education + Catholic +
Infant.Mortality
Df Sum of Sq RSS AIC
<none> 2105 191
I(Education^2) 1 11.8 2093 192
Agriculture:Examination 1 10.7 2094 192
Agriculture:Education 1 1.8 2103 193
Agriculture:Catholic 1 75.0 2030 191
Agriculture:Infant.Mortality 1 4.4 2101 193
Examination:Education 1 48.7 2056 192
Examination:Catholic 1 40.8 2064 192
Examination:Infant.Mortality 1 65.9 2039 191
Education:Catholic 1 278.2 1827 186
Education:Infant.Mortality 1 93.0 2012 191
Catholic:Infant.Mortality 1 2.4 2103 193
> drop1(lm1, test = "F") # So called 'type II' anova
Single term deletions
Model:
Fertility ~ Agriculture + Examination + Education + Catholic +
Infant.Mortality
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 2105 191
Agriculture 1 308 2413 195 5.99 0.0187 *
Examination 1 53 2158 190 1.03 0.3155
Education 1 1163 3268 209 22.64 2.4e-05 ***
Catholic 1 448 2553 198 8.72 0.0052 **
Infant.Mortality 1 409 2514 197 7.96 0.0073 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> ## following example(glm)
> ## Don't show:
> example(glm, echo = FALSE)
treatment outcome counts
1 1 1 18
2 1 2 17
3 1 3 15
4 2 1 20
5 2 2 10
6 2 3 20
7 3 1 25
8 3 2 13
9 3 3 12
> ## End Don't show
> drop1(glm.D93, test = "Chisq")
Single term deletions
Model:
counts ~ outcome + treatment
Df Deviance AIC LRT Pr(>Chi)
<none> 5.13 56.8
outcome 2 10.58 58.2 5.45 0.065 .
treatment 2 5.13 52.8 0.00 1.000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> drop1(glm.D93, test = "F")
Warning in drop1.glm(glm.D93, test = "F") :
F test assumes 'quasipoisson' family
Single term deletions
Model:
counts ~ outcome + treatment
Df Deviance AIC F value Pr(>F)
<none> 5.13 56.8
outcome 2 10.58 58.2 2.13 0.23
treatment 2 5.13 52.8 0.00 1.00
> add1(glm.D93, scope = ~outcome*treatment, test = "Rao") ## Pearson Chi-square
Single term additions
Model:
counts ~ outcome + treatment
Df Deviance AIC Rao score Pr(>Chi)
<none> 5.13 56.8
outcome:treatment 4 0.00 59.6 5.17 0.27
> ## Don't show:
> options(od)
> ## End Don't show
>
>
>
> cleanEx()
> nameEx("addmargins")
> ### * addmargins
>
> flush(stderr()); flush(stdout())
>
> ### Name: addmargins
> ### Title: Puts Arbitrary Margins on Multidimensional Tables or Arrays
> ### Aliases: addmargins
> ### Keywords: manip array
>
> ### ** Examples
>
> Aye <- sample(c("Yes", "Si", "Oui"), 177, replace = TRUE)
> Bee <- sample(c("Hum", "Buzz"), 177, replace = TRUE)
> Sea <- sample(c("White", "Black", "Red", "Dead"), 177, replace = TRUE)
> (A <- table(Aye, Bee, Sea))
, , Sea = Black
Bee
Aye Buzz Hum
Oui 2 11
Si 8 13
Yes 7 6
, , Sea = Dead
Bee
Aye Buzz Hum
Oui 5 10
Si 10 10
Yes 7 6
, , Sea = Red
Bee
Aye Buzz Hum
Oui 5 6
Si 11 5
Yes 7 7
, , Sea = White
Bee
Aye Buzz Hum
Oui 7 9
Si 4 12
Yes 3 6
> addmargins(A)
, , Sea = Black
Bee
Aye Buzz Hum Sum
Oui 2 11 13
Si 8 13 21
Yes 7 6 13
Sum 17 30 47
, , Sea = Dead
Bee
Aye Buzz Hum Sum
Oui 5 10 15
Si 10 10 20
Yes 7 6 13
Sum 22 26 48
, , Sea = Red
Bee
Aye Buzz Hum Sum
Oui 5 6 11
Si 11 5 16
Yes 7 7 14
Sum 23 18 41
, , Sea = White
Bee
Aye Buzz Hum Sum
Oui 7 9 16
Si 4 12 16
Yes 3 6 9
Sum 14 27 41
, , Sea = Sum
Bee
Aye Buzz Hum Sum
Oui 19 36 55
Si 33 40 73
Yes 24 25 49
Sum 76 101 177
> ## Don't show:
> stopifnot(is.table(addmargins(A)))
> ## End Don't show
> ftable(A)
Sea Black Dead Red White
Aye Bee
Oui Buzz 2 5 5 7
Hum 11 10 6 9
Si Buzz 8 10 11 4
Hum 13 10 5 12
Yes Buzz 7 7 7 3
Hum 6 6 7 6
> ftable(addmargins(A))
Sea Black Dead Red White Sum
Aye Bee
Oui Buzz 2 5 5 7 19
Hum 11 10 6 9 36
Sum 13 15 11 16 55
Si Buzz 8 10 11 4 33
Hum 13 10 5 12 40
Sum 21 20 16 16 73
Yes Buzz 7 7 7 3 24
Hum 6 6 7 6 25
Sum 13 13 14 9 49
Sum Buzz 17 22 23 14 76
Hum 30 26 18 27 101
Sum 47 48 41 41 177
>
> # Non-commutative functions - note differences between resulting tables:
> ftable(addmargins(A, c(1, 3),
+ FUN = list(Sum = sum, list(Min = min, Max = max))))
Margins computed over dimensions
in the following order:
1: Aye
2: Sea
Sea Black Dead Red White Min Max
Aye Bee
Oui Buzz 2 5 5 7 2 7
Hum 11 10 6 9 6 11
Si Buzz 8 10 11 4 4 11
Hum 13 10 5 12 5 13
Yes Buzz 7 7 7 3 3 7
Hum 6 6 7 6 6 7
Sum Buzz 17 22 23 14 14 23
Hum 30 26 18 27 18 30
> ftable(addmargins(A, c(3, 1),
+ FUN = list(list(Min = min, Max = max), Sum = sum)))
Margins computed over dimensions
in the following order:
1: Sea
2: Aye
Sea Black Dead Red White Min Max
Aye Bee
Oui Buzz 2 5 5 7 2 7
Hum 11 10 6 9 6 11
Si Buzz 8 10 11 4 4 11
Hum 13 10 5 12 5 13
Yes Buzz 7 7 7 3 3 7
Hum 6 6 7 6 6 7
Sum Buzz 17 22 23 14 9 25
Hum 30 26 18 27 17 31
>
> # Weird function needed to return the N when computing percentages
> sqsm <- function(x) sum(x)^2/100
> B <- table(Sea, Bee)
> round(sweep(addmargins(B, 1, list(list(All = sum, N = sqsm))), 2,
+ apply(B, 2, sum)/100, "/"), 1)
Bee
Sea Buzz Hum
Black 22.4 29.7
Dead 28.9 25.7
Red 30.3 17.8
White 18.4 26.7
All 100.0 100.0
N 76.0 101.0
> round(sweep(addmargins(B, 2, list(list(All = sum, N = sqsm))), 1,
+ apply(B, 1, sum)/100, "/"), 1)
Bee
Sea Buzz Hum All N
Black 36.2 63.8 100.0 47.0
Dead 45.8 54.2 100.0 48.0
Red 56.1 43.9 100.0 41.0
White 34.1 65.9 100.0 41.0
>
> # A total over Bee requires formation of the Bee-margin first:
> mB <- addmargins(B, 2, FUN = list(list(Total = sum)))
> round(ftable(sweep(addmargins(mB, 1, list(list(All = sum, N = sqsm))), 2,
+ apply(mB, 2, sum)/100, "/")), 1)
Bee Buzz Hum Total
Sea
Black 22.4 29.7 26.6
Dead 28.9 25.7 27.1
Red 30.3 17.8 23.2
White 18.4 26.7 23.2
All 100.0 100.0 100.0
N 76.0 101.0 177.0
>
> ## Zero.Printing table+margins:
> set.seed(1)
> x <- sample( 1:7, 20, replace = TRUE)
> y <- sample( 1:7, 20, replace = TRUE)
> tx <- addmargins( table(x, y) )
> print(tx, zero.print = ".")
y
x 1 2 3 4 5 6 7 Sum
1 . . 1 . . . . 1
2 . 1 . 1 1 . 1 4
3 . 2 . . . 1 . 3
4 . . . . 1 . . 1
5 . . 1 1 1 . 1 4
6 . . 1 . . 2 . 3
7 3 . 1 . . . . 4
Sum 3 3 4 2 3 3 2 20
>
>
>
> cleanEx()
> nameEx("aggregate")
> ### * aggregate
>
> flush(stderr()); flush(stdout())
>
> ### Name: aggregate
> ### Title: Compute Summary Statistics of Data Subsets
> ### Aliases: aggregate aggregate.default aggregate.data.frame
> ### aggregate.formula aggregate.ts
> ### Keywords: category array
>
> ### ** Examples
>
> ## Compute the averages for the variables in 'state.x77', grouped
> ## according to the region (Northeast, South, North Central, West) that
> ## each state belongs to.
> aggregate(state.x77, list(Region = state.region), mean)
Region Population Income Illiteracy Life Exp Murder HS Grad
1 Northeast 5495.111 4570.222 1.000000 71.26444 4.722222 53.96667
2 South 4208.125 4011.938 1.737500 69.70625 10.581250 44.34375
3 North Central 4803.000 4611.083 0.700000 71.76667 5.275000 54.51667
4 West 2915.308 4702.615 1.023077 71.23462 7.215385 62.00000
Frost Area
1 132.7778 18141.00
2 64.6250 54605.12
3 138.8333 62652.00
4 102.1538 134463.00
>
> ## Compute the averages according to region and the occurrence of more
> ## than 130 days of frost.
> aggregate(state.x77,
+ list(Region = state.region,
+ Cold = state.x77[,"Frost"] > 130),
+ mean)
Region Cold Population Income Illiteracy Life Exp Murder
1 Northeast FALSE 8802.8000 4780.400 1.1800000 71.12800 5.580000
2 South FALSE 4208.1250 4011.938 1.7375000 69.70625 10.581250
3 North Central FALSE 7233.8333 4633.333 0.7833333 70.95667 8.283333
4 West FALSE 4582.5714 4550.143 1.2571429 71.70000 6.828571
5 Northeast TRUE 1360.5000 4307.500 0.7750000 71.43500 3.650000
6 North Central TRUE 2372.1667 4588.833 0.6166667 72.57667 2.266667
7 West TRUE 970.1667 4880.500 0.7500000 70.69167 7.666667
HS Grad Frost Area
1 52.06000 110.6000 21838.60
2 44.34375 64.6250 54605.12
3 53.36667 120.0000 56736.50
4 60.11429 51.0000 91863.71
5 56.35000 160.5000 13519.00
6 55.66667 157.6667 68567.50
7 64.20000 161.8333 184162.17
> ## (Note that no state in 'South' is THAT cold.)
>
>
> ## example with character variables and NAs
> testDF <- data.frame(v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
+ v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99) )
> by1 <- c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12)
> by2 <- c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA)
> aggregate(x = testDF, by = list(by1, by2), FUN = "mean")
Group.1 Group.2 v1 v2
1 1 95 5 55
2 2 95 7 77
3 1 99 5 55
4 2 99 NA NA
5 big damp 3 33
6 blue dry 3 33
7 red red 4 44
8 red wet 1 11
>
> # and if you want to treat NAs as a group
> fby1 <- factor(by1, exclude = "")
> fby2 <- factor(by2, exclude = "")
> aggregate(x = testDF, by = list(fby1, fby2), FUN = "mean")
Group.1 Group.2 v1 v2
1 1 95 5.0 55.0
2 2 95 7.0 77.0
3 1 99 5.0 55.0
4 2 99 NA NA
5 big damp 3.0 33.0
6 blue dry 3.0 33.0
7 red red 4.0 44.0
8 red wet 1.0 11.0
9 12 <NA> 9.0 99.0
10 <NA> <NA> 7.5 82.5
>
>
> ## Formulas, one ~ one, one ~ many, many ~ one, and many ~ many:
> aggregate(weight ~ feed, data = chickwts, mean)
feed weight
1 casein 323.5833
2 horsebean 160.2000
3 linseed 218.7500
4 meatmeal 276.9091
5 soybean 246.4286
6 sunflower 328.9167
> aggregate(breaks ~ wool + tension, data = warpbreaks, mean)
wool tension breaks
1 A L 44.55556
2 B L 28.22222
3 A M 24.00000
4 B M 28.77778
5 A H 24.55556
6 B H 18.77778
> aggregate(cbind(Ozone, Temp) ~ Month, data = airquality, mean)
Month Ozone Temp
1 5 23.61538 66.73077
2 6 29.44444 78.22222
3 7 59.11538 83.88462
4 8 59.96154 83.96154
5 9 31.44828 76.89655
> aggregate(cbind(ncases, ncontrols) ~ alcgp + tobgp, data = esoph, sum)
alcgp tobgp ncases ncontrols
1 0-39g/day 0-9g/day 9 261
2 40-79 0-9g/day 34 179
3 80-119 0-9g/day 19 61
4 120+ 0-9g/day 16 24
5 0-39g/day 10-19 10 84
6 40-79 10-19 17 85
7 80-119 10-19 19 49
8 120+ 10-19 12 18
9 0-39g/day 20-29 5 42
10 40-79 20-29 15 62
11 80-119 20-29 6 16
12 120+ 20-29 7 12
13 0-39g/day 30+ 5 28
14 40-79 30+ 9 29
15 80-119 30+ 7 12
16 120+ 30+ 10 13
>
> ## Dot notation:
> aggregate(. ~ Species, data = iris, mean)
Species Sepal.Length Sepal.Width Petal.Length Petal.Width
1 setosa 5.006 3.428 1.462 0.246
2 versicolor 5.936 2.770 4.260 1.326
3 virginica 6.588 2.974 5.552 2.026
> aggregate(len ~ ., data = ToothGrowth, mean)
supp dose len
1 OJ 0.5 13.23
2 VC 0.5 7.98
3 OJ 1.0 22.70
4 VC 1.0 16.77
5 OJ 2.0 26.06
6 VC 2.0 26.14
>
> ## Often followed by xtabs():
> ag <- aggregate(len ~ ., data = ToothGrowth, mean)
> xtabs(len ~ ., data = ag)
dose
supp 0.5 1 2
OJ 13.23 22.70 26.06
VC 7.98 16.77 26.14
>
>
> ## Compute the average annual approval ratings for American presidents.
> aggregate(presidents, nfrequency = 1, FUN = mean)
Time Series:
Start = 1945
End = 1974
Frequency = 1
[1] NA 47.00 51.00 NA 58.50 41.75 28.75 NA 67.00 65.00 72.75 72.25
[13] 65.25 52.25 61.50 62.75 76.00 71.50 64.75 72.75 66.50 52.25 45.00 41.00
[25] 61.25 58.00 50.50 NA 44.75 25.25
> ## Give the summer less weight.
> aggregate(presidents, nfrequency = 1,
+ FUN = weighted.mean, w = c(1, 1, 0.5, 1))
Time Series:
Start = 1945
End = 1974
Frequency = 1
[1] NA 47.57143 50.57143 NA 58.71429 41.14286 28.28571 NA
[9] 65.85714 64.14286 71.85714 73.00000 65.57143 52.85714 61.57143 63.00000
[17] 76.71429 72.85714 65.14286 73.28571 66.14286 51.71429 46.00000 41.85714
[25] 60.71429 57.57143 50.00000 NA 45.42857 25.42857
>
>
>
> cleanEx()
> nameEx("alias")
> ### * alias
>
> flush(stderr()); flush(stdout())
>
> ### Name: alias
> ### Title: Find Aliases (Dependencies) in a Model
> ### Aliases: alias alias.formula alias.lm
> ### Keywords: models
>
> ### ** Examples
>
>
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> cleanEx()
> nameEx("anova.glm")
> ### * anova.glm
>
> flush(stderr()); flush(stdout())
>
> ### Name: anova.glm
> ### Title: Analysis of Deviance for Generalized Linear Model Fits
> ### Aliases: anova.glm
> ### Keywords: models regression
>
> ### ** Examples
>
> ## --- Continuing the Example from '?glm':
> ## Don't show:
> require(utils)
> example("glm", echo = FALSE)
treatment outcome counts
1 1 1 18
2 1 2 17
3 1 3 15
4 2 1 20
5 2 2 10
6 2 3 20
7 3 1 25
8 3 2 13
9 3 3 12
> ## End Don't show
> anova(glm.D93)
Analysis of Deviance Table
Model: poisson, link: log
Response: counts
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev
NULL 8 10.5814
outcome 2 5.4523 6 5.1291
treatment 2 0.0000 4 5.1291
> anova(glm.D93, test = "Cp")
Analysis of Deviance Table
Model: poisson, link: log
Response: counts
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Cp
NULL 8 10.5814 12.581
outcome 2 5.4523 6 5.1291 11.129
treatment 2 0.0000 4 5.1291 15.129
> anova(glm.D93, test = "Chisq")
Analysis of Deviance Table
Model: poisson, link: log
Response: counts
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 8 10.5814
outcome 2 5.4523 6 5.1291 0.06547 .
treatment 2 0.0000 4 5.1291 1.00000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> glm.D93a <-
+ update(glm.D93, ~treatment*outcome) # equivalent to Pearson Chi-square
> anova(glm.D93, glm.D93a, test = "Rao")
Analysis of Deviance Table
Model 1: counts ~ outcome + treatment
Model 2: counts ~ treatment + outcome + treatment:outcome
Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)
1 4 5.1291
2 0 0.0000 4 5.1291 5.1732 0.27
>
>
>
> cleanEx()
> nameEx("anova.lm")
> ### * anova.lm
>
> flush(stderr()); flush(stdout())
>
> ### Name: anova.lm
> ### Title: ANOVA for Linear Model Fits
> ### Aliases: anova.lm anova.lmlist
> ### Keywords: regression models
>
> ### ** Examples
>
> ## sequential table
> fit <- lm(sr ~ ., data = LifeCycleSavings)
> anova(fit)
Analysis of Variance Table
Response: sr
Df Sum Sq Mean Sq F value Pr(>F)
pop15 1 204.12 204.118 14.1157 0.0004922 ***
pop75 1 53.34 53.343 3.6889 0.0611255 .
dpi 1 12.40 12.401 0.8576 0.3593551
ddpi 1 63.05 63.054 4.3605 0.0424711 *
Residuals 45 650.71 14.460
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> ## same effect via separate models
> fit0 <- lm(sr ~ 1, data = LifeCycleSavings)
> fit1 <- update(fit0, . ~ . + pop15)
> fit2 <- update(fit1, . ~ . + pop75)
> fit3 <- update(fit2, . ~ . + dpi)
> fit4 <- update(fit3, . ~ . + ddpi)
> anova(fit0, fit1, fit2, fit3, fit4, test = "F")
Analysis of Variance Table
Model 1: sr ~ 1
Model 2: sr ~ pop15
Model 3: sr ~ pop15 + pop75
Model 4: sr ~ pop15 + pop75 + dpi
Model 5: sr ~ pop15 + pop75 + dpi + ddpi
Res.Df RSS Df Sum of Sq F Pr(>F)
1 49 983.63
2 48 779.51 1 204.118 14.1157 0.0004922 ***
3 47 726.17 1 53.343 3.6889 0.0611255 .
4 46 713.77 1 12.401 0.8576 0.3593551
5 45 650.71 1 63.054 4.3605 0.0424711 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> anova(fit4, fit2, fit0, test = "F") # unconventional order
Analysis of Variance Table
Model 1: sr ~ pop15 + pop75 + dpi + ddpi
Model 2: sr ~ pop15 + pop75
Model 3: sr ~ 1
Res.Df RSS Df Sum of Sq F Pr(>F)
1 45 650.71
2 47 726.17 -2 -75.455 2.6090 0.0847088 .
3 49 983.63 -2 -257.460 8.9023 0.0005527 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
>
>
> cleanEx()
> nameEx("anova.mlm")
> ### * anova.mlm
>
> flush(stderr()); flush(stdout())
>
> ### Name: anova.mlm
> ### Title: Comparisons between Multivariate Linear Models
> ### Aliases: anova.mlm
> ### Keywords: regression models multivariate
>
> ### ** Examples
>
> require(graphics)
> utils::example(SSD) # Brings in the mlmfit and reacttime objects
SSD> # Lifted from Baron+Li:
SSD> # "Notes on the use of R for psychology experiments and questionnaires"
SSD> # Maxwell and Delaney, p. 497
SSD> reacttime <- matrix(c(
SSD+ 420, 420, 480, 480, 600, 780,
SSD+ 420, 480, 480, 360, 480, 600,
SSD+ 480, 480, 540, 660, 780, 780,
SSD+ 420, 540, 540, 480, 780, 900,
SSD+ 540, 660, 540, 480, 660, 720,
SSD+ 360, 420, 360, 360, 480, 540,
SSD+ 480, 480, 600, 540, 720, 840,
SSD+ 480, 600, 660, 540, 720, 900,
SSD+ 540, 600, 540, 480, 720, 780,
SSD+ 480, 420, 540, 540, 660, 780),
SSD+ ncol = 6, byrow = TRUE,
SSD+ dimnames = list(subj = 1:10,
SSD+ cond = c("deg0NA", "deg4NA", "deg8NA",
SSD+ "deg0NP", "deg4NP", "deg8NP")))
SSD> mlmfit <- lm(reacttime ~ 1)
SSD> SSD(mlmfit)
$SSD
cond
cond deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP
deg0NA 29160 30600 26640 23760 32400 25560
deg4NA 30600 66600 32400 7200 36000 30600
deg8NA 26640 32400 56160 41040 57600 69840
deg0NP 23760 7200 41040 70560 72000 63360
deg4NP 32400 36000 57600 72000 108000 100800
deg8NP 25560 30600 69840 63360 100800 122760
$call
lm(formula = reacttime ~ 1)
$df
[1] 9
attr(,"class")
[1] "SSD"
SSD> estVar(mlmfit)
cond
cond deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP
deg0NA 3240 3400 2960 2640 3600 2840
deg4NA 3400 7400 3600 800 4000 3400
deg8NA 2960 3600 6240 4560 6400 7760
deg0NP 2640 800 4560 7840 8000 7040
deg4NP 3600 4000 6400 8000 12000 11200
deg8NP 2840 3400 7760 7040 11200 13640
>
> mlmfit0 <- update(mlmfit, ~0)
>
> ### Traditional tests of intrasubj. contrasts
> ## Using MANOVA techniques on contrasts:
> anova(mlmfit, mlmfit0, X = ~1)
Analysis of Variance Table
Model 1: reacttime ~ 1
Model 2: reacttime ~ 1 - 1
Contrasts orthogonal to
~1
Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
1 9 1249.6
2 10 1 2013.2 0.9456 17.381 5 5 0.003534 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> ## Assuming sphericity
> anova(mlmfit, mlmfit0, X = ~1, test = "Spherical")
Analysis of Variance Table
Model 1: reacttime ~ 1
Model 2: reacttime ~ 1 - 1
Contrasts orthogonal to
~1
Greenhouse-Geisser epsilon: 0.4855
Huynh-Feldt epsilon: 0.6778
Res.Df Df Gen.var. F num Df den Df Pr(>F) G-G Pr H-F Pr
1 9 1249.6
2 10 1 2013.2 38.028 5 45 4.4711e-15 2.532e-08 7.393e-11
>
>
> ### tests using intra-subject 3x2 design
> idata <- data.frame(deg = gl(3, 1, 6, labels = c(0, 4, 8)),
+ noise = gl(2, 3, 6, labels = c("A", "P")))
>
> anova(mlmfit, mlmfit0, X = ~ deg + noise,
+ idata = idata, test = "Spherical")
Analysis of Variance Table
Model 1: reacttime ~ 1
Model 2: reacttime ~ 1 - 1
Contrasts orthogonal to
~deg + noise
Greenhouse-Geisser epsilon: 0.904
Huynh-Feldt epsilon: 1.118
Res.Df Df Gen.var. F num Df den Df Pr(>F) G-G Pr H-F Pr
1 9 316.58
2 10 1 996.34 45.31 2 18 9.4241e-08 3.4539e-07 9.4241e-08
> anova(mlmfit, mlmfit0, M = ~ deg + noise, X = ~ noise,
+ idata = idata, test = "Spherical" )
Analysis of Variance Table
Model 1: reacttime ~ 1
Model 2: reacttime ~ 1 - 1
Contrasts orthogonal to
~noise
Contrasts spanned by
~deg + noise
Greenhouse-Geisser epsilon: 0.9616
Huynh-Feldt epsilon: 1.2176
Res.Df Df Gen.var. F num Df den Df Pr(>F) G-G Pr H-F Pr
1 9 1007.0
2 10 1 2703.2 40.719 2 18 2.0868e-07 3.4017e-07 2.0868e-07
> anova(mlmfit, mlmfit0, M = ~ deg + noise, X = ~ deg,
+ idata = idata, test = "Spherical" )
Analysis of Variance Table
Model 1: reacttime ~ 1
Model 2: reacttime ~ 1 - 1
Contrasts orthogonal to
~deg
Contrasts spanned by
~deg + noise
Greenhouse-Geisser epsilon: 1
Huynh-Feldt epsilon: 1
Res.Df Df Gen.var. F num Df den Df Pr(>F) G-G Pr H-F Pr
1 9 1410
2 10 1 6030 33.766 1 9 0.00025597 0.00025597 0.00025597
>
> f <- factor(rep(1:2, 5)) # bogus, just for illustration
> mlmfit2 <- update(mlmfit, ~f)
> anova(mlmfit2, mlmfit, mlmfit0, X = ~1, test = "Spherical")
Analysis of Variance Table
Model 1: reacttime ~ f
Model 2: reacttime ~ 1
Model 3: reacttime ~ 1 - 1
Contrasts orthogonal to
~1
Greenhouse-Geisser epsilon: 0.4691
Huynh-Feldt epsilon: 0.6758
Res.Df Df Gen.var. F num Df den Df Pr(>F) G-G Pr H-F Pr
1 8 1337.3
2 9 1 1249.6 0.2743 5 40 0.92452 0.79608 0.86456
3 10 1 2013.2 34.9615 5 40 0.00000 0.00000 0.00000
> anova(mlmfit2, X = ~1, test = "Spherical")
Analysis of Variance Table
Contrasts orthogonal to
~1
Greenhouse-Geisser epsilon: 0.4691
Huynh-Feldt epsilon: 0.6758
Df F num Df den Df Pr(>F) G-G Pr H-F Pr
(Intercept) 1 34.9615 5 40 0.00000 0.00000 0.00000
f 1 0.2743 5 40 0.92452 0.79608 0.86456
Residuals 8
> # one-model form, eqiv. to previous
>
> ### There seems to be a strong interaction in these data
> plot(colMeans(reacttime))
>
>
>
> cleanEx()
> nameEx("ansari.test")
> ### * ansari.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: ansari.test
> ### Title: Ansari-Bradley Test
> ### Aliases: ansari.test ansari.test.default ansari.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> ## Hollander & Wolfe (1973, p. 86f):
> ## Serum iron determination using Hyland control sera
> ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
+ 101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
> jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,
+ 100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)
> ansari.test(ramsay, jung.parekh)
Warning in ansari.test.default(ramsay, jung.parekh) :
cannot compute exact p-value with ties
Ansari-Bradley test
data: ramsay and jung.parekh
AB = 185.5, p-value = 0.1815
alternative hypothesis: true ratio of scales is not equal to 1
>
> ansari.test(rnorm(10), rnorm(10, 0, 2), conf.int = TRUE)
Ansari-Bradley test
data: rnorm(10) and rnorm(10, 0, 2)
AB = 69, p-value = 0.03831
alternative hypothesis: true ratio of scales is not equal to 1
95 percent confidence interval:
0.1852324 0.9712857
sample estimates:
ratio of scales
0.4007458
>
> ## try more points - failed in 2.4.1
> ansari.test(rnorm(100), rnorm(100, 0, 2), conf.int = TRUE)
Ansari-Bradley test
data: rnorm(100) and rnorm(100, 0, 2)
AB = 6180, p-value = 3.347e-08
alternative hypothesis: true ratio of scales is not equal to 1
95 percent confidence interval:
0.3330596 0.5693532
sample estimates:
ratio of scales
0.4346784
>
>
>
> cleanEx()
> nameEx("aov")
> ### * aov
>
> flush(stderr()); flush(stdout())
>
> ### Name: aov
> ### Title: Fit an Analysis of Variance Model
> ### Aliases: aov print.aov print.aovlist Error
> ### Keywords: models regression
>
> ### ** Examples
>
> ## From Venables and Ripley (2002) p.165.
>
> ## Set orthogonal contrasts.
> op <- options(contrasts = c("contr.helmert", "contr.poly"))
> ( npk.aov <- aov(yield ~ block + N*P*K, npk) )
Call:
aov(formula = yield ~ block + N * P * K, data = npk)
Terms:
block N P K N:P N:K P:K
Sum of Squares 343.2950 189.2817 8.4017 95.2017 21.2817 33.1350 0.4817
Deg. of Freedom 5 1 1 1 1 1 1
Residuals
Sum of Squares 185.2867
Deg. of Freedom 12
Residual standard error: 3.929447
1 out of 13 effects not estimable
Estimated effects are balanced
> coefficients(npk.aov)
(Intercept) block1 block2 block3 block4 block5
54.8750000 1.7125000 1.6791667 -1.8229167 -1.0137500 0.2950000
N1 P1 K1 N1:P1 N1:K1 P1:K1
2.8083333 -0.5916667 -1.9916667 -0.9416667 -1.1750000 0.1416667
>
> ## to show the effects of re-ordering terms contrast the two fits
> aov(yield ~ block + N * P + K, npk)
Call:
aov(formula = yield ~ block + N * P + K, data = npk)
Terms:
block N P K N:P Residuals
Sum of Squares 343.2950 189.2817 8.4017 95.2017 21.2817 218.9033
Deg. of Freedom 5 1 1 1 1 14
Residual standard error: 3.954232
Estimated effects are balanced
> aov(terms(yield ~ block + N * P + K, keep.order = TRUE), npk)
Call:
aov(formula = terms(yield ~ block + N * P + K, keep.order = TRUE),
data = npk)
Terms:
block N P N:P K Residuals
Sum of Squares 343.2950 189.2817 8.4017 21.2817 95.2017 218.9033
Deg. of Freedom 5 1 1 1 1 14
Residual standard error: 3.954232
Estimated effects are balanced
>
>
> ## as a test, not particularly sensible statistically
> npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
> npk.aovE
Call:
aov(formula = yield ~ N * P * K + Error(block), data = npk)
Grand Mean: 54.875
Stratum 1: block
Terms:
N:P:K Residuals
Sum of Squares 37.00167 306.29333
Deg. of Freedom 1 4
Residual standard error: 8.750619
Estimated effects are balanced
Stratum 2: Within
Terms:
N P K N:P N:K P:K
Sum of Squares 189.28167 8.40167 95.20167 21.28167 33.13500 0.48167
Deg. of Freedom 1 1 1 1 1 1
Residuals
Sum of Squares 185.28667
Deg. of Freedom 12
Residual standard error: 3.929447
Estimated effects are balanced
> summary(npk.aovE)
Error: block
Df Sum Sq Mean Sq F value Pr(>F)
N:P:K 1 37.0 37.00 0.483 0.525
Residuals 4 306.3 76.57
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
N 1 189.28 189.28 12.259 0.00437 **
P 1 8.40 8.40 0.544 0.47490
K 1 95.20 95.20 6.166 0.02880 *
N:P 1 21.28 21.28 1.378 0.26317
N:K 1 33.14 33.14 2.146 0.16865
P:K 1 0.48 0.48 0.031 0.86275
Residuals 12 185.29 15.44
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> options(op) # reset to previous
>
>
>
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> cleanEx()
> nameEx("approxfun")
> ### * approxfun
>
> flush(stderr()); flush(stdout())
>
> ### Name: approxfun
> ### Title: Interpolation Functions
> ### Aliases: approx approxfun
> ### Keywords: arith dplot
>
> ### ** Examples
>
> require(graphics)
>
> x <- 1:10
> y <- rnorm(10)
> par(mfrow = c(2,1))
> plot(x, y, main = "approx(.) and approxfun(.)")
> points(approx(x, y), col = 2, pch = "*")
> points(approx(x, y, method = "constant"), col = 4, pch = "*")
>
> f <- approxfun(x, y)
> curve(f(x), 0, 11, col = "green2")
> points(x, y)
> is.function(fc <- approxfun(x, y, method = "const")) # TRUE
[1] TRUE
> curve(fc(x), 0, 10, col = "darkblue", add = TRUE)
> ## different extrapolation on left and right side :
> plot(approxfun(x, y, rule = 2:1), 0, 11,
+ col = "tomato", add = TRUE, lty = 3, lwd = 2)
>
> ## Show treatment of 'ties' :
>
> x <- c(2,2:4,4,4,5,5,7,7,7)
> y <- c(1:6, 5:4, 3:1)
> approx(x, y, xout = x)$y # warning
[1] 1.5 1.5 3.0 5.0 5.0 5.0 4.5 4.5 2.0 2.0 2.0
> (ay <- approx(x, y, xout = x, ties = "ordered")$y)
[1] 2 2 3 6 6 6 4 4 1 1 1
> stopifnot(ay == c(2,2,3,6,6,6,4,4,1,1,1))
> approx(x, y, xout = x, ties = min)$y
[1] 1 1 3 4 4 4 4 4 1 1 1
> approx(x, y, xout = x, ties = max)$y
[1] 2 2 3 6 6 6 5 5 3 3 3
>
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("ar")
> ### * ar
>
> flush(stderr()); flush(stdout())
>
> ### Name: ar
> ### Title: Fit Autoregressive Models to Time Series
> ### Aliases: ar ar.burg ar.burg.default ar.burg.mts ar.yw ar.yw.default
> ### ar.yw.mts ar.mle print.ar predict.ar
> ### Keywords: ts
>
> ### ** Examples
>
> ar(lh)
Call:
ar(x = lh)
Coefficients:
1 2 3
0.6534 -0.0636 -0.2269
Order selected 3 sigma^2 estimated as 0.1959
> ar(lh, method = "burg")
Call:
ar(x = lh, method = "burg")
Coefficients:
1 2 3
0.6588 -0.0608 -0.2234
Order selected 3 sigma^2 estimated as 0.1786
> ar(lh, method = "ols")
Call:
ar(x = lh, method = "ols")
Coefficients:
1
0.586
Intercept: 0.006234 (0.06551)
Order selected 1 sigma^2 estimated as 0.2016
> ar(lh, FALSE, 4) # fit ar(4)
Call:
ar(x = lh, aic = FALSE, order.max = 4)
Coefficients:
1 2 3 4
0.6767 -0.0571 -0.2941 0.1028
Order selected 4 sigma^2 estimated as 0.1983
>
> (sunspot.ar <- ar(sunspot.year))
Call:
ar(x = sunspot.year)
Coefficients:
1 2 3 4 5 6 7 8
1.1305 -0.3524 -0.1745 0.1403 -0.1358 0.0963 -0.0556 0.0076
9
0.1941
Order selected 9 sigma^2 estimated as 267.5
> predict(sunspot.ar, n.ahead = 25)
$pred
Time Series:
Start = 1989
End = 2013
Frequency = 1
[1] 135.25933 148.09051 133.98476 106.61344 71.21921 40.84057 18.70100
[8] 11.52416 27.24208 56.99888 87.86705 107.62926 111.05437 98.05484
[15] 74.84085 48.80128 27.65441 18.15075 23.15355 40.04723 61.95906
[22] 80.79092 90.11420 87.44131 74.42284
$se
Time Series:
Start = 1989
End = 2013
Frequency = 1
[1] 16.35519 24.68467 28.95653 29.97401 30.07714 30.15629 30.35971 30.58793
[9] 30.71100 30.74276 31.42565 32.96467 34.48910 35.33601 35.51890 35.52034
[17] 35.65505 35.90628 36.07084 36.08139 36.16818 36.56324 37.16527 37.64820
[25] 37.83954
> ## try the other methods too
>
> ar(ts.union(BJsales, BJsales.lead))
Call:
ar(x = ts.union(BJsales, BJsales.lead))
$ar
, , 1
BJsales BJsales.lead
BJsales 0.9499 0.8222
BJsales.lead 0.0276 0.4970
, , 2
BJsales BJsales.lead
BJsales 0.02041 -1.133
BJsales.lead -0.02193 0.294
, , 3
BJsales BJsales.lead
BJsales -0.186490 3.9415
BJsales.lead -0.002946 0.1264
$var.pred
BJsales BJsales.lead
BJsales 13.9431 0.7733
BJsales.lead 0.7733 0.1231
> ## Burg is quite different here, as is OLS (see ar.ols)
> ar(ts.union(BJsales, BJsales.lead), method = "burg")
Call:
ar(x = ts.union(BJsales, BJsales.lead), method = "burg")
$ar
, , 1
BJsales BJsales.lead
BJsales 1.21197 0.07312
BJsales.lead 0.07411 0.45684
, , 2
BJsales BJsales.lead
BJsales -0.26022 -0.1120
BJsales.lead -0.06904 0.3111
, , 3
BJsales BJsales.lead
BJsales -0.01754 3.93591
BJsales.lead 0.01792 0.09632
, , 4
BJsales BJsales.lead
BJsales -0.07746 -1.33836
BJsales.lead -0.01158 -0.09118
$var.pred
BJsales BJsales.lead
BJsales 0.38426 0.01315
BJsales.lead 0.01315 0.07657
>
>
>
> cleanEx()
> nameEx("ar.ols")
> ### * ar.ols
>
> flush(stderr()); flush(stdout())
>
> ### Name: ar.ols
> ### Title: Fit Autoregressive Models to Time Series by OLS
> ### Aliases: ar.ols
> ### Keywords: ts
>
> ### ** Examples
>
> ar(lh, method = "burg")
Call:
ar(x = lh, method = "burg")
Coefficients:
1 2 3
0.6588 -0.0608 -0.2234
Order selected 3 sigma^2 estimated as 0.1786
> ar.ols(lh)
Call:
ar.ols(x = lh)
Coefficients:
1
0.586
Intercept: 0.006234 (0.06551)
Order selected 1 sigma^2 estimated as 0.2016
> ar.ols(lh, FALSE, 4) # fit ar(4)
Call:
ar.ols(x = lh, aic = FALSE, order.max = 4)
Coefficients:
1 2 3 4
0.6761 -0.0571 -0.3001 0.0967
Intercept: 0.0004346 (0.06642)
Order selected 4 sigma^2 estimated as 0.1924
>
> ar.ols(ts.union(BJsales, BJsales.lead))
Call:
ar.ols(x = ts.union(BJsales, BJsales.lead))
$ar
, , 1
BJsales BJsales.lead
BJsales 0.40408 -0.05144
BJsales.lead 0.07348 0.54524
, , 2
BJsales BJsales.lead
BJsales 0.2367 0.05899
BJsales.lead -0.1224 0.28690
, , 3
BJsales BJsales.lead
BJsales 0.09673 4.7413
BJsales.lead 0.10469 0.0701
, , 4
BJsales BJsales.lead
BJsales 0.048758 1.5671
BJsales.lead 0.003482 -0.1838
, , 5
BJsales BJsales.lead
BJsales 0.23307 -0.1574
BJsales.lead -0.02707 0.2623
, , 6
BJsales BJsales.lead
BJsales 0.07494 -0.4313
BJsales.lead -0.08729 -0.2166
, , 7
BJsales BJsales.lead
BJsales -0.09946 -0.6233
BJsales.lead 0.27123 -0.2584
, , 8
BJsales BJsales.lead
BJsales 0.06725 -1.36469
BJsales.lead -0.21501 0.06115
, , 9
BJsales BJsales.lead
BJsales -0.11531 -1.464
BJsales.lead 0.03536 0.270
, , 10
BJsales BJsales.lead
BJsales -0.002037 -0.6472
BJsales.lead 0.001284 -1.0667
, , 11
BJsales BJsales.lead
BJsales 0.004065 -0.7009
BJsales.lead 0.002098 0.4890
$x.intercept
BJsales BJsales.lead
0.19630 -0.07022
$var.pred
BJsales BJsales.lead
BJsales 0.0400996 -0.0009311
BJsales.lead -0.0009311 0.0682137
>
> x <- diff(log(EuStockMarkets))
> ar.ols(x, order.max = 6, demean = FALSE, intercept = TRUE)
Call:
ar.ols(x = x, order.max = 6, demean = FALSE, intercept = TRUE)
$ar
, , 1
DAX SMI CAC FTSE
DAX 0.004560 -0.095781 0.039975 0.04856
SMI -0.009204 -0.007142 0.037758 0.06826
CAC -0.026624 -0.113688 0.063807 0.09154
FTSE -0.010299 -0.089246 -0.003195 0.16409
$x.intercept
DAX SMI CAC FTSE
0.0006941 0.0007813 0.0004866 0.0004388
$var.pred
DAX SMI CAC FTSE
DAX 1.056e-04 6.683e-05 8.274e-05 5.192e-05
SMI 6.683e-05 8.496e-05 6.252e-05 4.254e-05
CAC 8.274e-05 6.252e-05 1.207e-04 5.615e-05
FTSE 5.192e-05 4.254e-05 5.615e-05 6.224e-05
>
>
>
> cleanEx()
> nameEx("arima")
> ### * arima
>
> flush(stderr()); flush(stdout())
>
> ### Name: arima
> ### Title: ARIMA Modelling of Time Series
> ### Aliases: arima
> ### Keywords: ts
>
> ### ** Examples
>
> arima(lh, order = c(1,0,0))
Call:
arima(x = lh, order = c(1, 0, 0))
Coefficients:
ar1 intercept
0.5739 2.4133
s.e. 0.1161 0.1466
sigma^2 estimated as 0.1975: log likelihood = -29.38, aic = 64.76
> arima(lh, order = c(3,0,0))
Call:
arima(x = lh, order = c(3, 0, 0))
Coefficients:
ar1 ar2 ar3 intercept
0.6448 -0.0634 -0.2198 2.3931
s.e. 0.1394 0.1668 0.1421 0.0963
sigma^2 estimated as 0.1787: log likelihood = -27.09, aic = 64.18
> arima(lh, order = c(1,0,1))
Call:
arima(x = lh, order = c(1, 0, 1))
Coefficients:
ar1 ma1 intercept
0.4522 0.1982 2.4101
s.e. 0.1769 0.1705 0.1358
sigma^2 estimated as 0.1923: log likelihood = -28.76, aic = 65.52
>
> arima(lh, order = c(3,0,0), method = "CSS")
Call:
arima(x = lh, order = c(3, 0, 0), method = "CSS")
Coefficients:
ar1 ar2 ar3 intercept
0.6578 -0.0658 -0.2348 2.3918
s.e. 0.1414 0.1702 0.1473 0.0983
sigma^2 estimated as 0.1905: part log likelihood = -28.31
>
> arima(USAccDeaths, order = c(0,1,1), seasonal = list(order = c(0,1,1)))
Call:
arima(x = USAccDeaths, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1)))
Coefficients:
ma1 sma1
-0.4303 -0.5528
s.e. 0.1228 0.1784
sigma^2 estimated as 99347: log likelihood = -425.44, aic = 856.88
> arima(USAccDeaths, order = c(0,1,1), seasonal = list(order = c(0,1,1)),
+ method = "CSS") # drops first 13 observations.
Call:
arima(x = USAccDeaths, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1)),
method = "CSS")
Coefficients:
ma1 sma1
-0.3732 -0.4549
s.e. 0.1366 0.1436
sigma^2 estimated as 110330: part log likelihood = -426.25
> # for a model with as few years as this, we want full ML
>
> arima(LakeHuron, order = c(2,0,0), xreg = time(LakeHuron) - 1920)
Call:
arima(x = LakeHuron, order = c(2, 0, 0), xreg = time(LakeHuron) - 1920)
Coefficients:
ar1 ar2 intercept time(LakeHuron) - 1920
1.0048 -0.2913 579.0993 -0.0216
s.e. 0.0976 0.1004 0.2370 0.0081
sigma^2 estimated as 0.4566: log likelihood = -101.2, aic = 212.4
>
> ## presidents contains NAs
> ## graphs in example(acf) suggest order 1 or 3
> require(graphics)
> (fit1 <- arima(presidents, c(1, 0, 0)))
Call:
arima(x = presidents, order = c(1, 0, 0))
Coefficients:
ar1 intercept
0.8242 56.1505
s.e. 0.0555 4.6434
sigma^2 estimated as 85.47: log likelihood = -416.89, aic = 839.78
> tsdiag(fit1)
> (fit3 <- arima(presidents, c(3, 0, 0))) # smaller AIC
Call:
arima(x = presidents, order = c(3, 0, 0))
Coefficients:
ar1 ar2 ar3 intercept
0.7496 0.2523 -0.1890 56.2223
s.e. 0.0936 0.1140 0.0946 4.2845
sigma^2 estimated as 81.12: log likelihood = -414.08, aic = 838.16
> tsdiag(fit3)
>
> ## An example of ARIMA forecasting:
> predict(fit3, 3)
$pred
Qtr1 Qtr2 Qtr3
1975 29.84194 34.41014 39.30815
$se
Qtr1 Qtr2 Qtr3
1975 9.00655 11.25606 13.43389
>
>
>
> cleanEx()
> nameEx("arima.sim")
> ### * arima.sim
>
> flush(stderr()); flush(stdout())
>
> ### Name: arima.sim
> ### Title: Simulate from an ARIMA Model
> ### Aliases: arima.sim
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> arima.sim(n = 63, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)),
+ sd = sqrt(0.1796))
Time Series:
Start = 1
End = 63
Frequency = 1
[1] 0.55638574 0.24800500 -0.81744783 -0.38508849 -0.23890454 -0.02072714
[7] -0.51654590 -0.52651638 -0.14927781 0.60798558 0.48272646 0.45160066
[13] 0.09619832 -0.67131480 -0.69254708 -0.56224691 -0.19460368 0.53033791
[19] 0.77731125 0.40648873 -0.02697856 0.08101569 0.22706682 -0.10950180
[25] -0.38234797 -0.13676254 0.27995530 0.23211869 0.53580489 0.43571147
[31] -0.07756004 -0.03502285 -0.56957457 0.26261214 1.09213953 0.64829971
[37] -0.15198589 -0.14659775 -0.27894630 0.91394089 0.68582187 0.71550492
[43] 0.24452551 -0.37501019 -0.29768875 -0.94420587 0.11988146 0.29844068
[49] 1.26774646 0.99077203 0.14790214 0.02779843 -0.57682386 -0.90337297
[55] -0.37740926 -0.24511724 0.03927715 0.13868087 -0.15259447 -0.37935616
[61] -0.32790595 0.34491331 -0.30754547
> # mildly long-tailed
> arima.sim(n = 63, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)),
+ rand.gen = function(n, ...) sqrt(0.1796) * rt(n, df = 5))
Time Series:
Start = 1
End = 63
Frequency = 1
[1] -0.08101433 -0.37596592 -1.05656365 -0.99217317 -0.15199924 -0.06140144
[7] -0.55852200 -0.54700937 -0.72098523 -0.98045523 -0.80880380 -0.61217798
[13] -0.66268921 -0.29302949 -0.83022714 -0.08803618 -0.37932440 0.10532621
[19] 0.08033289 -0.29269083 -0.69193397 0.81677306 -0.25402288 -0.08812258
[25] -0.34117754 0.29026870 -0.54848673 -0.44974248 -0.34110521 -0.17826307
[31] -0.35396760 0.98465366 0.21136827 0.05042017 -0.02400316 -0.42642295
[37] -0.61906692 1.92955621 -0.36050863 -0.68488280 0.10141464 0.64328982
[43] 0.31906603 0.17275054 -0.13570368 -0.13451166 -0.11717037 0.02330814
[49] 0.29918521 0.05938999 -0.20355761 -0.02439309 -1.14548572 -0.94045141
[55] 0.44845239 1.76898773 1.78579981 1.16734413 0.33858833 -0.41153063
[61] -0.31037109 -0.31929663 0.17496536
>
> # An ARIMA simulation
> ts.sim <- arima.sim(list(order = c(1,1,0), ar = 0.7), n = 200)
> ts.plot(ts.sim)
>
>
>
> cleanEx()
> nameEx("arima0")
> ### * arima0
>
> flush(stderr()); flush(stdout())
>
> ### Name: arima0
> ### Title: ARIMA Modelling of Time Series - Preliminary Version
> ### Aliases: arima0 print.arima0 predict.arima0
> ### Keywords: ts
>
> ### ** Examples
>
> ## Not run: arima0(lh, order = c(1,0,0))
> arima0(lh, order = c(3,0,0))
Call:
arima0(x = lh, order = c(3, 0, 0))
Coefficients:
ar1 ar2 ar3 intercept
0.6448 -0.0634 -0.2198 2.3931
s.e. 0.1394 0.1668 0.1421 0.0963
sigma^2 estimated as 0.1787: log likelihood = -27.09, aic = 64.18
> arima0(lh, order = c(1,0,1))
Call:
arima0(x = lh, order = c(1, 0, 1))
Coefficients:
ar1 ma1 intercept
0.4521 0.1983 2.4101
s.e. 0.1357 0.1777 0.1357
sigma^2 estimated as 0.1923: log likelihood = -28.76, aic = 65.52
> predict(arima0(lh, order = c(3,0,0)), n.ahead = 12)
$pred
Time Series:
Start = 49
End = 60
Frequency = 1
[1] 2.460173 2.270829 2.198597 2.260696 2.346933 2.414479 2.438918 2.431440
[9] 2.410223 2.391645 2.382653 2.382697
$se
Time Series:
Start = 49
End = 60
Frequency = 1
[1] 0.4226823 0.5029332 0.5245256 0.5247161 0.5305499 0.5369159 0.5388045
[8] 0.5388448 0.5391043 0.5395174 0.5396991 0.5397140
>
> arima0(lh, order = c(3,0,0), method = "CSS")
Call:
arima0(x = lh, order = c(3, 0, 0), method = "CSS")
Coefficients:
ar1 ar2 ar3 intercept
0.6580 -0.0660 -0.2339 2.3999
s.e. 0.1414 0.1702 0.1469 0.0981
sigma^2 estimated as 0.1905: part log likelihood = -28.31
>
> # for a model with as few years as this, we want full ML
> (fit <- arima0(USAccDeaths, order = c(0,1,1),
+ seasonal = list(order=c(0,1,1)), delta = -1))
Call:
arima0(x = USAccDeaths, order = c(0, 1, 1), seasonal = list(order = c(0, 1,
1)), delta = -1)
Coefficients:
ma1 sma1
-0.4304 -0.5526
s.e. 0.1228 0.1785
sigma^2 estimated as 99355: log likelihood = -425.44, aic = 856.88
> predict(fit, n.ahead = 6)
$pred
Jan Feb Mar Apr May Jun
1979 8336.028 7531.760 8314.593 8616.864 9488.916 9859.727
$se
Jan Feb Mar Apr May Jun
1979 315.4607 362.9949 404.9878 443.0180 478.0322 510.6511
>
> arima0(LakeHuron, order = c(2,0,0), xreg = time(LakeHuron)-1920)
Call:
arima0(x = LakeHuron, order = c(2, 0, 0), xreg = time(LakeHuron) - 1920)
Coefficients:
ar1 ar2 intercept xreg
1.0048 -0.2913 579.0985 -0.0216
s.e. 0.0976 0.1004 0.2370 0.0081
sigma^2 estimated as 0.4566: log likelihood = -101.2, aic = 212.4
> ## Not run:
> ##D ## presidents contains NAs
> ##D ## graphs in example(acf) suggest order 1 or 3
> ##D (fit1 <- arima0(presidents, c(1, 0, 0), delta = -1)) # avoid warning
> ##D tsdiag(fit1)
> ##D (fit3 <- arima0(presidents, c(3, 0, 0), delta = -1)) # smaller AIC
> ##D tsdiag(fit3)
> ## End(Not run)
>
>
>
> cleanEx()
> nameEx("as.hclust")
> ### * as.hclust
>
> flush(stderr()); flush(stdout())
>
> ### Name: as.hclust
> ### Title: Convert Objects to Class hclust
> ### Aliases: as.hclust as.hclust.default as.hclust.twins
> ### Keywords: multivariate cluster
>
> ### ** Examples
>
> x <- matrix(rnorm(30), ncol = 3)
> hc <- hclust(dist(x), method = "complete")
>
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("asOneSidedFormula")
> ### * asOneSidedFormula
>
> flush(stderr()); flush(stdout())
>
> ### Name: asOneSidedFormula
> ### Title: Convert to One-Sided Formula
> ### Aliases: asOneSidedFormula
> ### Keywords: models
>
> ### ** Examples
>
> asOneSidedFormula("age")
~age
<environment: 0x28cf578>
> asOneSidedFormula(~ age)
~age
>
>
>
> cleanEx()
> nameEx("ave")
> ### * ave
>
> flush(stderr()); flush(stdout())
>
> ### Name: ave
> ### Title: Group Averages Over Level Combinations of Factors
> ### Aliases: ave
> ### Keywords: univar
>
> ### ** Examples
>
> require(graphics)
>
> ave(1:3) # no grouping -> grand mean
[1] 2 2 2
>
> attach(warpbreaks)
> ave(breaks, wool)
[1] 31.03704 31.03704 31.03704 31.03704 31.03704 31.03704 31.03704 31.03704
[9] 31.03704 31.03704 31.03704 31.03704 31.03704 31.03704 31.03704 31.03704
[17] 31.03704 31.03704 31.03704 31.03704 31.03704 31.03704 31.03704 31.03704
[25] 31.03704 31.03704 31.03704 25.25926 25.25926 25.25926 25.25926 25.25926
[33] 25.25926 25.25926 25.25926 25.25926 25.25926 25.25926 25.25926 25.25926
[41] 25.25926 25.25926 25.25926 25.25926 25.25926 25.25926 25.25926 25.25926
[49] 25.25926 25.25926 25.25926 25.25926 25.25926 25.25926
> ave(breaks, tension)
[1] 36.38889 36.38889 36.38889 36.38889 36.38889 36.38889 36.38889 36.38889
[9] 36.38889 26.38889 26.38889 26.38889 26.38889 26.38889 26.38889 26.38889
[17] 26.38889 26.38889 21.66667 21.66667 21.66667 21.66667 21.66667 21.66667
[25] 21.66667 21.66667 21.66667 36.38889 36.38889 36.38889 36.38889 36.38889
[33] 36.38889 36.38889 36.38889 36.38889 26.38889 26.38889 26.38889 26.38889
[41] 26.38889 26.38889 26.38889 26.38889 26.38889 21.66667 21.66667 21.66667
[49] 21.66667 21.66667 21.66667 21.66667 21.66667 21.66667
> ave(breaks, tension, FUN = function(x) mean(x, trim = 0.1))
[1] 35.6875 35.6875 35.6875 35.6875 35.6875 35.6875 35.6875 35.6875 35.6875
[10] 26.3125 26.3125 26.3125 26.3125 26.3125 26.3125 26.3125 26.3125 26.3125
[19] 21.0625 21.0625 21.0625 21.0625 21.0625 21.0625 21.0625 21.0625 21.0625
[28] 35.6875 35.6875 35.6875 35.6875 35.6875 35.6875 35.6875 35.6875 35.6875
[37] 26.3125 26.3125 26.3125 26.3125 26.3125 26.3125 26.3125 26.3125 26.3125
[46] 21.0625 21.0625 21.0625 21.0625 21.0625 21.0625 21.0625 21.0625 21.0625
> plot(breaks, main =
+ "ave( Warpbreaks ) for wool x tension combinations")
> lines(ave(breaks, wool, tension ), type = "s", col = "blue")
> lines(ave(breaks, wool, tension, FUN = median), type = "s", col = "green")
> legend(40, 70, c("mean", "median"), lty = 1,
+ col = c("blue","green"), bg = "gray90")
> detach()
>
>
>
> cleanEx()
> nameEx("bandwidth")
> ### * bandwidth
>
> flush(stderr()); flush(stdout())
>
> ### Name: bandwidth
> ### Title: Bandwidth Selectors for Kernel Density Estimation
> ### Aliases: bw.nrd0 bw.nrd bw.ucv bw.bcv bw.SJ
> ### Keywords: distribution smooth
>
> ### ** Examples
>
> require(graphics)
>
> plot(density(precip, n = 1000))
> rug(precip)
> lines(density(precip, bw = "nrd"), col = 2)
> lines(density(precip, bw = "ucv"), col = 3)
> lines(density(precip, bw = "bcv"), col = 4)
Warning in bw.bcv(x) : minimum occurred at one end of the range
> lines(density(precip, bw = "SJ-ste"), col = 5)
> lines(density(precip, bw = "SJ-dpi"), col = 6)
> legend(55, 0.035,
+ legend = c("nrd0", "nrd", "ucv", "bcv", "SJ-ste", "SJ-dpi"),
+ col = 1:6, lty = 1)
>
>
>
> cleanEx()
> nameEx("bartlett.test")
> ### * bartlett.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: bartlett.test
> ### Title: Bartlett Test of Homogeneity of Variances
> ### Aliases: bartlett.test bartlett.test.default bartlett.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> require(graphics)
>
> plot(count ~ spray, data = InsectSprays)
> bartlett.test(InsectSprays$count, InsectSprays$spray)
Bartlett test of homogeneity of variances
data: InsectSprays$count and InsectSprays$spray
Bartlett's K-squared = 25.9598, df = 5, p-value = 9.085e-05
> bartlett.test(count ~ spray, data = InsectSprays)
Bartlett test of homogeneity of variances
data: count by spray
Bartlett's K-squared = 25.9598, df = 5, p-value = 9.085e-05
>
>
>
> cleanEx()
> nameEx("binom.test")
> ### * binom.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: binom.test
> ### Title: Exact Binomial Test
> ### Aliases: binom.test
> ### Keywords: htest
>
> ### ** Examples
>
> ## Conover (1971), p. 97f.
> ## Under (the assumption of) simple Mendelian inheritance, a cross
> ## between plants of two particular genotypes produces progeny 1/4 of
> ## which are "dwarf" and 3/4 of which are "giant", respectively.
> ## In an experiment to determine if this assumption is reasonable, a
> ## cross results in progeny having 243 dwarf and 682 giant plants.
> ## If "giant" is taken as success, the null hypothesis is that p =
> ## 3/4 and the alternative that p != 3/4.
> binom.test(c(682, 243), p = 3/4)
Exact binomial test
data: c(682, 243)
number of successes = 682, number of trials = 925, p-value = 0.3825
alternative hypothesis: true probability of success is not equal to 0.75
95 percent confidence interval:
0.7076683 0.7654066
sample estimates:
probability of success
0.7372973
> binom.test(682, 682 + 243, p = 3/4) # The same.
Exact binomial test
data: 682 and 682 + 243
number of successes = 682, number of trials = 925, p-value = 0.3825
alternative hypothesis: true probability of success is not equal to 0.75
95 percent confidence interval:
0.7076683 0.7654066
sample estimates:
probability of success
0.7372973
> ## => Data are in agreement with the null hypothesis.
>
>
>
> cleanEx()
> nameEx("biplot.princomp")
> ### * biplot.princomp
>
> flush(stderr()); flush(stdout())
>
> ### Name: biplot.princomp
> ### Title: Biplot for Principal Components
> ### Aliases: biplot.princomp biplot.prcomp
> ### Keywords: multivariate hplot
>
> ### ** Examples
>
> require(graphics)
> biplot(princomp(USArrests))
>
>
>
> cleanEx()
> nameEx("birthday")
> ### * birthday
>
> flush(stderr()); flush(stdout())
>
> ### Name: birthday
> ### Title: Probability of coincidences
> ### Aliases: qbirthday pbirthday
> ### Keywords: distribution
>
> ### ** Examples
>
> require(graphics)
>
> ## the standard version
> qbirthday() # 23
[1] 23
> ## probability of > 2 people with the same birthday
> pbirthday(23, coincident = 3)
[1] 0.01441541
>
> ## examples from Diaconis & Mosteller p. 858.
> ## 'coincidence' is that husband, wife, daughter all born on the 16th
> qbirthday(classes = 30, coincident = 3) # approximately 18
[1] 18
> qbirthday(coincident = 4) # exact value 187
[1] 187
> qbirthday(coincident = 10) # exact value 1181
[1] 1179
>
> ## same 4-digit PIN number
> qbirthday(classes = 10^4)
[1] 119
>
> ## 0.9 probability of three or more coincident birthdays
> qbirthday(coincident = 3, prob = 0.9)
[1] 135
>
> ## Chance of 4 or more coincident birthdays in 150 people
> pbirthday(150, coincident = 4)
[1] 0.2690146
>
> ## 100 or more coincident birthdays in 1000 people: very rare
> pbirthday(1000, coincident = 100)
[1] 1.531434e-113
>
>
>
> cleanEx()
> nameEx("box.test")
> ### * box.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: Box.test
> ### Title: Box-Pierce and Ljung-Box Tests
> ### Aliases: Box.test
> ### Keywords: ts
>
> ### ** Examples
>
> x <- rnorm (100)
> Box.test (x, lag = 1)
Box-Pierce test
data: x
X-squared = 0.0013, df = 1, p-value = 0.9709
> Box.test (x, lag = 1, type = "Ljung")
Box-Ljung test
data: x
X-squared = 0.0014, df = 1, p-value = 0.9704
>
>
>
> cleanEx()
> nameEx("cancor")
> ### * cancor
>
> flush(stderr()); flush(stdout())
>
> ### Name: cancor
> ### Title: Canonical Correlations
> ### Aliases: cancor
> ### Keywords: multivariate
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("case.names")
> ### * case.names
>
> flush(stderr()); flush(stdout())
>
> ### Name: case+variable.names
> ### Title: Case and Variable Names of Fitted Models
> ### Aliases: case.names case.names.lm variable.names variable.names.lm
> ### Keywords: regression models
>
> ### ** Examples
>
> x <- 1:20
> y <- setNames(x + (x/4 - 2)^3 + rnorm(20, sd = 3),
+ paste("O", x, sep = "."))
> ww <- rep(1, 20); ww[13] <- 0
> summary(lmxy <- lm(y ~ x + I(x^2)+I(x^3) + I((x-10)^2), weights = ww),
+ cor = TRUE)
Call:
lm(formula = y ~ x + I(x^2) + I(x^3) + I((x - 10)^2), weights = ww)
Weighted Residuals:
Min 1Q Median 3Q Max
-6.7160 -0.7047 0.0728 1.0174 3.9947
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -10.967768 3.104498 -3.533 0.003013 **
x 5.524412 1.255354 4.401 0.000516 ***
I(x^2) -0.542292 0.138460 -3.917 0.001374 **
I(x^3) 0.020905 0.004372 4.782 0.000242 ***
I((x - 10)^2) NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.838 on 15 degrees of freedom
Multiple R-squared: 0.9702, Adjusted R-squared: 0.9643
F-statistic: 163 on 3 and 15 DF, p-value: 1.14e-11
Correlation of Coefficients:
(Intercept) x I(x^2)
x -0.90
I(x^2) 0.80 -0.97
I(x^3) -0.73 0.93 -0.99
> variable.names(lmxy)
[1] "(Intercept)" "x" "I(x^2)" "I(x^3)"
> variable.names(lmxy, full = TRUE) # includes the last
[1] "(Intercept)" "x" "I(x^2)" "I(x^3)"
[5] "I((x - 10)^2)"
> case.names(lmxy)
[1] "O.1" "O.2" "O.3" "O.4" "O.5" "O.6" "O.7" "O.8" "O.9" "O.10"
[11] "O.11" "O.12" "O.14" "O.15" "O.16" "O.17" "O.18" "O.19" "O.20"
> case.names(lmxy, full = TRUE) # includes the 0-weight case
[1] "O.1" "O.2" "O.3" "O.4" "O.5" "O.6" "O.7" "O.8" "O.9" "O.10"
[11] "O.11" "O.12" "O.13" "O.14" "O.15" "O.16" "O.17" "O.18" "O.19" "O.20"
>
>
>
> cleanEx()
> nameEx("chisq.test")
> ### * chisq.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: chisq.test
> ### Title: Pearson's Chi-squared Test for Count Data
> ### Aliases: chisq.test
> ### Keywords: htest distribution
>
> ### ** Examples
>
>
> ## From Agresti(2007) p.39
> M <- as.table(rbind(c(762, 327, 468), c(484, 239, 477)))
> dimnames(M) <- list(gender = c("M","F"),
+ party = c("Democrat","Independent", "Republican"))
> (Xsq <- chisq.test(M)) # Prints test summary
Pearson's Chi-squared test
data: M
X-squared = 30.0701, df = 2, p-value = 2.954e-07
> Xsq$observed # observed counts (same as M)
party
gender Democrat Independent Republican
M 762 327 468
F 484 239 477
> Xsq$expected # expected counts under the null
party
gender Democrat Independent Republican
M 703.6714 319.6453 533.6834
F 542.3286 246.3547 411.3166
> Xsq$residuals # Pearson residuals
party
gender Democrat Independent Republican
M 2.1988558 0.4113702 -2.8432397
F -2.5046695 -0.4685829 3.2386734
> Xsq$stdres # standardized residuals
party
gender Democrat Independent Republican
M 4.5020535 0.6994517 -5.3159455
F -4.5020535 -0.6994517 5.3159455
>
>
> ## Effect of simulating p-values
> x <- matrix(c(12, 5, 7, 7), ncol = 2)
> chisq.test(x)$p.value # 0.4233
[1] 0.4233054
> chisq.test(x, simulate.p.value = TRUE, B = 10000)$p.value
[1] 0.2935706
> # around 0.29!
>
> ## Testing for population probabilities
> ## Case A. Tabulated data
> x <- c(A = 20, B = 15, C = 25)
> chisq.test(x)
Chi-squared test for given probabilities
data: x
X-squared = 2.5, df = 2, p-value = 0.2865
> chisq.test(as.table(x)) # the same
Chi-squared test for given probabilities
data: as.table(x)
X-squared = 2.5, df = 2, p-value = 0.2865
> x <- c(89,37,30,28,2)
> p <- c(40,20,20,15,5)
> try(
+ chisq.test(x, p = p) # gives an error
+ )
Error in chisq.test(x, p = p) : probabilities must sum to 1.
> chisq.test(x, p = p, rescale.p = TRUE)
Chi-squared test for given probabilities
data: x
X-squared = 9.9901, df = 4, p-value = 0.04059
> # works
> p <- c(0.40,0.20,0.20,0.19,0.01)
> # Expected count in category 5
> # is 1.86 < 5 ==> chi square approx.
> chisq.test(x, p = p) # maybe doubtful, but is ok!
Warning in chisq.test(x, p = p) :
Chi-squared approximation may be incorrect
Chi-squared test for given probabilities
data: x
X-squared = 5.7947, df = 4, p-value = 0.215
> chisq.test(x, p = p, simulate.p.value = TRUE)
Chi-squared test for given probabilities with simulated p-value (based
on 2000 replicates)
data: x
X-squared = 5.7947, df = NA, p-value = 0.2029
>
> ## Case B. Raw data
> x <- trunc(5 * runif(100))
> chisq.test(table(x)) # NOT 'chisq.test(x)'!
Chi-squared test for given probabilities
data: table(x)
X-squared = 4.3, df = 4, p-value = 0.3669
>
>
>
> cleanEx()
> nameEx("cmdscale")
> ### * cmdscale
>
> flush(stderr()); flush(stdout())
>
> ### Name: cmdscale
> ### Title: Classical (Metric) Multidimensional Scaling
> ### Aliases: cmdscale
> ### Keywords: multivariate
>
> ### ** Examples
>
> require(graphics)
>
> loc <- cmdscale(eurodist)
> x <- loc[, 1]
> y <- -loc[, 2] # reflect so North is at the top
> ## note asp = 1, to ensure Euclidean distances are represented correctly
> plot(x, y, type = "n", xlab = "", ylab = "", asp = 1, axes = FALSE,
+ main = "cmdscale(eurodist)")
> text(x, y, rownames(loc), cex = 0.6)
>
>
>
> cleanEx()
> nameEx("coef")
> ### * coef
>
> flush(stderr()); flush(stdout())
>
> ### Name: coef
> ### Title: Extract Model Coefficients
> ### Aliases: coef coefficients
> ### Keywords: regression models
>
> ### ** Examples
>
> x <- 1:5; coef(lm(c(1:3, 7, 6) ~ x))
(Intercept) x
-0.7 1.5
>
>
>
> cleanEx()
> nameEx("complete.cases")
> ### * complete.cases
>
> flush(stderr()); flush(stdout())
>
> ### Name: complete.cases
> ### Title: Find Complete Cases
> ### Aliases: complete.cases
> ### Keywords: NA logic
>
> ### ** Examples
>
> x <- airquality[, -1] # x is a regression design matrix
> y <- airquality[, 1] # y is the corresponding response
>
> stopifnot(complete.cases(y) != is.na(y))
> ok <- complete.cases(x, y)
> sum(!ok) # how many are not "ok" ?
[1] 42
> x <- x[ok,]
> y <- y[ok]
>
>
>
> cleanEx()
> nameEx("confint")
> ### * confint
>
> flush(stderr()); flush(stdout())
>
> ### Name: confint
> ### Title: Confidence Intervals for Model Parameters
> ### Aliases: confint confint.default confint.lm
> ### Keywords: models
>
> ### ** Examples
>
> fit <- lm(100/mpg ~ disp + hp + wt + am, data = mtcars)
> confint(fit)
2.5 % 97.5 %
(Intercept) -0.774822875 2.256118188
disp -0.002867999 0.008273849
hp -0.001400580 0.011949674
wt 0.380088737 1.622517536
am -0.614677730 0.926307310
> confint(fit, "wt")
2.5 % 97.5 %
wt 0.3800887 1.622518
>
>
>
>
> cleanEx()
> nameEx("constrOptim")
> ### * constrOptim
>
> flush(stderr()); flush(stdout())
>
> ### Name: constrOptim
> ### Title: Linearly Constrained Optimization
> ### Aliases: constrOptim
> ### Keywords: optimize
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("contrast")
> ### * contrast
>
> flush(stderr()); flush(stdout())
>
> ### Name: contrast
> ### Title: (Possibly Sparse) Contrast Matrices
> ### Aliases: contr.helmert contr.poly contr.sum contr.treatment contr.SAS
> ### Keywords: design regression array
>
> ### ** Examples
>
> (cH <- contr.helmert(4))
[,1] [,2] [,3]
1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3
> apply(cH, 2, sum) # column sums are 0
[1] 0 0 0
> crossprod(cH) # diagonal -- columns are orthogonal
[,1] [,2] [,3]
[1,] 2 0 0
[2,] 0 6 0
[3,] 0 0 12
> contr.helmert(4, contrasts = FALSE) # just the 4 x 4 identity matrix
1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
>
> (cT <- contr.treatment(5))
2 3 4 5
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1
> all(crossprod(cT) == diag(4)) # TRUE: even orthonormal
[1] TRUE
>
> (cT. <- contr.SAS(5))
1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 0 0 0 0
> all(crossprod(cT.) == diag(4)) # TRUE
[1] TRUE
>
> zapsmall(cP <- contr.poly(3)) # Linear and Quadratic
.L .Q
[1,] -0.7071068 0.4082483
[2,] 0.0000000 -0.8164966
[3,] 0.7071068 0.4082483
> zapsmall(crossprod(cP), digits = 15) # orthonormal up to fuzz
.L .Q
.L 1 0
.Q 0 1
>
>
>
> cleanEx()
> nameEx("contrasts")
> ### * contrasts
>
> flush(stderr()); flush(stdout())
>
> ### Name: contrasts
> ### Title: Get and Set Contrast Matrices
> ### Aliases: contrasts contrasts<-
> ### Keywords: design regression
>
> ### ** Examples
>
> utils::example(factor)
factor> (ff <- factor(substring("statistics", 1:10, 1:10), levels = letters))
[1] s t a t i s t i c s
Levels: a b c d e f g h i j k l m n o p q r s t u v w x y z
factor> as.integer(ff) # the internal codes
[1] 19 20 1 20 9 19 20 9 3 19
factor> (f. <- factor(ff)) # drops the levels that do not occur
[1] s t a t i s t i c s
Levels: a c i s t
factor> ff[, drop = TRUE] # the same, more transparently
[1] s t a t i s t i c s
Levels: a c i s t
factor> factor(letters[1:20], labels = "letter")
[1] letter1 letter2 letter3 letter4 letter5 letter6 letter7 letter8
[9] letter9 letter10 letter11 letter12 letter13 letter14 letter15 letter16
[17] letter17 letter18 letter19 letter20
20 Levels: letter1 letter2 letter3 letter4 letter5 letter6 letter7 ... letter20
factor> class(ordered(4:1)) # "ordered", inheriting from "factor"
[1] "ordered" "factor"
factor> z <- factor(LETTERS[3:1], ordered = TRUE)
factor> ## and "relational" methods work:
factor> stopifnot(sort(z)[c(1,3)] == range(z), min(z) < max(z))
factor> ## Don't show:
factor> of <- ordered(ff)
factor> stopifnot(identical(range(of, rev(of)), of[3:2]),
factor+ identical(max(of), of[2]))
factor> ## End Don't show
factor>
factor> ## suppose you want "NA" as a level, and to allow missing values.
factor> (x <- factor(c(1, 2, NA), exclude = NULL))
[1] 1 2 <NA>
Levels: 1 2 <NA>
factor> is.na(x)[2] <- TRUE
factor> x # [1] 1 <NA> <NA>
[1] 1 <NA> <NA>
Levels: 1 2 <NA>
factor> is.na(x)
[1] FALSE TRUE FALSE
factor> # [1] FALSE TRUE FALSE
factor>
factor> ## Using addNA()
factor> Month <- airquality$Month
factor> table(addNA(Month))
5 6 7 8 9 <NA>
31 30 31 31 30 0
factor> table(addNA(Month, ifany = TRUE))
5 6 7 8 9
31 30 31 31 30
> fff <- ff[, drop = TRUE] # reduce to 5 levels.
> contrasts(fff) # treatment contrasts by default
c i s t
a 0 0 0 0
c 1 0 0 0
i 0 1 0 0
s 0 0 1 0
t 0 0 0 1
> contrasts(C(fff, sum))
[,1] [,2] [,3] [,4]
a 1 0 0 0
c 0 1 0 0
i 0 0 1 0
s 0 0 0 1
t -1 -1 -1 -1
> contrasts(fff, contrasts = FALSE) # the 5x5 identity matrix
a c i s t
a 1 0 0 0 0
c 0 1 0 0 0
i 0 0 1 0 0
s 0 0 0 1 0
t 0 0 0 0 1
>
> contrasts(fff) <- contr.sum(5); contrasts(fff) # set sum contrasts
[,1] [,2] [,3] [,4]
a 1 0 0 0
c 0 1 0 0
i 0 0 1 0
s 0 0 0 1
t -1 -1 -1 -1
> contrasts(fff, 2) <- contr.sum(5); contrasts(fff) # set 2 contrasts
[,1] [,2]
a 1 0
c 0 1
i 0 0
s 0 0
t -1 -1
> # supply 2 contrasts, compute 2 more to make full set of 4.
> contrasts(fff) <- contr.sum(5)[, 1:2]; contrasts(fff)
[,1] [,2] [,3] [,4]
a 1 0 -0.2471257 0.2688164
c 0 1 -0.2471257 0.2688164
i 0 0 -0.1498721 -0.8817814
s 0 0 0.8912491 0.0753323
t -1 -1 -0.2471257 0.2688164
>
>
>
> cleanEx()
> nameEx("convolve")
> ### * convolve
>
> flush(stderr()); flush(stdout())
>
> ### Name: convolve
> ### Title: Convolution of Sequences via FFT
> ### Aliases: convolve
> ### Keywords: math dplot
>
> ### ** Examples
>
> require(graphics)
>
> x <- c(0,0,0,100,0,0,0)
> y <- c(0,0,1, 2 ,1,0,0)/4
> zapsmall(convolve(x, y)) # *NOT* what you first thought.
[1] 50 25 0 0 0 0 25
> zapsmall(convolve(x, y[3:5], type = "f")) # rather
[1] 0 25 50 25 0
> x <- rnorm(50)
> y <- rnorm(50)
> # Circular convolution *has* this symmetry:
> all.equal(convolve(x, y, conj = FALSE), rev(convolve(rev(y),x)))
[1] TRUE
>
> n <- length(x <- -20:24)
> y <- (x-10)^2/1000 + rnorm(x)/8
>
> Han <- function(y) # Hanning
+ convolve(y, c(1,2,1)/4, type = "filter")
>
> plot(x, y, main = "Using convolve(.) for Hanning filters")
> lines(x[-c(1 , n) ], Han(y), col = "red")
> lines(x[-c(1:2, (n-1):n)], Han(Han(y)), lwd = 2, col = "dark blue")
>
>
>
> cleanEx()
> nameEx("cophenetic")
> ### * cophenetic
>
> flush(stderr()); flush(stdout())
>
> ### Name: cophenetic
> ### Title: Cophenetic Distances for a Hierarchical Clustering
> ### Aliases: cophenetic cophenetic.default cophenetic.dendrogram
> ### Keywords: cluster multivariate
>
> ### ** Examples
>
> require(graphics)
>
> d1 <- dist(USArrests)
> hc <- hclust(d1, "ave")
> d2 <- cophenetic(hc)
> cor(d1, d2) # 0.7659
[1] 0.7658983
>
> ## Example from Sneath & Sokal, Fig. 5-29, p.279
> d0 <- c(1,3.8,4.4,5.1, 4,4.2,5, 2.6,5.3, 5.4)
> attributes(d0) <- list(Size = 5, diag = TRUE)
> class(d0) <- "dist"
> names(d0) <- letters[1:5]
> d0
1 2 3 4
2 1.0
3 3.8 4.0
4 4.4 4.2 2.6
5 5.1 5.0 5.3 5.4
> utils::str(upgma <- hclust(d0, method = "average"))
List of 7
$ merge : int [1:4, 1:2] -1 -3 1 -5 -2 -4 2 3
$ height : num [1:4] 1 2.6 4.1 5.2
$ order : int [1:5] 5 1 2 3 4
$ labels : NULL
$ method : chr "average"
$ call : language hclust(d = d0, method = "average")
$ dist.method: NULL
- attr(*, "class")= chr "hclust"
> plot(upgma, hang = -1)
> #
> (d.coph <- cophenetic(upgma))
1 2 3 4
2 1.0
3 4.1 4.1
4 4.1 4.1 2.6
5 5.2 5.2 5.2 5.2
> cor(d0, d.coph) # 0.9911
[1] 0.9911351
>
>
>
> cleanEx()
> nameEx("cor")
> ### * cor
>
> flush(stderr()); flush(stdout())
>
> ### Name: cor
> ### Title: Correlation, Variance and Covariance (Matrices)
> ### Aliases: var cov cor cov2cor
> ### Keywords: univar multivariate array
>
> ### ** Examples
>
> var(1:10) # 9.166667
[1] 9.166667
>
> var(1:5, 1:5) # 2.5
[1] 2.5
>
> ## Two simple vectors
> cor(1:10, 2:11) # == 1
[1] 1
>
> ## Correlation Matrix of Multivariate sample:
> (Cl <- cor(longley))
GNP.deflator GNP Unemployed Armed.Forces Population
GNP.deflator 1.0000000 0.9915892 0.6206334 0.4647442 0.9791634
GNP 0.9915892 1.0000000 0.6042609 0.4464368 0.9910901
Unemployed 0.6206334 0.6042609 1.0000000 -0.1774206 0.6865515
Armed.Forces 0.4647442 0.4464368 -0.1774206 1.0000000 0.3644163
Population 0.9791634 0.9910901 0.6865515 0.3644163 1.0000000
Year 0.9911492 0.9952735 0.6682566 0.4172451 0.9939528
Employed 0.9708985 0.9835516 0.5024981 0.4573074 0.9603906
Year Employed
GNP.deflator 0.9911492 0.9708985
GNP 0.9952735 0.9835516
Unemployed 0.6682566 0.5024981
Armed.Forces 0.4172451 0.4573074
Population 0.9939528 0.9603906
Year 1.0000000 0.9713295
Employed 0.9713295 1.0000000
> ## Graphical Correlation Matrix:
> symnum(Cl) # highly correlated
GNP. GNP U A P Y E
GNP.deflator 1
GNP B 1
Unemployed , , 1
Armed.Forces . . 1
Population B B , . 1
Year B B , . B 1
Employed B B . . B B 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
>
> ## Spearman's rho and Kendall's tau
> symnum(clS <- cor(longley, method = "spearman"))
GNP. GNP U A P Y E
GNP.deflator 1
GNP B 1
Unemployed , , 1
Armed.Forces . 1
Population B B , 1
Year B B , 1 1
Employed B B . B B 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(clK <- cor(longley, method = "kendall"))
GNP. GNP U A P Y E
GNP.deflator 1
GNP B 1
Unemployed . . 1
Armed.Forces 1
Population B B . 1
Year B B . 1 1
Employed * * . + + 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> ## How much do they differ?
> i <- lower.tri(Cl)
> cor(cbind(P = Cl[i], S = clS[i], K = clK[i]))
P S K
P 1.0000000 0.9802390 0.9572562
S 0.9802390 1.0000000 0.9742171
K 0.9572562 0.9742171 1.0000000
>
>
> ## cov2cor() scales a covariance matrix by its diagonal
> ## to become the correlation matrix.
> cov2cor # see the function definition {and learn ..}
function (V)
{
p <- (d <- dim(V))[1L]
if (!is.numeric(V) || length(d) != 2L || p != d[2L])
stop("'V' is not a square numeric matrix")
Is <- sqrt(1/diag(V))
if (any(!is.finite(Is)))
warning("diag(.) had 0 or NA entries; non-finite result is doubtful")
r <- V
r[] <- Is * V * rep(Is, each = p)
r[cbind(1L:p, 1L:p)] <- 1
r
}
<bytecode: 0x2e8dd48>
<environment: namespace:stats>
> stopifnot(all.equal(Cl, cov2cor(cov(longley))),
+ all.equal(cor(longley, method = "kendall"),
+ cov2cor(cov(longley, method = "kendall"))))
>
> ##--- Missing value treatment:
> C1 <- cov(swiss)
> range(eigen(C1, only.values = TRUE)$values) # 6.19 1921
[1] 6.191249 1921.562488
>
> ## swM := "swiss" with 3 "missing"s :
> swM <- swiss
> colnames(swM) <- abbreviate(colnames(swiss), min=6)
> swM[1,2] <- swM[7,3] <- swM[25,5] <- NA # create 3 "missing"
>
> ## Consider all 5 "use" cases :
> (C. <- cov(swM)) # use="everything" quite a few NA's in cov.matrix
Frtlty Agrclt Exmntn Eductn Cathlc Infn.M
Frtlty 156.04250 NA NA -79.729510 NA 15.156193
Agrclt NA NA NA NA NA NA
Exmntn NA NA NA NA NA NA
Eductn -79.72951 NA NA 92.456059 NA -2.781684
Cathlc NA NA NA NA NA NA
Infn.M 15.15619 NA NA -2.781684 NA 8.483802
> try(cov(swM, use = "all")) # Error: missing obs...
Error in cov(swM, use = "all") : missing observations in cov/cor
> C2 <- cov(swM, use = "complete")
> stopifnot(identical(C2, cov(swM, use = "na.or.complete")))
> range(eigen(C2, only.values = TRUE)$values) # 6.46 1930
[1] 6.462385 1930.505982
> C3 <- cov(swM, use = "pairwise")
> range(eigen(C3, only.values = TRUE)$values) # 6.19 1938
[1] 6.194469 1938.033663
>
> ## Kendall's tau doesn't change much:
> symnum(Rc <- cor(swM, method = "kendall", use = "complete"))
F A Ex Ed C I
Frtlty 1
Agrclt 1
Exmntn . . 1
Eductn . . . 1
Cathlc . 1
Infn.M 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(Rp <- cor(swM, method = "kendall", use = "pairwise"))
F A Ex Ed C I
Frtlty 1
Agrclt 1
Exmntn . . 1
Eductn . . . 1
Cathlc . 1
Infn.M . 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(R. <- cor(swiss, method = "kendall"))
F A Ex Ed C I
Fertility 1
Agriculture 1
Examination . . 1
Education . . . 1
Catholic . 1
Infant.Mortality . 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
>
> ## "pairwise" is closer componentwise,
> summary(abs(c(1 - Rp/R.)))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.04481 0.09573 0.15210 0.53940
> summary(abs(c(1 - Rc/R.)))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.02020 0.08482 0.50670 0.16190 7.08500
>
> ## but "complete" is closer in Eigen space:
> EV <- function(m) eigen(m, only.values=TRUE)$values
> summary(abs(1 - EV(Rp)/EV(R.)) / abs(1 - EV(Rc)/EV(R.)))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.8942 1.1460 1.2450 1.3730 1.3720 2.3270
>
>
>
> cleanEx()
> nameEx("cor.test")
> ### * cor.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: cor.test
> ### Title: Test for Association/Correlation Between Paired Samples
> ### Aliases: cor.test cor.test.default cor.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> ## Hollander & Wolfe (1973), p. 187f.
> ## Assessment of tuna quality. We compare the Hunter L measure of
> ## lightness to the averages of consumer panel scores (recoded as
> ## integer values from 1 to 6 and averaged over 80 such values) in
> ## 9 lots of canned tuna.
>
> x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
> y <- c( 2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
>
> ## The alternative hypothesis of interest is that the
> ## Hunter L value is positively associated with the panel score.
>
> cor.test(x, y, method = "kendall", alternative = "greater")
Kendall's rank correlation tau
data: x and y
T = 26, p-value = 0.05972
alternative hypothesis: true tau is greater than 0
sample estimates:
tau
0.4444444
> ## => p=0.05972
>
> cor.test(x, y, method = "kendall", alternative = "greater",
+ exact = FALSE) # using large sample approximation
Kendall's rank correlation tau
data: x and y
z = 1.6681, p-value = 0.04765
alternative hypothesis: true tau is greater than 0
sample estimates:
tau
0.4444444
> ## => p=0.04765
>
> ## Compare this to
> cor.test(x, y, method = "spearm", alternative = "g")
Spearman's rank correlation rho
data: x and y
S = 48, p-value = 0.0484
alternative hypothesis: true rho is greater than 0
sample estimates:
rho
0.6
> cor.test(x, y, alternative = "g")
Pearson's product-moment correlation
data: x and y
t = 1.8411, df = 7, p-value = 0.05409
alternative hypothesis: true correlation is greater than 0
95 percent confidence interval:
-0.02223023 1.00000000
sample estimates:
cor
0.5711816
>
> ## Formula interface.
> require(graphics)
> pairs(USJudgeRatings)
> cor.test(~ CONT + INTG, data = USJudgeRatings)
Pearson's product-moment correlation
data: CONT and INTG
t = -0.8605, df = 41, p-value = 0.3945
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.4168591 0.1741182
sample estimates:
cor
-0.1331909
>
>
>
> cleanEx()
> nameEx("cov.wt")
> ### * cov.wt
>
> flush(stderr()); flush(stdout())
>
> ### Name: cov.wt
> ### Title: Weighted Covariance Matrices
> ### Aliases: cov.wt
> ### Keywords: multivariate
>
> ### ** Examples
>
> (xy <- cbind(x = 1:10, y = c(1:3, 8:5, 8:10)))
x y
[1,] 1 1
[2,] 2 2
[3,] 3 3
[4,] 4 8
[5,] 5 7
[6,] 6 6
[7,] 7 5
[8,] 8 8
[9,] 9 9
[10,] 10 10
> w1 <- c(0,0,0,1,1,1,1,1,0,0)
> cov.wt(xy, wt = w1) # i.e. method = "unbiased"
$cov
x y
x 2.5 -0.5
y -0.5 1.7
$center
x y
6.0 6.8
$n.obs
[1] 10
$wt
[1] 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0
> cov.wt(xy, wt = w1, method = "ML", cor = TRUE)
$cov
x y
x 2.0 -0.40
y -0.4 1.36
$center
x y
6.0 6.8
$n.obs
[1] 10
$wt
[1] 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0
$cor
x y
x 1.0000000 -0.2425356
y -0.2425356 1.0000000
>
>
>
> cleanEx()
> nameEx("cpgram")
> ### * cpgram
>
> flush(stderr()); flush(stdout())
>
> ### Name: cpgram
> ### Title: Plot Cumulative Periodogram
> ### Aliases: cpgram
> ### Keywords: ts hplot
>
> ### ** Examples
>
> require(graphics)
>
> par(pty = "s", mfrow = c(1,2))
> cpgram(lh)
> lh.ar <- ar(lh, order.max = 9)
> cpgram(lh.ar$resid, main = "AR(3) fit to lh")
>
> cpgram(ldeaths)
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("cutree")
> ### * cutree
>
> flush(stderr()); flush(stdout())
>
> ### Name: cutree
> ### Title: Cut a Tree into Groups of Data
> ### Aliases: cutree
> ### Keywords: multivariate cluster
>
> ### ** Examples
>
> hc <- hclust(dist(USArrests))
>
> cutree(hc, k = 1:5) #k = 1 is trivial
1 2 3 4 5
Alabama 1 1 1 1 1
Alaska 1 1 1 1 1
Arizona 1 1 1 1 1
Arkansas 1 2 2 2 2
California 1 1 1 1 1
Colorado 1 2 2 2 2
Connecticut 1 2 3 3 3
Delaware 1 1 1 1 1
Florida 1 1 1 4 4
Georgia 1 2 2 2 2
Hawaii 1 2 3 3 5
Idaho 1 2 3 3 3
Illinois 1 1 1 1 1
Indiana 1 2 3 3 3
Iowa 1 2 3 3 5
Kansas 1 2 3 3 3
Kentucky 1 2 3 3 3
Louisiana 1 1 1 1 1
Maine 1 2 3 3 5
Maryland 1 1 1 1 1
Massachusetts 1 2 2 2 2
Michigan 1 1 1 1 1
Minnesota 1 2 3 3 5
Mississippi 1 1 1 1 1
Missouri 1 2 2 2 2
Montana 1 2 3 3 3
Nebraska 1 2 3 3 3
Nevada 1 1 1 1 1
New Hampshire 1 2 3 3 5
New Jersey 1 2 2 2 2
New Mexico 1 1 1 1 1
New York 1 1 1 1 1
North Carolina 1 1 1 4 4
North Dakota 1 2 3 3 5
Ohio 1 2 3 3 3
Oklahoma 1 2 2 2 2
Oregon 1 2 2 2 2
Pennsylvania 1 2 3 3 3
Rhode Island 1 2 2 2 2
South Carolina 1 1 1 1 1
South Dakota 1 2 3 3 5
Tennessee 1 2 2 2 2
Texas 1 2 2 2 2
Utah 1 2 3 3 3
Vermont 1 2 3 3 5
Virginia 1 2 2 2 2
Washington 1 2 2 2 2
West Virginia 1 2 3 3 5
Wisconsin 1 2 3 3 5
Wyoming 1 2 2 2 2
> cutree(hc, h = 250)
Alabama Alaska Arizona Arkansas California
1 1 1 2 1
Colorado Connecticut Delaware Florida Georgia
2 2 1 1 2
Hawaii Idaho Illinois Indiana Iowa
2 2 1 2 2
Kansas Kentucky Louisiana Maine Maryland
2 2 1 2 1
Massachusetts Michigan Minnesota Mississippi Missouri
2 1 2 1 2
Montana Nebraska Nevada New Hampshire New Jersey
2 2 1 2 2
New Mexico New York North Carolina North Dakota Ohio
1 1 1 2 2
Oklahoma Oregon Pennsylvania Rhode Island South Carolina
2 2 2 2 1
South Dakota Tennessee Texas Utah Vermont
2 2 2 2 2
Virginia Washington West Virginia Wisconsin Wyoming
2 2 2 2 2
>
> ## Compare the 2 and 4 grouping:
> g24 <- cutree(hc, k = c(2,4))
> table(grp2 = g24[,"2"], grp4 = g24[,"4"])
grp4
grp2 1 2 3 4
1 14 0 0 2
2 0 14 20 0
>
>
>
> cleanEx()
> nameEx("decompose")
> ### * decompose
>
> flush(stderr()); flush(stdout())
>
> ### Name: decompose
> ### Title: Classical Seasonal Decomposition by Moving Averages
> ### Aliases: decompose plot.decomposed.ts
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> m <- decompose(co2)
> m$figure
[1] -0.05359649 0.61055921 1.37564693 2.51682018 3.00028509 2.32921053
[7] 0.81293860 -1.25052632 -3.05458333 -3.25194079 -2.06969298 -0.96512061
> plot(m)
>
> ## example taken from Kendall/Stuart
> x <- c(-50, 175, 149, 214, 247, 237, 225, 329, 729, 809,
+ 530, 489, 540, 457, 195, 176, 337, 239, 128, 102, 232, 429, 3,
+ 98, 43, -141, -77, -13, 125, 361, -45, 184)
> x <- ts(x, start = c(1951, 1), end = c(1958, 4), frequency = 4)
> m <- decompose(x)
> ## seasonal figure: 6.25, 8.62, -8.84, -6.03
> round(decompose(x)$figure / 10, 2)
[1] 6.25 8.62 -8.84 -6.03
>
>
>
> cleanEx()
> nameEx("delete.response")
> ### * delete.response
>
> flush(stderr()); flush(stdout())
>
> ### Name: delete.response
> ### Title: Modify Terms Objects
> ### Aliases: reformulate drop.terms delete.response [.terms
> ### Keywords: programming
>
> ### ** Examples
>
> ff <- y ~ z + x + w
> tt <- terms(ff)
> tt
y ~ z + x + w
attr(,"variables")
list(y, z, x, w)
attr(,"factors")
z x w
y 0 0 0
z 1 0 0
x 0 1 0
w 0 0 1
attr(,"term.labels")
[1] "z" "x" "w"
attr(,"order")
[1] 1 1 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
> delete.response(tt)
~z + x + w
attr(,"variables")
list(z, x, w)
attr(,"factors")
z x w
z 1 0 0
x 0 1 0
w 0 0 1
attr(,"term.labels")
[1] "z" "x" "w"
attr(,"order")
[1] 1 1 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 0
attr(,".Environment")
<environment: R_GlobalEnv>
> drop.terms(tt, 2:3, keep.response = TRUE)
y ~ z
attr(,"variables")
list(y, z)
attr(,"factors")
z
y 0
z 1
attr(,"term.labels")
[1] "z"
attr(,"order")
[1] 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
> tt[-1]
y ~ x + w
attr(,"variables")
list(y, x, w)
attr(,"factors")
x w
y 0 0
x 1 0
w 0 1
attr(,"term.labels")
[1] "x" "w"
attr(,"order")
[1] 1 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
> tt[2:3]
y ~ x + w
attr(,"variables")
list(y, x, w)
attr(,"factors")
x w
y 0 0
x 1 0
w 0 1
attr(,"term.labels")
[1] "x" "w"
attr(,"order")
[1] 1 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
> reformulate(attr(tt, "term.labels"))
~z + x + w
>
> ## keep LHS :
> reformulate("x*w", ff[[2]])
y ~ x * w
> fS <- surv(ft, case) ~ a + b
> reformulate(c("a", "b*f"), fS[[2]])
surv(ft, case) ~ a + b * f
>
> ## using non-syntactic names:
> reformulate(c("`P/E`", "`% Growth`"), response = as.name("+-"))
`+-` ~ `P/E` + `% Growth`
>
> stopifnot(identical( ~ var, reformulate("var")),
+ identical(~ a + b + c, reformulate(letters[1:3])),
+ identical( y ~ a + b, reformulate(letters[1:2], "y"))
+ )
>
>
>
> cleanEx()
> nameEx("dendrapply")
> ### * dendrapply
>
> flush(stderr()); flush(stdout())
>
> ### Name: dendrapply
> ### Title: Apply a Function to All Nodes of a Dendrogram
> ### Aliases: dendrapply
> ### Keywords: iteration
>
> ### ** Examples
>
> require(graphics)
>
> ## a smallish simple dendrogram
> dhc <- as.dendrogram(hc <- hclust(dist(USArrests), "ave"))
> (dhc21 <- dhc[[2]][[1]])
'dendrogram' with 2 branches and 14 members total, at height 44.83793
>
> ## too simple:
> dendrapply(dhc21, function(n) utils::str(attributes(n)))
List of 4
$ members : int 14
$ midpoint: num 6.8
$ height : num 44.8
$ class : chr "dendrogram"
List of 4
$ members : int 8
$ midpoint: num 3.34
$ height : num 26.7
$ class : chr "dendrogram"
List of 4
$ members : int 5
$ midpoint: num 0.938
$ height : num 16.4
$ class : chr "dendrogram"
List of 5
$ members: int 1
$ height : num 0
$ label : chr "Washington"
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 4
$ members : int 4
$ midpoint: num 0.875
$ height : num 12.9
$ class : chr "dendrogram"
List of 5
$ members: int 1
$ height : num 0
$ label : chr "Oregon"
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 4
$ members : int 3
$ midpoint: num 0.75
$ height : num 10.7
$ class : chr "dendrogram"
List of 5
$ members: int 1
$ height : num 0
$ label : chr "Wyoming"
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 4
$ members : int 2
$ midpoint: num 0.5
$ height : num 7.36
$ class : chr "dendrogram"
List of 5
$ label : chr "Oklahoma"
$ members: int 1
$ height : num 0
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 5
$ label : chr "Virginia"
$ members: int 1
$ height : num 0
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 4
$ members : int 3
$ midpoint: num 0.75
$ height : num 22.6
$ class : chr "dendrogram"
List of 5
$ members: int 1
$ height : num 0
$ label : chr "Rhode Island"
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 4
$ members : int 2
$ midpoint: num 0.5
$ height : num 11.5
$ class : chr "dendrogram"
List of 5
$ label : chr "Massachusetts"
$ members: int 1
$ height : num 0
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 5
$ label : chr "New Jersey"
$ members: int 1
$ height : num 0
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 4
$ members : int 6
$ midpoint: num 2.25
$ height : num 29.1
$ class : chr "dendrogram"
List of 4
$ members : int 3
$ midpoint: num 0.75
$ height : num 20.2
$ class : chr "dendrogram"
List of 5
$ members: int 1
$ height : num 0
$ label : chr "Missouri"
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 4
$ members : int 2
$ midpoint: num 0.5
$ height : num 12.6
$ class : chr "dendrogram"
List of 5
$ label : chr "Arkansas"
$ members: int 1
$ height : num 0
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 5
$ label : chr "Tennessee"
$ members: int 1
$ height : num 0
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 4
$ members : int 3
$ midpoint: num 0.75
$ height : num 24
$ class : chr "dendrogram"
List of 5
$ members: int 1
$ height : num 0
$ label : chr "Georgia"
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 4
$ members : int 2
$ midpoint: num 0.5
$ height : num 14.5
$ class : chr "dendrogram"
List of 5
$ label : chr "Colorado"
$ members: int 1
$ height : num 0
$ leaf : logi TRUE
$ class : chr "dendrogram"
List of 5
$ label : chr "Texas"
$ members: int 1
$ height : num 0
$ leaf : logi TRUE
$ class : chr "dendrogram"
[[1]]
[[1]][[1]]
[[1]][[1]][[1]]
NULL
[[1]][[1]][[2]]
[[1]][[1]][[2]][[1]]
NULL
[[1]][[1]][[2]][[2]]
[[1]][[1]][[2]][[2]][[1]]
NULL
[[1]][[1]][[2]][[2]][[2]]
[[1]][[1]][[2]][[2]][[2]][[1]]
NULL
[[1]][[1]][[2]][[2]][[2]][[2]]
NULL
[[1]][[2]]
[[1]][[2]][[1]]
NULL
[[1]][[2]][[2]]
[[1]][[2]][[2]][[1]]
NULL
[[1]][[2]][[2]][[2]]
NULL
[[2]]
[[2]][[1]]
[[2]][[1]][[1]]
NULL
[[2]][[1]][[2]]
[[2]][[1]][[2]][[1]]
NULL
[[2]][[1]][[2]][[2]]
NULL
[[2]][[2]]
[[2]][[2]][[1]]
NULL
[[2]][[2]][[2]]
[[2]][[2]][[2]][[1]]
NULL
[[2]][[2]][[2]][[2]]
NULL
>
> ## toy example to set colored leaf labels :
> local({
+ colLab <<- function(n) {
+ if(is.leaf(n)) {
+ a <- attributes(n)
+ i <<- i+1
+ attr(n, "nodePar") <-
+ c(a$nodePar, list(lab.col = mycols[i], lab.font = i%%3))
+ }
+ n
+ }
+ mycols <- grDevices::rainbow(attr(dhc21,"members"))
+ i <- 0
+ })
> dL <- dendrapply(dhc21, colLab)
> op <- par(mfrow = 2:1)
> plot(dhc21)
> plot(dL) ## --> colored labels!
> par(op)
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("dendrogram")
> ### * dendrogram
>
> flush(stderr()); flush(stdout())
>
> ### Name: dendrogram
> ### Title: General Tree Structures
> ### Aliases: dendrogram as.dendrogram as.dendrogram.dendrogram
> ### as.dendrogram.hclust as.hclust.dendrogram cut.dendrogram
> ### [[.dendrogram merge.dendrogram plot.dendrogram print.dendrogram
> ### rev.dendrogram str.dendrogram is.leaf
> ### Keywords: multivariate tree hplot
>
> ### ** Examples
>
> require(graphics); require(utils)
>
> hc <- hclust(dist(USArrests), "ave")
> (dend1 <- as.dendrogram(hc)) # "print()" method
'dendrogram' with 2 branches and 50 members total, at height 152.314
> str(dend1) # "str()" method
--[dendrogram w/ 2 branches and 50 members at h = 152]
|--[dendrogram w/ 2 branches and 16 members at h = 77.6]
| |--[dendrogram w/ 2 branches and 2 members at h = 38.5]
| | |--leaf "Florida"
| | `--leaf "North Carolina"
| `--[dendrogram w/ 2 branches and 14 members at h = 44.3]
| |--[dendrogram w/ 2 branches and 4 members at h = 28]
| | |--leaf "California"
| | `--[dendrogram w/ 2 branches and 3 members at h = 15.5]
| | |--leaf "Maryland"
| | `--[dendrogram w/ 2 branches and 2 members at h = 13.9]
| | |--leaf "Arizona"
| | `--leaf "New Mexico"
| `--[dendrogram w/ 2 branches and 10 members at h = 39.4]
| |--[dendrogram w/ 2 branches and 7 members at h = 26.4]
| | |--[dendrogram w/ 2 branches and 3 members at h = 16.9]
| | | |--leaf "Delaware"
| | | `--[dendrogram w/ 2 branches and 2 members at h = 15.5]
| | | |--leaf "Alabama"
| | | `--leaf "Louisiana"
| | `--[dendrogram w/ 2 branches and 4 members at h = 18.4]
| | |--[dendrogram w/ 2 branches and 2 members at h = 6.24]
| | | |--leaf "Illinois"
| | | `--leaf "New York"
| | `--[dendrogram w/ 2 branches and 2 members at h = 13.3]
| | |--leaf "Michigan"
| | `--leaf "Nevada"
| `--[dendrogram w/ 2 branches and 3 members at h = 28.1]
| |--leaf "Alaska"
| `--[dendrogram w/ 2 branches and 2 members at h = 21.2]
| |--leaf "Mississippi"
| `--leaf "South Carolina"
`--[dendrogram w/ 2 branches and 34 members at h = 89.2]
|--[dendrogram w/ 2 branches and 14 members at h = 44.8]
| |--[dendrogram w/ 2 branches and 8 members at h = 26.7]
| | |--[dendrogram w/ 2 branches and 5 members at h = 16.4]
| | | |--leaf "Washington"
| | | `--[dendrogram w/ 2 branches and 4 members at h = 12.9]
| | | |--leaf "Oregon"
| | | `--[dendrogram w/ 2 branches and 3 members at h = 10.7]
| | | |--leaf "Wyoming"
| | | `--[dendrogram w/ 2 branches and 2 members at h = 7.36]
| | | |--leaf "Oklahoma"
| | | `--leaf "Virginia"
| | `--[dendrogram w/ 2 branches and 3 members at h = 22.6]
| | |--leaf "Rhode Island"
| | `--[dendrogram w/ 2 branches and 2 members at h = 11.5]
| | |--leaf "Massachusetts"
| | `--leaf "New Jersey"
| `--[dendrogram w/ 2 branches and 6 members at h = 29.1]
| |--[dendrogram w/ 2 branches and 3 members at h = 20.2]
| | |--leaf "Missouri"
| | `--[dendrogram w/ 2 branches and 2 members at h = 12.6]
| | |--leaf "Arkansas"
| | `--leaf "Tennessee"
| `--[dendrogram w/ 2 branches and 3 members at h = 24]
| |--leaf "Georgia"
| `--[dendrogram w/ 2 branches and 2 members at h = 14.5]
| |--leaf "Colorado"
| `--leaf "Texas"
`--[dendrogram w/ 2 branches and 20 members at h = 54.7]
|--[dendrogram w/ 2 branches and 10 members at h = 20.6]
| |--[dendrogram w/ 2 branches and 4 members at h = 15]
| | |--leaf "Idaho"
| | `--[dendrogram w/ 2 branches and 3 members at h = 12.4]
| | |--leaf "Nebraska"
| | `--[dendrogram w/ 2 branches and 2 members at h = 3.83]
| | |--leaf "Kentucky"
| | `--leaf "Montana"
| `--[dendrogram w/ 2 branches and 6 members at h = 15.1]
| |--[dendrogram w/ 2 branches and 2 members at h = 6.64]
| | |--leaf "Ohio"
| | `--leaf "Utah"
| `--[dendrogram w/ 2 branches and 4 members at h = 13.4]
| |--[dendrogram w/ 2 branches and 2 members at h = 3.93]
| | |--leaf "Indiana"
| | `--leaf "Kansas"
| `--[dendrogram w/ 2 branches and 2 members at h = 8.03]
| |--leaf "Connecticut"
| `--leaf "Pennsylvania"
`--[dendrogram w/ 2 branches and 10 members at h = 41.1]
|--leaf "Hawaii"
`--[dendrogram w/ 2 branches and 9 members at h = 33.1]
|--[dendrogram w/ 2 branches and 3 members at h = 10.8]
| |--leaf "West Virginia"
| `--[dendrogram w/ 2 branches and 2 members at h = 8.54]
| |--leaf "Maine"
| `--leaf "South Dakota"
`--[dendrogram w/ 2 branches and 6 members at h = 27.8]
|--[dendrogram w/ 2 branches and 2 members at h = 13]
| |--leaf "North Dakota"
| `--leaf "Vermont"
`--[dendrogram w/ 2 branches and 4 members at h = 19]
|--leaf "Minnesota"
`--[dendrogram w/ 2 branches and 3 members at h = 10.2]
|--leaf "Wisconsin"
`--[dendrogram w/ 2 branches and 2 members at h = 2.29]
|--leaf "Iowa"
`--leaf "New Hampshire"
> str(dend1, max = 2, last.str = "'") # only the first two sub-levels
--[dendrogram w/ 2 branches and 50 members at h = 152]
|--[dendrogram w/ 2 branches and 16 members at h = 77.6]
| |--[dendrogram w/ 2 branches and 2 members at h = 38.5] ..
| '--[dendrogram w/ 2 branches and 14 members at h = 44.3] ..
'--[dendrogram w/ 2 branches and 34 members at h = 89.2]
|--[dendrogram w/ 2 branches and 14 members at h = 44.8] ..
'--[dendrogram w/ 2 branches and 20 members at h = 54.7] ..
> oo <- options(str.dendrogram.last = "\\") # yet another possibility
> str(dend1, max = 2) # only the first two sub-levels
--[dendrogram w/ 2 branches and 50 members at h = 152]
|--[dendrogram w/ 2 branches and 16 members at h = 77.6]
| |--[dendrogram w/ 2 branches and 2 members at h = 38.5] ..
| --[dendrogram w/ 2 branches and 14 members at h = 44.3] ..
--[dendrogram w/ 2 branches and 34 members at h = 89.2]
|--[dendrogram w/ 2 branches and 14 members at h = 44.8] ..
--[dendrogram w/ 2 branches and 20 members at h = 54.7] ..
> options(oo) # .. resetting them
>
> op <- par(mfrow = c(2,2), mar = c(5,2,1,4))
> plot(dend1)
> ## "triangle" type and show inner nodes:
> plot(dend1, nodePar = list(pch = c(1,NA), cex = 0.8, lab.cex = 0.8),
+ type = "t", center = TRUE)
> plot(dend1, edgePar = list(col = 1:2, lty = 2:3),
+ dLeaf = 1, edge.root = TRUE)
> plot(dend1, nodePar = list(pch = 2:1, cex = .4*2:1, col = 2:3),
+ horiz = TRUE)
>
> ## simple test for as.hclust() as the inverse of as.dendrogram():
> stopifnot(identical(as.hclust(dend1)[1:4], hc[1:4]))
>
> dend2 <- cut(dend1, h = 70)
> plot(dend2$upper)
> ## leaves are wrong horizontally:
> plot(dend2$upper, nodePar = list(pch = c(1,7), col = 2:1))
> ## dend2$lower is *NOT* a dendrogram, but a list of .. :
> plot(dend2$lower[[3]], nodePar = list(col = 4), horiz = TRUE, type = "tr")
> ## "inner" and "leaf" edges in different type & color :
> plot(dend2$lower[[2]], nodePar = list(col = 1), # non empty list
+ edgePar = list(lty = 1:2, col = 2:1), edge.root = TRUE)
> par(op)
> d3 <- dend2$lower[[2]][[2]][[1]]
> stopifnot(identical(d3, dend2$lower[[2]][[c(2,1)]]))
> str(d3, last.str = "'")
--[dendrogram w/ 2 branches and 7 members at h = 26.4]
|--[dendrogram w/ 2 branches and 3 members at h = 16.9]
| |--leaf "Delaware"
| '--[dendrogram w/ 2 branches and 2 members at h = 15.5]
| |--leaf "Alabama"
| '--leaf "Louisiana"
'--[dendrogram w/ 2 branches and 4 members at h = 18.4]
|--[dendrogram w/ 2 branches and 2 members at h = 6.24]
| |--leaf "Illinois"
| '--leaf "New York"
'--[dendrogram w/ 2 branches and 2 members at h = 13.3]
|--leaf "Michigan"
'--leaf "Nevada"
>
> ## to peak at the inner structure "if you must", use '[..]' indexing :
> str(d3[2][[1]]) ## or the full
List of 2
$ :List of 2
..$ : atomic [1:1] 13
.. ..- attr(*, "label")= chr "Illinois"
.. ..- attr(*, "members")= int 1
.. ..- attr(*, "height")= num 0
.. ..- attr(*, "leaf")= logi TRUE
..$ : atomic [1:1] 32
.. ..- attr(*, "label")= chr "New York"
.. ..- attr(*, "members")= int 1
.. ..- attr(*, "height")= num 0
.. ..- attr(*, "leaf")= logi TRUE
..- attr(*, "members")= int 2
..- attr(*, "midpoint")= num 0.5
..- attr(*, "height")= num 6.24
$ :List of 2
..$ : atomic [1:1] 22
.. ..- attr(*, "label")= chr "Michigan"
.. ..- attr(*, "members")= int 1
.. ..- attr(*, "height")= num 0
.. ..- attr(*, "leaf")= logi TRUE
..$ : atomic [1:1] 28
.. ..- attr(*, "label")= chr "Nevada"
.. ..- attr(*, "members")= int 1
.. ..- attr(*, "height")= num 0
.. ..- attr(*, "leaf")= logi TRUE
..- attr(*, "members")= int 2
..- attr(*, "midpoint")= num 0.5
..- attr(*, "height")= num 13.3
- attr(*, "members")= int 4
- attr(*, "midpoint")= num 1.5
- attr(*, "height")= num 18.4
> str(d3[])
List of 2
$ :List of 2
..$ : atomic [1:1] 8
.. ..- attr(*, "members")= int 1
.. ..- attr(*, "height")= num 0
.. ..- attr(*, "label")= chr "Delaware"
.. ..- attr(*, "leaf")= logi TRUE
..$ :List of 2
.. ..$ : atomic [1:1] 1
.. .. ..- attr(*, "label")= chr "Alabama"
.. .. ..- attr(*, "members")= int 1
.. .. ..- attr(*, "height")= num 0
.. .. ..- attr(*, "leaf")= logi TRUE
.. ..$ : atomic [1:1] 18
.. .. ..- attr(*, "label")= chr "Louisiana"
.. .. ..- attr(*, "members")= int 1
.. .. ..- attr(*, "height")= num 0
.. .. ..- attr(*, "leaf")= logi TRUE
.. ..- attr(*, "members")= int 2
.. ..- attr(*, "midpoint")= num 0.5
.. ..- attr(*, "height")= num 15.5
..- attr(*, "members")= int 3
..- attr(*, "midpoint")= num 0.75
..- attr(*, "height")= num 16.9
$ :List of 2
..$ :List of 2
.. ..$ : atomic [1:1] 13
.. .. ..- attr(*, "label")= chr "Illinois"
.. .. ..- attr(*, "members")= int 1
.. .. ..- attr(*, "height")= num 0
.. .. ..- attr(*, "leaf")= logi TRUE
.. ..$ : atomic [1:1] 32
.. .. ..- attr(*, "label")= chr "New York"
.. .. ..- attr(*, "members")= int 1
.. .. ..- attr(*, "height")= num 0
.. .. ..- attr(*, "leaf")= logi TRUE
.. ..- attr(*, "members")= int 2
.. ..- attr(*, "midpoint")= num 0.5
.. ..- attr(*, "height")= num 6.24
..$ :List of 2
.. ..$ : atomic [1:1] 22
.. .. ..- attr(*, "label")= chr "Michigan"
.. .. ..- attr(*, "members")= int 1
.. .. ..- attr(*, "height")= num 0
.. .. ..- attr(*, "leaf")= logi TRUE
.. ..$ : atomic [1:1] 28
.. .. ..- attr(*, "label")= chr "Nevada"
.. .. ..- attr(*, "members")= int 1
.. .. ..- attr(*, "height")= num 0
.. .. ..- attr(*, "leaf")= logi TRUE
.. ..- attr(*, "members")= int 2
.. ..- attr(*, "midpoint")= num 0.5
.. ..- attr(*, "height")= num 13.3
..- attr(*, "members")= int 4
..- attr(*, "midpoint")= num 1.5
..- attr(*, "height")= num 18.4
- attr(*, "members")= int 7
- attr(*, "midpoint")= num 2.62
- attr(*, "height")= num 26.4
>
> ## merge() to join dendrograms:
> (d13 <- merge(dend2$lower[[1]], dend2$lower[[3]]))
'dendrogram' with 2 branches and 16 members total, at height 49.32173
> ## merge() all parts back (using default 'height' instead of original one):
> den.1 <- Reduce(merge, dend2$lower)
> ## or merge() all four parts at same height --> 4 branches (!)
> d. <- merge(dend2$lower[[1]], dend2$lower[[2]], dend2$lower[[3]],
+ dend2$lower[[4]])
> ## (with a warning) or the same using do.call :
> stopifnot(identical(d., do.call(merge, dend2$lower)))
> plot(d., main = "merge(d1, d2, d3, d4) |-> dendrogram with a 4-split")
>
> ## "Zoom" in to the first dendrogram :
> plot(dend1, xlim = c(1,20), ylim = c(1,50))
>
> nP <- list(col = 3:2, cex = c(2.0, 0.75), pch = 21:22,
+ bg = c("light blue", "pink"),
+ lab.cex = 0.75, lab.col = "tomato")
> plot(d3, nodePar= nP, edgePar = list(col = "gray", lwd = 2), horiz = TRUE)
> addE <- function(n) {
+ if(!is.leaf(n)) {
+ attr(n, "edgePar") <- list(p.col = "plum")
+ attr(n, "edgetext") <- paste(attr(n,"members"),"members")
+ }
+ n
+ }
> d3e <- dendrapply(d3, addE)
> plot(d3e, nodePar = nP)
> plot(d3e, nodePar = nP, leaflab = "textlike")
>
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("density")
> ### * density
>
> flush(stderr()); flush(stdout())
>
> ### Name: density
> ### Title: Kernel Density Estimation
> ### Aliases: density density.default
> ### Keywords: distribution smooth
>
> ### ** Examples
>
> require(graphics)
>
> plot(density(c(-20, rep(0,98), 20)), xlim = c(-4, 4)) # IQR = 0
>
> # The Old Faithful geyser data
> d <- density(faithful$eruptions, bw = "sj")
> d
Call:
density.default(x = faithful$eruptions, bw = "sj")
Data: faithful$eruptions (272 obs.); Bandwidth 'bw' = 0.14
x y
Min. :1.180 Min. :0.0001834
1st Qu.:2.265 1st Qu.:0.0422638
Median :3.350 Median :0.1709243
Mean :3.350 Mean :0.2301726
3rd Qu.:4.435 3rd Qu.:0.4134348
Max. :5.520 Max. :0.5945634
> plot(d)
>
> plot(d, type = "n")
> polygon(d, col = "wheat")
>
> ## Missing values:
> x <- xx <- faithful$eruptions
> x[i.out <- sample(length(x), 10)] <- NA
> doR <- density(x, bw = 0.15, na.rm = TRUE)
> lines(doR, col = "blue")
> points(xx[i.out], rep(0.01, 10))
>
> ## Weighted observations:
> fe <- sort(faithful$eruptions) # has quite a few non-unique values
> ## use 'counts / n' as weights:
> dw <- density(unique(fe), weights = table(fe)/length(fe), bw = d$bw)
> utils::str(dw) ## smaller n: only 126, but identical estimate:
List of 7
$ x : num [1:512] 1.18 1.19 1.2 1.21 1.21 ...
$ y : num [1:512] 0.000183 0.000223 0.00027 0.000328 0.000397 ...
$ bw : num 0.14
$ n : int 126
$ call : language density.default(x = unique(fe), bw = d$bw, weights = table(fe)/length(fe))
$ data.name: chr "unique(fe)"
$ has.na : logi FALSE
- attr(*, "class")= chr "density"
> stopifnot(all.equal(d[1:3], dw[1:3]))
>
> ## simulation from a density() fit:
> # a kernel density fit is an equally-weighted mixture.
> fit <- density(xx)
> N <- 1e6
> x.new <- rnorm(N, sample(xx, size = N, replace = TRUE), fit$bw)
> plot(fit)
> lines(density(x.new), col = "blue")
>
>
> (kernels <- eval(formals(density.default)$kernel))
[1] "gaussian" "epanechnikov" "rectangular" "triangular" "biweight"
[6] "cosine" "optcosine"
>
> ## show the kernels in the R parametrization
> plot (density(0, bw = 1), xlab = "",
+ main = "R's density() kernels with bw = 1")
> for(i in 2:length(kernels))
+ lines(density(0, bw = 1, kernel = kernels[i]), col = i)
> legend(1.5,.4, legend = kernels, col = seq(kernels),
+ lty = 1, cex = .8, y.intersp = 1)
>
> ## show the kernels in the S parametrization
> plot(density(0, from = -1.2, to = 1.2, width = 2, kernel = "gaussian"),
+ type = "l", ylim = c(0, 1), xlab = "",
+ main = "R's density() kernels with width = 1")
> for(i in 2:length(kernels))
+ lines(density(0, width = 2, kernel = kernels[i]), col = i)
> legend(0.6, 1.0, legend = kernels, col = seq(kernels), lty = 1)
>
> ##-------- Semi-advanced theoretic from here on -------------
>
> (RKs <- cbind(sapply(kernels,
+ function(k) density(kernel = k, give.Rkern = TRUE))))
[,1]
gaussian 0.2820948
epanechnikov 0.2683282
rectangular 0.2886751
triangular 0.2721655
biweight 0.2699746
cosine 0.2711340
optcosine 0.2684756
> 100*round(RKs["epanechnikov",]/RKs, 4) ## Efficiencies
[,1]
gaussian 95.12
epanechnikov 100.00
rectangular 92.95
triangular 98.59
biweight 99.39
cosine 98.97
optcosine 99.95
>
> bw <- bw.SJ(precip) ## sensible automatic choice
> plot(density(precip, bw = bw),
+ main = "same sd bandwidths, 7 different kernels")
> for(i in 2:length(kernels))
+ lines(density(precip, bw = bw, kernel = kernels[i]), col = i)
>
> ## Bandwidth Adjustment for "Exactly Equivalent Kernels"
> h.f <- sapply(kernels, function(k)density(kernel = k, give.Rkern = TRUE))
> (h.f <- (h.f["gaussian"] / h.f)^ .2)
gaussian epanechnikov rectangular triangular biweight cosine
1.0000000 1.0100567 0.9953989 1.0071923 1.0088217 1.0079575
optcosine
1.0099458
> ## -> 1, 1.01, .995, 1.007,... close to 1 => adjustment barely visible..
>
> plot(density(precip, bw = bw),
+ main = "equivalent bandwidths, 7 different kernels")
> for(i in 2:length(kernels))
+ lines(density(precip, bw = bw, adjust = h.f[i], kernel = kernels[i]),
+ col = i)
> legend(55, 0.035, legend = kernels, col = seq(kernels), lty = 1)
>
>
>
> cleanEx()
> nameEx("deriv")
> ### * deriv
>
> flush(stderr()); flush(stdout())
>
> ### Name: deriv
> ### Title: Symbolic and Algorithmic Derivatives of Simple Expressions
> ### Aliases: D deriv deriv.default deriv.formula deriv3 deriv3.default
> ### deriv3.formula
> ### Keywords: math nonlinear
>
> ### ** Examples
>
> ## formula argument :
> dx2x <- deriv(~ x^2, "x") ; dx2x
expression({
.value <- x^2
.grad <- array(0, c(length(.value), 1L), list(NULL, c("x")))
.grad[, "x"] <- 2 * x
attr(.value, "gradient") <- .grad
.value
})
> ## Not run:
> ##D expression({
> ##D .value <- x^2
> ##D .grad <- array(0, c(length(.value), 1), list(NULL, c("x")))
> ##D .grad[, "x"] <- 2 * x
> ##D attr(.value, "gradient") <- .grad
> ##D .value
> ##D })
> ## End(Not run)
> mode(dx2x)
[1] "expression"
> x <- -1:2
> eval(dx2x)
[1] 1 0 1 4
attr(,"gradient")
x
[1,] -2
[2,] 0
[3,] 2
[4,] 4
>
> ## Something 'tougher':
> trig.exp <- expression(sin(cos(x + y^2)))
> ( D.sc <- D(trig.exp, "x") )
-(cos(cos(x + y^2)) * sin(x + y^2))
> all.equal(D(trig.exp[[1]], "x"), D.sc)
[1] TRUE
>
> ( dxy <- deriv(trig.exp, c("x", "y")) )
expression({
.expr2 <- x + y^2
.expr3 <- cos(.expr2)
.expr5 <- cos(.expr3)
.expr6 <- sin(.expr2)
.value <- sin(.expr3)
.grad <- array(0, c(length(.value), 2L), list(NULL, c("x",
"y")))
.grad[, "x"] <- -(.expr5 * .expr6)
.grad[, "y"] <- -(.expr5 * (.expr6 * (2 * y)))
attr(.value, "gradient") <- .grad
.value
})
> y <- 1
> eval(dxy)
[1] 0.8414710 0.5143953 -0.4042392 -0.8360219
attr(,"gradient")
x y
[1,] 0.0000000 0.000000
[2,] -0.7216061 -1.443212
[3,] -0.8316919 -1.663384
[4,] -0.0774320 -0.154864
> eval(D.sc)
[1] 0.0000000 -0.7216061 -0.8316919 -0.0774320
>
> ## function returned:
> deriv((y ~ sin(cos(x) * y)), c("x","y"), func = TRUE)
function (x, y)
{
.expr1 <- cos(x)
.expr2 <- .expr1 * y
.expr4 <- cos(.expr2)
.value <- sin(.expr2)
.grad <- array(0, c(length(.value), 2L), list(NULL, c("x",
"y")))
.grad[, "x"] <- -(.expr4 * (sin(x) * y))
.grad[, "y"] <- .expr4 * .expr1
attr(.value, "gradient") <- .grad
.value
}
>
> ## function with defaulted arguments:
> (fx <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),
+ function(b0, b1, th, x = 1:7){} ) )
function (b0, b1, th, x = 1:7)
{
.expr3 <- 2^(-x/th)
.value <- b0 + b1 * .expr3
.grad <- array(0, c(length(.value), 3L), list(NULL, c("b0",
"b1", "th")))
.grad[, "b0"] <- 1
.grad[, "b1"] <- .expr3
.grad[, "th"] <- b1 * (.expr3 * (log(2) * (x/th^2)))
attr(.value, "gradient") <- .grad
.value
}
> fx(2, 3, 4)
[1] 4.522689 4.121320 3.783811 3.500000 3.261345 3.060660 2.891905
attr(,"gradient")
b0 b1 th
[1,] 1 0.8408964 0.1092872
[2,] 1 0.7071068 0.1837984
[3,] 1 0.5946036 0.2318331
[4,] 1 0.5000000 0.2599302
[5,] 1 0.4204482 0.2732180
[6,] 1 0.3535534 0.2756976
[7,] 1 0.2973018 0.2704720
>
> ## Higher derivatives
> deriv3(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),
+ c("b0", "b1", "th", "x") )
function (b0, b1, th, x)
{
.expr3 <- 2^(-x/th)
.expr6 <- log(2)
.expr7 <- th^2
.expr9 <- .expr6 * (x/.expr7)
.expr10 <- .expr3 * .expr9
.value <- b0 + b1 * .expr3
.grad <- array(0, c(length(.value), 3L), list(NULL, c("b0",
"b1", "th")))
.hessian <- array(0, c(length(.value), 3L, 3L), list(NULL,
c("b0", "b1", "th"), c("b0", "b1", "th")))
.grad[, "b0"] <- 1
.grad[, "b1"] <- .expr3
.hessian[, "b1", "b1"] <- 0
.hessian[, "b1", "th"] <- .hessian[, "th", "b1"] <- .expr10
.grad[, "th"] <- b1 * .expr10
.hessian[, "th", "th"] <- b1 * (.expr10 * .expr9 - .expr3 *
(.expr6 * (x * (2 * th)/.expr7^2)))
attr(.value, "gradient") <- .grad
attr(.value, "hessian") <- .hessian
.value
}
>
> ## Higher derivatives:
> DD <- function(expr, name, order = 1) {
+ if(order < 1) stop("'order' must be >= 1")
+ if(order == 1) D(expr, name)
+ else DD(D(expr, name), name, order - 1)
+ }
> DD(expression(sin(x^2)), "x", 3)
-(sin(x^2) * (2 * x) * 2 + ((cos(x^2) * (2 * x) * (2 * x) + sin(x^2) *
2) * (2 * x) + sin(x^2) * (2 * x) * 2))
> ## showing the limits of the internal "simplify()" :
> ## Not run:
> ##D -sin(x^2) * (2 * x) * 2 + ((cos(x^2) * (2 * x) * (2 * x) + sin(x^2) *
> ##D 2) * (2 * x) + sin(x^2) * (2 * x) * 2)
> ## End(Not run)
>
>
>
> cleanEx()
> nameEx("diffinv")
> ### * diffinv
>
> flush(stderr()); flush(stdout())
>
> ### Name: diffinv
> ### Title: Discrete Integration: Inverse of Differencing
> ### Aliases: diffinv diffinv.default diffinv.ts
> ### Keywords: ts
>
> ### ** Examples
>
> s <- 1:10
> d <- diff(s)
> diffinv(d, xi = 1)
[1] 1 2 3 4 5 6 7 8 9 10
>
>
>
> cleanEx()
> nameEx("dist")
> ### * dist
>
> flush(stderr()); flush(stdout())
>
> ### Name: dist
> ### Title: Distance Matrix Computation
> ### Aliases: dist print.dist format.dist labels.dist as.matrix.dist as.dist
> ### as.dist.default
> ### Keywords: multivariate cluster
>
> ### ** Examples
>
> require(graphics)
>
> x <- matrix(rnorm(100), nrow = 5)
> dist(x)
1 2 3 4
2 5.701817
3 6.013119 5.032069
4 7.276905 5.325473 5.811861
5 6.619295 5.306750 4.945987 6.612081
> dist(x, diag = TRUE)
1 2 3 4 5
1 0.000000
2 5.701817 0.000000
3 6.013119 5.032069 0.000000
4 7.276905 5.325473 5.811861 0.000000
5 6.619295 5.306750 4.945987 6.612081 0.000000
> dist(x, upper = TRUE)
1 2 3 4 5
1 5.701817 6.013119 7.276905 6.619295
2 5.701817 5.032069 5.325473 5.306750
3 6.013119 5.032069 5.811861 4.945987
4 7.276905 5.325473 5.811861 6.612081
5 6.619295 5.306750 4.945987 6.612081
> m <- as.matrix(dist(x))
> d <- as.dist(m)
> stopifnot(d == dist(x))
>
> ## Use correlations between variables "as distance"
> dd <- as.dist((1 - cor(USJudgeRatings))/2)
> round(1000 * dd) # (prints more nicely)
CONT INTG DMNR DILG CFMG DECI PREP FAMI ORAL WRIT PHYS
INTG 567
DMNR 577 18
DILG 494 64 82
CFMG 432 93 93 21
DECI 457 99 98 22 9
PREP 494 61 72 11 21 21
FAMI 513 66 79 21 32 29 5
ORAL 506 44 47 23 25 26 8 9
WRIT 522 46 53 20 29 27 7 5 3
PHYS 473 129 106 94 60 64 76 78 54 72
RTEN 517 31 28 35 36 38 25 29 9 16 47
> plot(hclust(dd)) # to see a dendrogram of clustered variables
>
> ## example of binary and canberra distances.
> x <- c(0, 0, 1, 1, 1, 1)
> y <- c(1, 0, 1, 1, 0, 1)
> dist(rbind(x, y), method = "binary")
x
y 0.4
> ## answer 0.4 = 2/5
> dist(rbind(x, y), method = "canberra")
x
y 2.4
> ## answer 2 * (6/5)
>
> ## To find the names
> labels(eurodist)
[1] "Athens" "Barcelona" "Brussels" "Calais"
[5] "Cherbourg" "Cologne" "Copenhagen" "Geneva"
[9] "Gibraltar" "Hamburg" "Hook of Holland" "Lisbon"
[13] "Lyons" "Madrid" "Marseilles" "Milan"
[17] "Munich" "Paris" "Rome" "Stockholm"
[21] "Vienna"
>
> ## Examples involving "Inf" :
> ## 1)
> x[6] <- Inf
> (m2 <- rbind(x, y))
[,1] [,2] [,3] [,4] [,5] [,6]
x 0 0 1 1 1 Inf
y 1 0 1 1 0 1
> dist(m2, method = "binary") # warning, answer 0.5 = 2/4
Warning in dist(m2, method = "binary") :
treating non-finite values as NA
x
y 0.5
> ## These all give "Inf":
> stopifnot(Inf == dist(m2, method = "euclidean"),
+ Inf == dist(m2, method = "maximum"),
+ Inf == dist(m2, method = "manhattan"))
> ## "Inf" is same as very large number:
> x1 <- x; x1[6] <- 1e100
> stopifnot(dist(cbind(x, y), method = "canberra") ==
+ print(dist(cbind(x1, y), method = "canberra")))
1 2 3 4 5
2 2
3 1 2
4 1 2 0
5 2 2 1 1
6 1 2 1 1 2
>
> ## 2)
> y[6] <- Inf #-> 6-th pair is excluded
> dist(rbind(x, y), method = "binary" ) # warning; 0.5
Warning in dist(rbind(x, y), method = "binary") :
treating non-finite values as NA
x
y 0.5
> dist(rbind(x, y), method = "canberra" ) # 3
x
y 3
> dist(rbind(x, y), method = "maximum") # 1
x
y 1
> dist(rbind(x, y), method = "manhattan") # 2.4
x
y 2.4
>
>
>
> cleanEx()
> nameEx("dummy.coef")
> ### * dummy.coef
>
> flush(stderr()); flush(stdout())
>
> ### Name: dummy.coef
> ### Title: Extract Coefficients in Original Coding
> ### Aliases: dummy.coef dummy.coef.lm dummy.coef.aovlist
> ### Keywords: models
>
> ### ** Examples
>
> options(contrasts = c("contr.helmert", "contr.poly"))
> ## From Venables and Ripley (2002) p.165.
> npk.aov <- aov(yield ~ block + N*P*K, npk)
> dummy.coef(npk.aov)
Full coefficients are
(Intercept): 54.875
block: 1 2 3 4 5 6
-0.850 2.575 5.900 -4.750 -4.350 1.475
N: 0 1
-2.808333 2.808333
P: 0 1
0.5916667 -0.5916667
K: 0 1
1.991667 -1.991667
N:P: 0:0 1:0 0:1 1:1
-0.9416667 0.9416667 0.9416667 -0.9416667
N:K: 0:0 1:0 0:1 1:1
-1.175 1.175 1.175 -1.175
P:K: 0:0 1:0 0:1 1:1
0.1416667 -0.1416667 -0.1416667 0.1416667
N:P:K: 0:0:0 1:0:0 0:1:0 1:1:0 0:0:1 1:0:1 0:1:1
0 0 0 0 0 0 0
(Intercept):
block:
N:
P:
K:
N:P:
N:K:
P:K:
N:P:K: 1:1:1
0
>
> npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
> dummy.coef(npk.aovE)
Error: (Intercept)
(Intercept): 54.875
Error: block
N:P:K: 0:0:0 1:0:0 0:1:0 1:1:0 0:0:1 1:0:1 0:1:1
-1.241667 1.241667 1.241667 -1.241667 1.241667 -1.241667 -1.241667
N:P:K: 1:1:1
1.241667
Error: Within
N: 0 1
-2.808333 2.808333
P: 0 1
0.5916667 -0.5916667
K: 0 1
1.991667 -1.991667
N:P: 0:0 1:0 0:1 1:1
-0.9416667 0.9416667 0.9416667 -0.9416667
N:K: 0:0 1:0 0:1 1:1
-1.175 1.175 1.175 -1.175
P:K: 0:0 1:0 0:1 1:1
0.1416667 -0.1416667 -0.1416667 0.1416667
>
>
>
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> cleanEx()
> nameEx("ecdf")
> ### * ecdf
>
> flush(stderr()); flush(stdout())
>
> ### Name: ecdf
> ### Title: Empirical Cumulative Distribution Function
> ### Aliases: ecdf plot.ecdf print.ecdf summary.ecdf quantile.ecdf
> ### Keywords: dplot hplot
>
> ### ** Examples
>
> ##-- Simple didactical ecdf example :
> x <- rnorm(12)
> Fn <- ecdf(x)
> Fn # a *function*
Empirical CDF
Call: ecdf(x)
x[1:12] = -0.83563, -0.82047, -0.62645, ..., 1.5118, 1.5953
> Fn(x) # returns the percentiles for x
[1] 0.25000000 0.41666667 0.08333333 1.00000000 0.50000000 0.16666667
[7] 0.66666667 0.83333333 0.75000000 0.33333333 0.91666667 0.58333333
> tt <- seq(-2, 2, by = 0.1)
> 12 * Fn(tt) # Fn is a 'simple' function {with values k/12}
[1] 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 3 3 4 4 4 4 4 5 5 7
[26] 8 9 9 10 10 10 10 10 10 10 10 12 12 12 12 12
> summary(Fn)
Empirical CDF: 12 unique values with summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.8356 -0.3857 0.3597 0.2686 0.6164 1.5950
> ##--> see below for graphics
> knots(Fn) # the unique data values {12 of them if there were no ties}
[1] -0.8356286 -0.8204684 -0.6264538 -0.3053884 0.1836433 0.3295078
[7] 0.3898432 0.4874291 0.5757814 0.7383247 1.5117812 1.5952808
>
> y <- round(rnorm(12), 1); y[3] <- y[1]
> Fn12 <- ecdf(y)
> Fn12
Empirical CDF
Call: ecdf(y)
x[1:8] = -2.2, -2, -0.6, ..., 0.8, 0.9
> knots(Fn12) # unique values (always less than 12!)
[1] -2.2 -2.0 -0.6 0.0 0.1 0.6 0.8 0.9
> summary(Fn12)
Empirical CDF: 8 unique values with summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.20 -0.95 0.05 -0.30 0.65 0.90
> summary.stepfun(Fn12)
Step function with continuity 'f'= 0 , 8 knots with summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.20 -0.95 0.05 -0.30 0.65 0.90
and 9 plateau levels (y) with summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.1667 0.5000 0.4630 0.6667 1.0000
>
> ## Advanced: What's inside the function closure?
> print(ls.Fn12 <- ls(environment(Fn12)))
[1] "f" "method" "nobs" "x" "y" "yleft" "yright"
> ##[1] "f" "method" "n" "x" "y" "yleft" "yright"
> utils::ls.str(environment(Fn12))
f : num 0
method : int 2
nobs : int 12
x : num [1:8] -2.2 -2 -0.6 0 0.1 0.6 0.8 0.9
y : num [1:8] 0.0833 0.1667 0.3333 0.5 0.5833 ...
yleft : num 0
yright : num 1
> stopifnot(all.equal(quantile(Fn12), quantile(y)))
>
> ###----------------- Plotting --------------------------
> require(graphics)
>
> op <- par(mfrow = c(3, 1), mgp = c(1.5, 0.8, 0), mar = .1+c(3,3,2,1))
>
> F10 <- ecdf(rnorm(10))
> summary(F10)
Empirical CDF: 10 unique values with summary
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.47100 -0.14250 -0.05497 0.04667 0.41040 1.35900
>
> plot(F10)
> plot(F10, verticals = TRUE, do.points = FALSE)
>
> plot(Fn12 , lwd = 2) ; mtext("lwd = 2", adj = 1)
> xx <- unique(sort(c(seq(-3, 2, length = 201), knots(Fn12))))
> lines(xx, Fn12(xx), col = "blue")
> abline(v = knots(Fn12), lty = 2, col = "gray70")
>
> plot(xx, Fn12(xx), type = "o", cex = .1) #- plot.default {ugly}
> plot(Fn12, col.hor = "red", add = TRUE) #- plot method
> abline(v = knots(Fn12), lty = 2, col = "gray70")
> ## luxury plot
> plot(Fn12, verticals = TRUE, col.points = "blue",
+ col.hor = "red", col.vert = "bisque")
>
> ##-- this works too (automatic call to ecdf(.)):
> plot.ecdf(rnorm(24))
> title("via simple plot.ecdf(x)", adj = 1)
>
> par(op)
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("eff.aovlist")
> ### * eff.aovlist
>
> flush(stderr()); flush(stdout())
>
> ### Name: eff.aovlist
> ### Title: Compute Efficiencies of Multistratum Analysis of Variance
> ### Aliases: eff.aovlist
> ### Keywords: models
>
> ### ** Examples
>
> ## An example from Yates (1932),
> ## a 2^3 design in 2 blocks replicated 4 times
>
> Block <- gl(8, 4)
> A <- factor(c(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,
+ 0,1,0,1,0,1,0,1,0,1,0,1))
> B <- factor(c(0,0,1,1,0,0,1,1,0,1,0,1,1,0,1,0,0,0,1,1,
+ 0,0,1,1,0,0,1,1,0,0,1,1))
> C <- factor(c(0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,1,0,1,
+ 1,0,1,0,0,0,1,1,1,1,0,0))
> Yield <- c(101, 373, 398, 291, 312, 106, 265, 450, 106, 306, 324, 449,
+ 272, 89, 407, 338, 87, 324, 279, 471, 323, 128, 423, 334,
+ 131, 103, 445, 437, 324, 361, 302, 272)
> aovdat <- data.frame(Block, A, B, C, Yield)
>
> old <- getOption("contrasts")
> options(contrasts = c("contr.helmert", "contr.poly"))
> (fit <- aov(Yield ~ A*B*C + Error(Block), data = aovdat))
Call:
aov(formula = Yield ~ A * B * C + Error(Block), data = aovdat)
Grand Mean: 291.5938
Stratum 1: Block
Terms:
A:B A:C B:C A:B:C Residuals
Sum of Squares 780.1250 276.1250 2556.1250 112.5000 774.0938
Deg. of Freedom 1 1 1 1 3
Residual standard error: 16.06335
Estimated effects are balanced
Stratum 2: Within
Terms:
A B C A:B A:C B:C
Sum of Squares 3465.28 161170.03 278817.78 28.17 1802.67 11528.17
Deg. of Freedom 1 1 1 1 1 1
A:B:C Residuals
Sum of Squares 45.37 5423.28
Deg. of Freedom 1 17
Residual standard error: 17.86103
Estimated effects are balanced
> eff.aovlist(fit)
A B C A:B A:C B:C A:B:C
Block 0 0 0 0.25 0.25 0.25 0.25
Within 1 1 1 0.75 0.75 0.75 0.75
> options(contrasts = old)
>
>
>
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> cleanEx()
> nameEx("effects")
> ### * effects
>
> flush(stderr()); flush(stdout())
>
> ### Name: effects
> ### Title: Effects from Fitted Model
> ### Aliases: effects effects.lm effects.glm
> ### Keywords: models regression
>
> ### ** Examples
>
> y <- c(1:3, 7, 5)
> x <- c(1:3, 6:7)
> ( ee <- effects(lm(y ~ x)) )
(Intercept) x
-8.0498447 4.3655709 0.1483334 1.6144112 -1.2302295
attr(,"assign")
[1] 0 1
attr(,"class")
[1] "coef"
> c( round(ee - effects(lm(y+10 ~ I(x-3.8))), 3) )
(Intercept) x
22.361 0.000 0.000 0.000 0.000
> # just the first is different
>
>
>
> cleanEx()
> nameEx("embed")
> ### * embed
>
> flush(stderr()); flush(stdout())
>
> ### Name: embed
> ### Title: Embedding a Time Series
> ### Aliases: embed
> ### Keywords: ts
>
> ### ** Examples
>
> x <- 1:10
> embed (x, 3)
[,1] [,2] [,3]
[1,] 3 2 1
[2,] 4 3 2
[3,] 5 4 3
[4,] 6 5 4
[5,] 7 6 5
[6,] 8 7 6
[7,] 9 8 7
[8,] 10 9 8
>
>
>
> cleanEx()
> nameEx("expand.model.frame")
> ### * expand.model.frame
>
> flush(stderr()); flush(stdout())
>
> ### Name: expand.model.frame
> ### Title: Add new variables to a model frame
> ### Aliases: expand.model.frame
> ### Keywords: manip regression
>
> ### ** Examples
>
> model <- lm(log(Volume) ~ log(Girth) + log(Height), data = trees)
> expand.model.frame(model, ~ Girth) # prints data.frame like
log(Volume) log(Girth) log(Height) Girth
1 2.332144 2.116256 4.248495 8.3
2 2.332144 2.151762 4.174387 8.6
3 2.322388 2.174752 4.143135 8.8
4 2.797281 2.351375 4.276666 10.5
5 2.933857 2.370244 4.394449 10.7
6 2.980619 2.379546 4.418841 10.8
7 2.747271 2.397895 4.189655 11.0
8 2.901422 2.397895 4.317488 11.0
9 3.117950 2.406945 4.382027 11.1
10 2.990720 2.415914 4.317488 11.2
11 3.186353 2.424803 4.369448 11.3
12 3.044522 2.433613 4.330733 11.4
13 3.063391 2.433613 4.330733 11.4
14 3.058707 2.459589 4.234107 11.7
15 2.949688 2.484907 4.317488 12.0
16 3.100092 2.557227 4.304065 12.9
17 3.520461 2.557227 4.442651 12.9
18 3.310543 2.587764 4.454347 13.3
19 3.246491 2.617396 4.262680 13.7
20 3.214868 2.624669 4.158883 13.8
21 3.540959 2.639057 4.356709 14.0
22 3.456317 2.653242 4.382027 14.2
23 3.591818 2.674149 4.304065 14.5
24 3.645450 2.772589 4.276666 16.0
25 3.751854 2.791165 4.343805 16.3
26 4.014580 2.850707 4.394449 17.3
27 4.019980 2.862201 4.406719 17.5
28 4.065602 2.884801 4.382027 17.9
29 3.941582 2.890372 4.382027 18.0
30 3.931826 2.890372 4.382027 18.0
31 4.343805 3.025291 4.465908 20.6
>
> dd <- data.frame(x = 1:5, y = rnorm(5), z = c(1,2,NA,4,5))
> model <- glm(y ~ x, data = dd, subset = 1:4, na.action = na.omit)
> expand.model.frame(model, "z", na.expand = FALSE) # = default
y x z
1 -0.6264538 1 1
2 0.1836433 2 2
4 1.5952808 4 4
> expand.model.frame(model, "z", na.expand = TRUE)
y x z
1 -0.6264538 1 1
2 0.1836433 2 2
3 -0.8356286 3 NA
4 1.5952808 4 4
>
>
>
> cleanEx()
> nameEx("extractAIC")
> ### * extractAIC
>
> flush(stderr()); flush(stdout())
>
> ### Name: extractAIC
> ### Title: Extract AIC from a Fitted Model
> ### Aliases: extractAIC
> ### Keywords: models
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("factanal")
> ### * factanal
>
> flush(stderr()); flush(stdout())
>
> ### Name: factanal
> ### Title: Factor Analysis
> ### Aliases: factanal
> ### Keywords: multivariate
>
> ### ** Examples
>
> # A little demonstration, v2 is just v1 with noise,
> # and same for v4 vs. v3 and v6 vs. v5
> # Last four cases are there to add noise
> # and introduce a positive manifold (g factor)
> v1 <- c(1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,5,6)
> v2 <- c(1,2,1,1,1,1,2,1,2,1,3,4,3,3,3,4,6,5)
> v3 <- c(3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,5,4,6)
> v4 <- c(3,3,4,3,3,1,1,2,1,1,1,1,2,1,1,5,6,4)
> v5 <- c(1,1,1,1,1,3,3,3,3,3,1,1,1,1,1,6,4,5)
> v6 <- c(1,1,1,2,1,3,3,3,4,3,1,1,1,2,1,6,5,4)
> m1 <- cbind(v1,v2,v3,v4,v5,v6)
> cor(m1)
v1 v2 v3 v4 v5 v6
v1 1.0000000 0.9393083 0.5128866 0.4320310 0.4664948 0.4086076
v2 0.9393083 1.0000000 0.4124441 0.4084281 0.4363925 0.4326113
v3 0.5128866 0.4124441 1.0000000 0.8770750 0.5128866 0.4320310
v4 0.4320310 0.4084281 0.8770750 1.0000000 0.4320310 0.4323259
v5 0.4664948 0.4363925 0.5128866 0.4320310 1.0000000 0.9473451
v6 0.4086076 0.4326113 0.4320310 0.4323259 0.9473451 1.0000000
> factanal(m1, factors = 3) # varimax is the default
Call:
factanal(x = m1, factors = 3)
Uniquenesses:
v1 v2 v3 v4 v5 v6
0.005 0.101 0.005 0.224 0.084 0.005
Loadings:
Factor1 Factor2 Factor3
v1 0.944 0.182 0.267
v2 0.905 0.235 0.159
v3 0.236 0.210 0.946
v4 0.180 0.242 0.828
v5 0.242 0.881 0.286
v6 0.193 0.959 0.196
Factor1 Factor2 Factor3
SS loadings 1.893 1.886 1.797
Proportion Var 0.316 0.314 0.300
Cumulative Var 0.316 0.630 0.929
The degrees of freedom for the model is 0 and the fit was 0.4755
> # The following shows the g factor as PC1
>
> ## formula interface
> factanal(~v1+v2+v3+v4+v5+v6, factors = 3,
+ scores = "Bartlett")$scores
Factor1 Factor2 Factor3
1 -0.9039949 -0.9308984 0.9475392
2 -0.8685952 -0.9328721 0.9352330
3 -0.9082818 -0.9320093 0.9616422
4 -1.0021975 -0.2529689 0.8178552
5 -0.9039949 -0.9308984 0.9475392
6 -0.7452711 0.7273960 -0.7884733
7 -0.7098714 0.7254223 -0.8007795
8 -0.7495580 0.7262851 -0.7743704
9 -0.8080740 1.4033517 -0.9304636
10 -0.7452711 0.7273960 -0.7884733
11 0.9272282 -0.9307506 -0.8371538
12 0.9626279 -0.9327243 -0.8494600
13 0.9229413 -0.9318615 -0.8230509
14 0.8290256 -0.2528211 -0.9668378
15 0.9272282 -0.9307506 -0.8371538
16 0.4224366 2.0453079 1.2864761
17 1.4713902 1.2947716 0.5451562
18 1.8822320 0.3086244 1.9547752
>
>
>
> cleanEx()
> nameEx("factor.scope")
> ### * factor.scope
>
> flush(stderr()); flush(stdout())
>
> ### Name: factor.scope
> ### Title: Compute Allowed Changes in Adding to or Dropping from a Formula
> ### Aliases: add.scope drop.scope factor.scope
> ### Keywords: models
>
> ### ** Examples
>
> add.scope( ~ a + b + c + a:b, ~ (a + b + c)^3)
[1] "a:c" "b:c"
> # [1] "a:c" "b:c"
> drop.scope( ~ a + b + c + a:b)
[1] "c" "a:b"
> # [1] "c" "a:b"
>
>
>
> cleanEx()
> nameEx("family")
> ### * family
>
> flush(stderr()); flush(stdout())
>
> ### Name: family
> ### Title: Family Objects for Models
> ### Aliases: family binomial gaussian Gamma inverse.gaussian poisson quasi
> ### quasibinomial quasipoisson
> ### Keywords: models
>
> ### ** Examples
>
> require(utils) # for str
>
> nf <- gaussian() # Normal family
> nf
Family: gaussian
Link function: identity
> str(nf)
List of 11
$ family : chr "gaussian"
$ link : chr "identity"
$ linkfun :function (mu)
$ linkinv :function (eta)
$ variance :function (mu)
$ dev.resids:function (y, mu, wt)
$ aic :function (y, n, mu, wt, dev)
$ mu.eta :function (eta)
$ initialize: expression({ n <- rep.int(1, nobs) if (is.null(etastart) && is.null(start) && is.null(mustart) && ((family$link == "inverse" && any(y == 0)) || (family$link == "log" && any(y <= 0)))) stop("cannot find valid starting values: please specify some") mustart <- y })
$ validmu :function (mu)
$ valideta :function (eta)
- attr(*, "class")= chr "family"
>
> gf <- Gamma()
> gf
Family: Gamma
Link function: inverse
> str(gf)
List of 12
$ family : chr "Gamma"
$ link : chr "inverse"
$ linkfun :function (mu)
$ linkinv :function (eta)
$ variance :function (mu)
$ dev.resids:function (y, mu, wt)
$ aic :function (y, n, mu, wt, dev)
$ mu.eta :function (eta)
$ initialize: expression({ if (any(y <= 0)) stop("non-positive values not allowed for the 'gamma' family") n <- rep.int(1, nobs) mustart <- y })
$ validmu :function (mu)
$ valideta :function (eta)
$ simulate :function (object, nsim)
- attr(*, "class")= chr "family"
> gf$linkinv
function (eta)
1/eta
<environment: namespace:stats>
> gf$variance(-3:4) #- == (.)^2
[1] 9 4 1 0 1 4 9 16
>
>
> ## quasipoisson. compare with example(glm)
> counts <- c(18,17,15,20,10,20,25,13,12)
> outcome <- gl(3,1,9)
> treatment <- gl(3,3)
> d.AD <- data.frame(treatment, outcome, counts)
> glm.qD93 <- glm(counts ~ outcome + treatment, family = quasipoisson())
>
> ## Example of user-specified link, a logit model for p^days
> ## See Shaffer, T. 2004. Auk 121(2): 526-540.
> logexp <- function(days = 1)
+ {
+ linkfun <- function(mu) qlogis(mu^(1/days))
+ linkinv <- function(eta) plogis(eta)^days
+ mu.eta <- function(eta) days * plogis(eta)^(days-1) * binomial()$mu_eta
+ valideta <- function(eta) TRUE
+ link <- paste0("logexp(", days, ")")
+ structure(list(linkfun = linkfun, linkinv = linkinv,
+ mu.eta = mu.eta, valideta = valideta, name = link),
+ class = "link-glm")
+ }
> binomial(logexp(3))
Family: binomial
Link function: logexp(3)
> ## in practice this would be used with a vector of 'days', in
> ## which case use an offset of 0 in the corresponding formula
> ## to get the null deviance right.
>
> ## Binomial with identity link: often not a good idea.
> ## Not run: binomial(link = make.link("identity"))
>
> ## tests of quasi
> x <- rnorm(100)
> y <- rpois(100, exp(1+x))
> glm(y ~ x, family = quasi(variance = "mu", link = "log"))
Call: glm(formula = y ~ x, family = quasi(variance = "mu", link = "log"))
Coefficients:
(Intercept) x
0.8596 1.0875
Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 481.9
Residual Deviance: 101.7 AIC: NA
> # which is the same as
> glm(y ~ x, family = poisson)
Call: glm(formula = y ~ x, family = poisson)
Coefficients:
(Intercept) x
0.8596 1.0875
Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 481.9
Residual Deviance: 101.7 AIC: 364
> glm(y ~ x, family = quasi(variance = "mu^2", link = "log"))
Call: glm(formula = y ~ x, family = quasi(variance = "mu^2", link = "log"))
Coefficients:
(Intercept) x
0.6902 1.4546
Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 83.85
Residual Deviance: 32.45 AIC: NA
> ## Not run: glm(y ~ x, family = quasi(variance = "mu^3", link = "log")) # fails
> y <- rbinom(100, 1, plogis(x))
> # needs to set a starting value for the next fit
> glm(y ~ x, family = quasi(variance = "mu(1-mu)", link = "logit"), start = c(0,1))
Call: glm(formula = y ~ x, family = quasi(variance = "mu(1-mu)", link = "logit"),
start = c(0, 1))
Coefficients:
(Intercept) x
-0.08334 0.38518
Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 138.6
Residual Deviance: 135.8 AIC: NA
>
>
>
> cleanEx()
> nameEx("fft")
> ### * fft
>
> flush(stderr()); flush(stdout())
>
> ### Name: fft
> ### Title: Fast Discrete Fourier Transform
> ### Aliases: fft mvfft
> ### Keywords: math dplot
>
> ### ** Examples
>
> x <- 1:4
> fft(x)
[1] 10+0i -2+2i -2+0i -2-2i
> fft(fft(x), inverse = TRUE)/length(x)
[1] 1+0i 2+0i 3+0i 4+0i
>
>
>
> cleanEx()
> nameEx("filter")
> ### * filter
>
> flush(stderr()); flush(stdout())
>
> ### Name: filter
> ### Title: Linear Filtering on a Time Series
> ### Aliases: filter
> ### Keywords: ts
>
> ### ** Examples
>
> x <- 1:100
> filter(x, rep(1, 3))
Time Series:
Start = 1
End = 100
Frequency = 1
[1] NA 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
[19] 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108
[37] 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162
[55] 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216
[73] 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267 270
[91] 273 276 279 282 285 288 291 294 297 NA
> filter(x, rep(1, 3), sides = 1)
Time Series:
Start = 1
End = 100
Frequency = 1
[1] NA NA 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
[19] 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105
[37] 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159
[55] 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213
[73] 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267
[91] 270 273 276 279 282 285 288 291 294 297
> filter(x, rep(1, 3), sides = 1, circular = TRUE)
Time Series:
Start = 1
End = 100
Frequency = 1
[1] 200 103 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
[19] 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105
[37] 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159
[55] 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213
[73] 216 219 222 225 228 231 234 237 240 243 246 249 252 255 258 261 264 267
[91] 270 273 276 279 282 285 288 291 294 297
>
> filter(presidents, rep(1, 3))
Qtr1 Qtr2 Qtr3 Qtr4
1945 NA NA 244 220
1946 188 156 125 110
1947 127 149 169 145
1948 130 NA NA NA
1949 NA 183 165 153
1950 133 128 122 121
1951 99 92 79 80
1952 80 NA NA NA
1953 165 208 209 206
1954 192 203 189 199
1955 196 218 220 228
1956 220 214 213 221
1957 216 204 182 180
1958 166 157 149 157
1959 171 180 189 198
1960 199 194 180 190
1961 212 226 232 228
1962 228 212 207 212
1963 214 202 183 199
1964 210 222 211 209
1965 204 204 195 194
1966 171 165 146 144
1967 140 134 136 120
1968 131 120 128 138
1969 168 189 186 187
1970 175 180 166 164
1971 151 153 151 152
1972 159 NA NA NA
1973 NA 152 111 95
1974 80 77 73 NA
>
>
>
> cleanEx()
> nameEx("fisher.test")
> ### * fisher.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: fisher.test
> ### Title: Fisher's Exact Test for Count Data
> ### Aliases: fisher.test
> ### Keywords: htest
>
> ### ** Examples
>
> ## Agresti (1990, p. 61f; 2002, p. 91) Fisher's Tea Drinker
> ## A British woman claimed to be able to distinguish whether milk or
> ## tea was added to the cup first. To test, she was given 8 cups of
> ## tea, in four of which milk was added first. The null hypothesis
> ## is that there is no association between the true order of pouring
> ## and the woman's guess, the alternative that there is a positive
> ## association (that the odds ratio is greater than 1).
> TeaTasting <-
+ matrix(c(3, 1, 1, 3),
+ nrow = 2,
+ dimnames = list(Guess = c("Milk", "Tea"),
+ Truth = c("Milk", "Tea")))
> fisher.test(TeaTasting, alternative = "greater")
Fisher's Exact Test for Count Data
data: TeaTasting
p-value = 0.2429
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
0.3135693 Inf
sample estimates:
odds ratio
6.408309
> ## => p = 0.2429, association could not be established
>
> ## Fisher (1962, 1970), Criminal convictions of like-sex twins
> Convictions <-
+ matrix(c(2, 10, 15, 3),
+ nrow = 2,
+ dimnames =
+ list(c("Dizygotic", "Monozygotic"),
+ c("Convicted", "Not convicted")))
> Convictions
Convicted Not convicted
Dizygotic 2 15
Monozygotic 10 3
> fisher.test(Convictions, alternative = "less")
Fisher's Exact Test for Count Data
data: Convictions
p-value = 0.0004652
alternative hypothesis: true odds ratio is less than 1
95 percent confidence interval:
0.0000000 0.2849601
sample estimates:
odds ratio
0.04693661
> fisher.test(Convictions, conf.int = FALSE)
Fisher's Exact Test for Count Data
data: Convictions
p-value = 0.0005367
alternative hypothesis: true odds ratio is not equal to 1
sample estimates:
odds ratio
0.04693661
> fisher.test(Convictions, conf.level = 0.95)$conf.int
[1] 0.003325764 0.363182271
attr(,"conf.level")
[1] 0.95
> fisher.test(Convictions, conf.level = 0.99)$conf.int
[1] 0.001386333 0.578851645
attr(,"conf.level")
[1] 0.99
>
> ## A r x c table Agresti (2002, p. 57) Job Satisfaction
> Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4,
+ dimnames = list(income = c("< 15k", "15-25k", "25-40k", "> 40k"),
+ satisfaction = c("VeryD", "LittleD", "ModerateS", "VeryS")))
> fisher.test(Job)
Fisher's Exact Test for Count Data
data: Job
p-value = 0.7827
alternative hypothesis: two.sided
> fisher.test(Job, simulate.p.value = TRUE, B = 1e5)
Fisher's Exact Test for Count Data with simulated p-value (based on
1e+05 replicates)
data: Job
p-value = 0.7842
alternative hypothesis: two.sided
>
>
>
> cleanEx()
> nameEx("fivenum")
> ### * fivenum
>
> flush(stderr()); flush(stdout())
>
> ### Name: fivenum
> ### Title: Tukey Five-Number Summaries
> ### Aliases: fivenum
> ### Keywords: univar robust distribution
>
> ### ** Examples
>
> fivenum(c(rnorm(100), -1:1/0))
[1] -Inf -0.5425200 0.1139092 0.6969634 Inf
>
>
>
> cleanEx()
> nameEx("fligner.test")
> ### * fligner.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: fligner.test
> ### Title: Fligner-Killeen Test of Homogeneity of Variances
> ### Aliases: fligner.test fligner.test.default fligner.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> require(graphics)
>
> plot(count ~ spray, data = InsectSprays)
> fligner.test(InsectSprays$count, InsectSprays$spray)
Fligner-Killeen test of homogeneity of variances
data: InsectSprays$count and InsectSprays$spray
Fligner-Killeen:med chi-squared = 14.4828, df = 5, p-value = 0.01282
> fligner.test(count ~ spray, data = InsectSprays)
Fligner-Killeen test of homogeneity of variances
data: count by spray
Fligner-Killeen:med chi-squared = 14.4828, df = 5, p-value = 0.01282
> ## Compare this to bartlett.test()
>
>
>
> cleanEx()
> nameEx("formula")
> ### * formula
>
> flush(stderr()); flush(stdout())
>
> ### Name: formula
> ### Title: Model Formulae
> ### Aliases: formula formula.default formula.formula formula.terms
> ### formula.data.frame as.formula print.formula [.formula
> ### Keywords: models
>
> ### ** Examples
>
> class(fo <- y ~ x1*x2) # "formula"
[1] "formula"
> fo
y ~ x1 * x2
> typeof(fo) # R internal : "language"
[1] "language"
> terms(fo)
y ~ x1 * x2
attr(,"variables")
list(y, x1, x2)
attr(,"factors")
x1 x2 x1:x2
y 0 0 0
x1 1 0 1
x2 0 1 1
attr(,"term.labels")
[1] "x1" "x2" "x1:x2"
attr(,"order")
[1] 1 1 2
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
>
> environment(fo)
<environment: R_GlobalEnv>
> environment(as.formula("y ~ x"))
<environment: R_GlobalEnv>
> environment(as.formula("y ~ x", env = new.env()))
<environment: 0x38b7728>
>
>
> ## Create a formula for a model with a large number of variables:
> xnam <- paste0("x", 1:25)
> (fmla <- as.formula(paste("y ~ ", paste(xnam, collapse= "+"))))
y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 +
x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 +
x22 + x23 + x24 + x25
>
>
>
> cleanEx()
> nameEx("formula.nls")
> ### * formula.nls
>
> flush(stderr()); flush(stdout())
>
> ### Name: formula.nls
> ### Title: Extract Model Formula from nls Object
> ### Aliases: formula.nls
> ### Keywords: models
>
> ### ** Examples
>
> fm1 <- nls(circumference ~ A/(1+exp((B-age)/C)), Orange,
+ start = list(A = 160, B = 700, C = 350))
> formula(fm1)
circumference ~ A/(1 + exp((B - age)/C))
>
>
>
> cleanEx()
> nameEx("friedman.test")
> ### * friedman.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: friedman.test
> ### Title: Friedman Rank Sum Test
> ### Aliases: friedman.test friedman.test.default friedman.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> ## Hollander & Wolfe (1973), p. 140ff.
> ## Comparison of three methods ("round out", "narrow angle", and
> ## "wide angle") for rounding first base. For each of 18 players
> ## and the three method, the average time of two runs from a point on
> ## the first base line 35ft from home plate to a point 15ft short of
> ## second base is recorded.
> RoundingTimes <-
+ matrix(c(5.40, 5.50, 5.55,
+ 5.85, 5.70, 5.75,
+ 5.20, 5.60, 5.50,
+ 5.55, 5.50, 5.40,
+ 5.90, 5.85, 5.70,
+ 5.45, 5.55, 5.60,
+ 5.40, 5.40, 5.35,
+ 5.45, 5.50, 5.35,
+ 5.25, 5.15, 5.00,
+ 5.85, 5.80, 5.70,
+ 5.25, 5.20, 5.10,
+ 5.65, 5.55, 5.45,
+ 5.60, 5.35, 5.45,
+ 5.05, 5.00, 4.95,
+ 5.50, 5.50, 5.40,
+ 5.45, 5.55, 5.50,
+ 5.55, 5.55, 5.35,
+ 5.45, 5.50, 5.55,
+ 5.50, 5.45, 5.25,
+ 5.65, 5.60, 5.40,
+ 5.70, 5.65, 5.55,
+ 6.30, 6.30, 6.25),
+ nrow = 22,
+ byrow = TRUE,
+ dimnames = list(1 : 22,
+ c("Round Out", "Narrow Angle", "Wide Angle")))
> friedman.test(RoundingTimes)
Friedman rank sum test
data: RoundingTimes
Friedman chi-squared = 11.1429, df = 2, p-value = 0.003805
> ## => strong evidence against the null that the methods are equivalent
> ## with respect to speed
>
> wb <- aggregate(warpbreaks$breaks,
+ by = list(w = warpbreaks$wool,
+ t = warpbreaks$tension),
+ FUN = mean)
> wb
w t x
1 A L 44.55556
2 B L 28.22222
3 A M 24.00000
4 B M 28.77778
5 A H 24.55556
6 B H 18.77778
> friedman.test(wb$x, wb$w, wb$t)
Friedman rank sum test
data: wb$x, wb$w and wb$t
Friedman chi-squared = 0.3333, df = 1, p-value = 0.5637
> friedman.test(x ~ w | t, data = wb)
Friedman rank sum test
data: x and w and t
Friedman chi-squared = 0.3333, df = 1, p-value = 0.5637
>
>
>
> cleanEx()
> nameEx("ftable")
> ### * ftable
>
> flush(stderr()); flush(stdout())
>
> ### Name: ftable
> ### Title: Flat Contingency Tables
> ### Aliases: ftable ftable.default
> ### Keywords: category
>
> ### ** Examples
>
> ## Start with a contingency table.
> ftable(Titanic, row.vars = 1:3)
Survived No Yes
Class Sex Age
1st Male Child 0 5
Adult 118 57
Female Child 0 1
Adult 4 140
2nd Male Child 0 11
Adult 154 14
Female Child 0 13
Adult 13 80
3rd Male Child 35 13
Adult 387 75
Female Child 17 14
Adult 89 76
Crew Male Child 0 0
Adult 670 192
Female Child 0 0
Adult 3 20
> ftable(Titanic, row.vars = 1:2, col.vars = "Survived")
Survived No Yes
Class Sex
1st Male 118 62
Female 4 141
2nd Male 154 25
Female 13 93
3rd Male 422 88
Female 106 90
Crew Male 670 192
Female 3 20
> ftable(Titanic, row.vars = 2:1, col.vars = "Survived")
Survived No Yes
Sex Class
Male 1st 118 62
2nd 154 25
3rd 422 88
Crew 670 192
Female 1st 4 141
2nd 13 93
3rd 106 90
Crew 3 20
> ## Don't show:
> . <- integer()
> (f04 <- ftable(Titanic, col.vars= .))
Class Sex Age Survived
1st Male Child No 0
Yes 5
Adult No 118
Yes 57
Female Child No 0
Yes 1
Adult No 4
Yes 140
2nd Male Child No 0
Yes 11
Adult No 154
Yes 14
Female Child No 0
Yes 13
Adult No 13
Yes 80
3rd Male Child No 35
Yes 13
Adult No 387
Yes 75
Female Child No 17
Yes 14
Adult No 89
Yes 76
Crew Male Child No 0
Yes 0
Adult No 670
Yes 192
Female Child No 0
Yes 0
Adult No 3
Yes 20
> (f10 <- ftable(Titanic, col.vars= 1, row.vars= .))
Class 1st 2nd 3rd Crew
325 285 706 885
> (f01 <- ftable(Titanic, col.vars= ., row.vars= 1))
Class
1st 325
2nd 285
3rd 706
Crew 885
> (f00 <- ftable(Titanic, col.vars= ., row.vars= .))
2201
> stopifnot(
+ dim(f04) == c(32,1),
+ dim(f10) == c(1,4),
+ dim(f01) == c(4,1),
+ dim(f00) == c(1,1))
> ## End Don't show
> ## Start with a data frame.
> x <- ftable(mtcars[c("cyl", "vs", "am", "gear")])
> x
gear 3 4 5
cyl vs am
4 0 0 0 0 0
1 0 0 1
1 0 1 2 0
1 0 6 1
6 0 0 0 0 0
1 0 2 1
1 0 2 2 0
1 0 0 0
8 0 0 12 0 0
1 0 0 2
1 0 0 0 0
1 0 0 0
> ftable(x, row.vars = c(2, 4))
cyl 4 6 8
am 0 1 0 1 0 1
vs gear
0 3 0 0 0 0 12 0
4 0 0 0 2 0 0
5 0 1 0 1 0 2
1 3 1 0 2 0 0 0
4 2 6 2 0 0 0
5 0 1 0 0 0 0
>
> ## Start with expressions, use table()'s "dnn" to change labels
> ftable(mtcars$cyl, mtcars$vs, mtcars$am, mtcars$gear, row.vars = c(2, 4),
+ dnn = c("Cylinders", "V/S", "Transmission", "Gears"))
Cylinders 4 6 8
Transmission 0 1 0 1 0 1
V/S Gears
0 3 0 0 0 0 12 0
4 0 0 0 2 0 0
5 0 1 0 1 0 2
1 3 1 0 2 0 0 0
4 2 6 2 0 0 0
5 0 1 0 0 0 0
>
>
>
> cleanEx()
> nameEx("ftable.formula")
> ### * ftable.formula
>
> flush(stderr()); flush(stdout())
>
> ### Name: ftable.formula
> ### Title: Formula Notation for Flat Contingency Tables
> ### Aliases: ftable.formula
> ### Keywords: category
>
> ### ** Examples
>
> Titanic
, , Age = Child, Survived = No
Sex
Class Male Female
1st 0 0
2nd 0 0
3rd 35 17
Crew 0 0
, , Age = Adult, Survived = No
Sex
Class Male Female
1st 118 4
2nd 154 13
3rd 387 89
Crew 670 3
, , Age = Child, Survived = Yes
Sex
Class Male Female
1st 5 1
2nd 11 13
3rd 13 14
Crew 0 0
, , Age = Adult, Survived = Yes
Sex
Class Male Female
1st 57 140
2nd 14 80
3rd 75 76
Crew 192 20
> x <- ftable(Survived ~ ., data = Titanic)
> x
Survived No Yes
Class Sex Age
1st Male Child 0 5
Adult 118 57
Female Child 0 1
Adult 4 140
2nd Male Child 0 11
Adult 154 14
Female Child 0 13
Adult 13 80
3rd Male Child 35 13
Adult 387 75
Female Child 17 14
Adult 89 76
Crew Male Child 0 0
Adult 670 192
Female Child 0 0
Adult 3 20
> ftable(Sex ~ Class + Age, data = x)
Sex Male Female
Class Age
1st Child 5 1
Adult 175 144
2nd Child 11 13
Adult 168 93
3rd Child 48 31
Adult 462 165
Crew Child 0 0
Adult 862 23
>
>
>
> cleanEx()
> nameEx("getInitial")
> ### * getInitial
>
> flush(stderr()); flush(stdout())
>
> ### Name: getInitial
> ### Title: Get Initial Parameter Estimates
> ### Aliases: getInitial getInitial.default getInitial.formula
> ### getInitial.selfStart
> ### Keywords: models nonlinear manip
>
> ### ** Examples
>
> PurTrt <- Puromycin[ Puromycin$state == "treated", ]
> print(getInitial( rate ~ SSmicmen( conc, Vm, K ), PurTrt ), digits = 3)
Vm K
212.6837 0.0641
>
>
>
> cleanEx()
> nameEx("glm")
> ### * glm
>
> flush(stderr()); flush(stdout())
>
> ### Name: glm
> ### Title: Fitting Generalized Linear Models
> ### Aliases: glm glm.fit weights.glm
> ### Keywords: models regression
>
> ### ** Examples
>
> ## Dobson (1990) Page 93: Randomized Controlled Trial :
> counts <- c(18,17,15,20,10,20,25,13,12)
> outcome <- gl(3,1,9)
> treatment <- gl(3,3)
> print(d.AD <- data.frame(treatment, outcome, counts))
treatment outcome counts
1 1 1 18
2 1 2 17
3 1 3 15
4 2 1 20
5 2 2 10
6 2 3 20
7 3 1 25
8 3 2 13
9 3 3 12
> glm.D93 <- glm(counts ~ outcome + treatment, family = poisson())
> anova(glm.D93)
Analysis of Deviance Table
Model: poisson, link: log
Response: counts
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev
NULL 8 10.5814
outcome 2 5.4523 6 5.1291
treatment 2 0.0000 4 5.1291
>
>
> # A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)
> clotting <- data.frame(
+ u = c(5,10,15,20,30,40,60,80,100),
+ lot1 = c(118,58,42,35,27,25,21,19,18),
+ lot2 = c(69,35,26,21,18,16,13,12,12))
> summary(glm(lot1 ~ log(u), data = clotting, family = Gamma))
Call:
glm(formula = lot1 ~ log(u), family = Gamma, data = clotting)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.04008 -0.03756 -0.02637 0.02905 0.08641
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0165544 0.0009275 -17.85 4.28e-07 ***
log(u) 0.0153431 0.0004150 36.98 2.75e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Gamma family taken to be 0.002446059)
Null deviance: 3.51283 on 8 degrees of freedom
Residual deviance: 0.01673 on 7 degrees of freedom
AIC: 37.99
Number of Fisher Scoring iterations: 3
> summary(glm(lot2 ~ log(u), data = clotting, family = Gamma))
Call:
glm(formula = lot2 ~ log(u), family = Gamma, data = clotting)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.05574 -0.02925 0.01030 0.01714 0.06371
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0239085 0.0013265 -18.02 4.00e-07 ***
log(u) 0.0235992 0.0005768 40.91 1.36e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Gamma family taken to be 0.001813354)
Null deviance: 3.118557 on 8 degrees of freedom
Residual deviance: 0.012672 on 7 degrees of freedom
AIC: 27.032
Number of Fisher Scoring iterations: 3
>
> ## Not run:
> ##D ## for an example of the use of a terms object as a formula
> ##D demo(glm.vr)
> ## End(Not run)
>
>
> cleanEx()
> nameEx("glm.control")
> ### * glm.control
>
> flush(stderr()); flush(stdout())
>
> ### Name: glm.control
> ### Title: Auxiliary for Controlling GLM Fitting
> ### Aliases: glm.control
> ### Keywords: optimize models
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("hclust")
> ### * hclust
>
> flush(stderr()); flush(stdout())
>
> ### Name: hclust
> ### Title: Hierarchical Clustering
> ### Aliases: hclust plot.hclust print.hclust
> ### Keywords: multivariate cluster
>
> ### ** Examples
>
> require(graphics)
>
> ### Example 1: Violent crime rates by US state
>
> hc <- hclust(dist(USArrests), "ave")
> plot(hc)
> plot(hc, hang = -1)
>
> ## Do the same with centroid clustering and squared Euclidean distance,
> ## cut the tree into ten clusters and reconstruct the upper part of the
> ## tree from the cluster centers.
> hc <- hclust(dist(USArrests)^2, "cen")
> memb <- cutree(hc, k = 10)
> cent <- NULL
> for(k in 1:10){
+ cent <- rbind(cent, colMeans(USArrests[memb == k, , drop = FALSE]))
+ }
> hc1 <- hclust(dist(cent)^2, method = "cen", members = table(memb))
> opar <- par(mfrow = c(1, 2))
> plot(hc, labels = FALSE, hang = -1, main = "Original Tree")
> plot(hc1, labels = FALSE, hang = -1, main = "Re-start from 10 clusters")
> par(opar)
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("heatmap")
> ### * heatmap
>
> flush(stderr()); flush(stdout())
>
> ### Name: heatmap
> ### Title: Draw a Heat Map
> ### Aliases: heatmap
> ### Keywords: hplot
>
> ### ** Examples
>
> require(graphics); require(grDevices)
> x <- as.matrix(mtcars)
> rc <- rainbow(nrow(x), start = 0, end = .3)
> cc <- rainbow(ncol(x), start = 0, end = .3)
> hv <- heatmap(x, col = cm.colors(256), scale = "column",
+ RowSideColors = rc, ColSideColors = cc, margins = c(5,10),
+ xlab = "specification variables", ylab = "Car Models",
+ main = "heatmap(<Mtcars data>, ..., scale = \"column\")")
> utils::str(hv) # the two re-ordering index vectors
List of 4
$ rowInd: int [1:32] 31 17 16 15 5 25 29 24 7 6 ...
$ colInd: int [1:11] 2 9 8 11 6 5 10 7 1 4 ...
$ Rowv : NULL
$ Colv : NULL
>
> ## no column dendrogram (nor reordering) at all:
> heatmap(x, Colv = NA, col = cm.colors(256), scale = "column",
+ RowSideColors = rc, margins = c(5,10),
+ xlab = "specification variables", ylab = "Car Models",
+ main = "heatmap(<Mtcars data>, ..., scale = \"column\")")
> ## Don't show:
> ## no row dendrogram (nor reordering) at all:
> heatmap(x, Rowv = NA, col = cm.colors(256), scale = "column",
+ ColSideColors = cc, margins = c(5,10),
+ xlab = "xlab", ylab = "ylab") # no main
> ## End Don't show
> ## "no nothing"
> heatmap(x, Rowv = NA, Colv = NA, scale = "column",
+ main = "heatmap(*, NA, NA) ~= image(t(x))")
>
> round(Ca <- cor(attitude), 2)
rating complaints privileges learning raises critical advance
rating 1.00 0.83 0.43 0.62 0.59 0.16 0.16
complaints 0.83 1.00 0.56 0.60 0.67 0.19 0.22
privileges 0.43 0.56 1.00 0.49 0.45 0.15 0.34
learning 0.62 0.60 0.49 1.00 0.64 0.12 0.53
raises 0.59 0.67 0.45 0.64 1.00 0.38 0.57
critical 0.16 0.19 0.15 0.12 0.38 1.00 0.28
advance 0.16 0.22 0.34 0.53 0.57 0.28 1.00
> symnum(Ca) # simple graphic
rt cm p l rs cr a
rating 1
complaints + 1
privileges . . 1
learning , . . 1
raises . , . , 1
critical . 1
advance . . . 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> heatmap(Ca, symm = TRUE, margins = c(6,6)) # with reorder()
> heatmap(Ca, Rowv = FALSE, symm = TRUE, margins = c(6,6)) # _NO_ reorder()
> ## slightly artificial with color bar, without and with ordering:
> cc <- rainbow(nrow(Ca))
> heatmap(Ca, Rowv = FALSE, symm = TRUE, RowSideColors = cc, ColSideColors = cc,
+ margins = c(6,6))
> heatmap(Ca, symm = TRUE, RowSideColors = cc, ColSideColors = cc,
+ margins = c(6,6))
>
> ## For variable clustering, rather use distance based on cor():
> symnum( cU <- cor(USJudgeRatings) )
CO I DM DI CF DE PR F O W PH R
CONT 1
INTG 1
DMNR B 1
DILG + + 1
CFMG + + B 1
DECI + + B B 1
PREP + + B B B 1
FAMI + + B * * B 1
ORAL * * B B * B B 1
WRIT * + B * * B B B 1
PHYS , , + + + + + + + 1
RTEN * * * * * B * B B * 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
>
> hU <- heatmap(cU, Rowv = FALSE, symm = TRUE, col = topo.colors(16),
+ distfun = function(c) as.dist(1 - c), keep.dendro = TRUE)
> ## The Correlation matrix with same reordering:
> round(100 * cU[hU[[1]], hU[[2]]])
CONT INTG DMNR PHYS DILG CFMG DECI RTEN ORAL WRIT PREP FAMI
CONT 100 -13 -15 5 1 14 9 -3 -1 -4 1 -3
INTG -13 100 96 74 87 81 80 94 91 91 88 87
DMNR -15 96 100 79 84 81 80 94 91 89 86 84
PHYS 5 74 79 100 81 88 87 91 89 86 85 84
DILG 1 87 84 81 100 96 96 93 95 96 98 96
CFMG 14 81 81 88 96 100 98 93 95 94 96 94
DECI 9 80 80 87 96 98 100 92 95 95 96 94
RTEN -3 94 94 91 93 93 92 100 98 97 95 94
ORAL -1 91 91 89 95 95 95 98 100 99 98 98
WRIT -4 91 89 86 96 94 95 97 99 100 99 99
PREP 1 88 86 85 98 96 96 95 98 99 100 99
FAMI -3 87 84 84 96 94 94 94 98 99 99 100
> ## The column dendrogram:
> utils::str(hU$Colv)
--[dendrogram w/ 2 branches and 12 members at h = 1.15]
|--leaf "CONT"
`--[dendrogram w/ 2 branches and 11 members at h = 0.258]
|--[dendrogram w/ 2 branches and 2 members at h = 0.0354]
| |--leaf "INTG"
| `--leaf "DMNR"
`--[dendrogram w/ 2 branches and 9 members at h = 0.187]
|--leaf "PHYS"
`--[dendrogram w/ 2 branches and 8 members at h = 0.075]
|--[dendrogram w/ 2 branches and 3 members at h = 0.0438]
| |--leaf "DILG"
| `--[dendrogram w/ 2 branches and 2 members at h = 0.0189]
| |--leaf "CFMG"
| `--leaf "DECI"
`--[dendrogram w/ 2 branches and 5 members at h = 0.0584]
|--leaf "RTEN"
`--[dendrogram w/ 2 branches and 4 members at h = 0.0187]
|--[dendrogram w/ 2 branches and 2 members at h = 0.00657]
| |--leaf "ORAL"
| `--leaf "WRIT"
`--[dendrogram w/ 2 branches and 2 members at h = 0.0101]
|--leaf "PREP"
`--leaf "FAMI"
>
>
>
> cleanEx()
> nameEx("identify.hclust")
> ### * identify.hclust
>
> flush(stderr()); flush(stdout())
>
> ### Name: identify.hclust
> ### Title: Identify Clusters in a Dendrogram
> ### Aliases: identify.hclust
> ### Keywords: cluster iplot
>
> ### ** Examples
> ## Not run:
> ##D require(graphics)
> ##D
> ##D hca <- hclust(dist(USArrests))
> ##D plot(hca)
> ##D (x <- identify(hca)) ## Terminate with 2nd mouse button !!
> ##D
> ##D hci <- hclust(dist(iris[,1:4]))
> ##D plot(hci)
> ##D identify(hci, function(k) print(table(iris[k,5])))
> ##D
> ##D # open a new device (one for dendrogram, one for bars):
> ##D dev.new() # << make that narrow (& small)
> ##D # and *beside* 1st one
> ##D nD <- dev.cur() # to be for the barplot
> ##D dev.set(dev.prev()) # old one for dendrogram
> ##D plot(hci)
> ##D ## select subtrees in dendrogram and "see" the species distribution:
> ##D identify(hci, function(k) barplot(table(iris[k,5]), col = 2:4), DEV.FUN = nD)
> ## End(Not run)
>
>
> cleanEx()
> nameEx("influence.measures")
> ### * influence.measures
>
> flush(stderr()); flush(stdout())
>
> ### Name: influence.measures
> ### Title: Regression Deletion Diagnostics
> ### Aliases: influence.measures hat hatvalues hatvalues.lm rstandard
> ### rstandard.lm rstandard.glm rstudent rstudent.lm rstudent.glm dfbeta
> ### dfbeta.lm dfbetas dfbetas.lm dffits covratio cooks.distance
> ### cooks.distance.lm cooks.distance.glm
> ### Keywords: regression
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("integrate")
> ### * integrate
>
> flush(stderr()); flush(stdout())
>
> ### Name: integrate
> ### Title: Integration of One-Dimensional Functions
> ### Aliases: integrate print.integrate
> ### Keywords: math utilities
>
> ### ** Examples
>
> integrate(dnorm, -1.96, 1.96)
0.9500042 with absolute error < 1e-11
> integrate(dnorm, -Inf, Inf)
1 with absolute error < 9.4e-05
>
> ## a slowly-convergent integral
> integrand <- function(x) {1/((x+1)*sqrt(x))}
> integrate(integrand, lower = 0, upper = Inf)
3.141593 with absolute error < 2.7e-05
>
> ## don't do this if you really want the integral from 0 to Inf
> integrate(integrand, lower = 0, upper = 10)
2.529038 with absolute error < 3e-04
> integrate(integrand, lower = 0, upper = 100000)
3.135268 with absolute error < 4.2e-07
> integrate(integrand, lower = 0, upper = 1000000, stop.on.error = FALSE)
failed with message ‘the integral is probably divergent’
>
> ## some functions do not handle vector input properly
> f <- function(x) 2.0
> try(integrate(f, 0, 1))
Error in integrate(f, 0, 1) :
evaluation of function gave a result of wrong length
> integrate(Vectorize(f), 0, 1) ## correct
2 with absolute error < 2.2e-14
> integrate(function(x) rep(2.0, length(x)), 0, 1) ## correct
2 with absolute error < 2.2e-14
>
> ## integrate can fail if misused
> integrate(dnorm, 0, 2)
0.4772499 with absolute error < 5.3e-15
> integrate(dnorm, 0, 20)
0.5 with absolute error < 3.7e-05
> integrate(dnorm, 0, 200)
0.5 with absolute error < 1.6e-07
> integrate(dnorm, 0, 2000)
0.5 with absolute error < 4.4e-06
> integrate(dnorm, 0, 20000) ## fails on many systems
0 with absolute error < 0
> integrate(dnorm, 0, Inf) ## works
0.5 with absolute error < 4.7e-05
>
>
>
> cleanEx()
> nameEx("interaction.plot")
> ### * interaction.plot
>
> flush(stderr()); flush(stdout())
>
> ### Name: interaction.plot
> ### Title: Two-way Interaction Plot
> ### Aliases: interaction.plot
> ### Keywords: hplot
>
> ### ** Examples
>
> require(graphics)
>
> with(ToothGrowth, {
+ interaction.plot(dose, supp, len, fixed = TRUE)
+ dose <- ordered(dose)
+ interaction.plot(dose, supp, len, fixed = TRUE, col = 2:3, leg.bty = "o")
+ interaction.plot(dose, supp, len, fixed = TRUE, col = 2:3, type = "p")
+ })
>
> with(OrchardSprays, {
+ interaction.plot(treatment, rowpos, decrease)
+ interaction.plot(rowpos, treatment, decrease, cex.axis = 0.8)
+ ## order the rows by their mean effect
+ rowpos <- factor(rowpos,
+ levels = sort.list(tapply(decrease, rowpos, mean)))
+ interaction.plot(rowpos, treatment, decrease, col = 2:9, lty = 1)
+ })
>
> with(esoph, {
+ interaction.plot(agegp, alcgp, ncases/ncontrols, main = "'esoph' Data")
+ interaction.plot(agegp, tobgp, ncases/ncontrols, trace.label = "tobacco",
+ fixed = TRUE, xaxt = "n")
+ })
> ## deal with NAs:
> esoph[66,] # second to last age group: 65-74
agegp alcgp tobgp ncases ncontrols
66 65-74 0-39g/day 30+ 0 2
> esophNA <- esoph; esophNA$ncases[66] <- NA
> with(esophNA, {
+ interaction.plot(agegp, alcgp, ncases/ncontrols, col = 2:5)
+ # doesn't show *last* group either
+ interaction.plot(agegp, alcgp, ncases/ncontrols, col = 2:5, type = "b")
+ ## alternative take non-NA's {"cheating"}
+ interaction.plot(agegp, alcgp, ncases/ncontrols, col = 2:5,
+ fun = function(x) mean(x, na.rm = TRUE),
+ sub = "function(x) mean(x, na.rm=TRUE)")
+ })
> rm(esophNA) # to clear up
>
>
>
> cleanEx()
> nameEx("is.empty")
> ### * is.empty
>
> flush(stderr()); flush(stdout())
>
> ### Name: is.empty.model
> ### Title: Test if a Model's Formula is Empty
> ### Aliases: is.empty.model
> ### Keywords: models
>
> ### ** Examples
>
> y <- rnorm(20)
> is.empty.model(y ~ 0)
[1] TRUE
> is.empty.model(y ~ -1)
[1] TRUE
> is.empty.model(lm(y ~ 0))
[1] TRUE
>
>
>
> cleanEx()
> nameEx("isoreg")
> ### * isoreg
>
> flush(stderr()); flush(stdout())
>
> ### Name: isoreg
> ### Title: Isotonic / Monotone Regression
> ### Aliases: isoreg
> ### Keywords: regression smooth
>
> ### ** Examples
>
> require(graphics)
>
> (ir <- isoreg(c(1,0,4,3,3,5,4,2,0)))
Isotonic regression from isoreg(x = c(1, 0, 4, 3, 3, 5, 4, 2, 0)),
with 2 knots / breaks at obs.nr. 2 9 ;
initially ordered 'x'
and further components List of 4
$ x : num [1:9] 1 2 3 4 5 6 7 8 9
$ y : num [1:9] 1 0 4 3 3 5 4 2 0
$ yf: num [1:9] 0.5 0.5 3 3 3 3 3 3 3
$ yc: num [1:10] 0 1 1 5 8 11 16 20 22 22
> plot(ir, plot.type = "row")
>
> (ir3 <- isoreg(y3 <- c(1,0,4,3,3,5,4,2, 3))) # last "3", not "0"
Isotonic regression from isoreg(x = y3 <- c(1, 0, 4, 3, 3, 5, 4, 2, 3)),
with 3 knots / breaks at obs.nr. 2 5 9 ;
initially ordered 'x'
and further components List of 4
$ x : num [1:9] 1 2 3 4 5 6 7 8 9
$ y : num [1:9] 1 0 4 3 3 5 4 2 3
$ yf: num [1:9] 0.5 0.5 3.33 3.33 3.33 ...
$ yc: num [1:10] 0 1 1 5 8 11 16 20 22 25
> (fi3 <- as.stepfun(ir3))
Step function
Call: isoreg(x = y3 <- c(1, 0, 4, 3, 3, 5, 4, 2, 3))
x[1:3] = 2, 5, 9
4 plateau levels = 0.5, 0.5, 3.3333, 3.5
> (ir4 <- isoreg(1:10, y4 <- c(5, 9, 1:2, 5:8, 3, 8)))
Isotonic regression from isoreg(x = 1:10, y = y4 <- c(5, 9, 1:2, 5:8, 3, 8)),
with 5 knots / breaks at obs.nr. 4 5 6 9 10 ;
initially ordered 'x'
and further components List of 4
$ x : num [1:10] 1 2 3 4 5 6 7 8 9 10
$ y : num [1:10] 5 9 1 2 5 6 7 8 3 8
$ yf: num [1:10] 4.25 4.25 4.25 4.25 5 6 6 6 6 8
$ yc: num [1:11] 0 5 14 15 17 22 28 35 43 46 ...
> cat(sprintf("R^2 = %.2f\n",
+ 1 - sum(residuals(ir4)^2) / ((10-1)*var(y4))))
R^2 = 0.21
>
> ## If you are interested in the knots alone :
> with(ir4, cbind(iKnots, yf[iKnots]))
iKnots
[1,] 4 4.25
[2,] 5 5.00
[3,] 6 6.00
[4,] 9 6.00
[5,] 10 8.00
>
> ## Example of unordered x[] with ties:
> x <- sample((0:30)/8)
> y <- exp(x)
> x. <- round(x) # ties!
> plot(m <- isoreg(x., y))
> stopifnot(all.equal(with(m, yf[iKnots]),
+ as.vector(tapply(y, x., mean))))
>
>
>
> cleanEx()
> nameEx("kernapply")
> ### * kernapply
>
> flush(stderr()); flush(stdout())
>
> ### Name: kernapply
> ### Title: Apply Smoothing Kernel
> ### Aliases: kernapply kernapply.default kernapply.ts kernapply.tskernel
> ### kernapply.vector
> ### Keywords: ts
>
> ### ** Examples
>
> ## see 'kernel' for examples
>
>
>
> cleanEx()
> nameEx("kernel")
> ### * kernel
>
> flush(stderr()); flush(stdout())
>
> ### Name: kernel
> ### Title: Smoothing Kernel Objects
> ### Aliases: kernel bandwidth.kernel df.kernel is.tskernel plot.tskernel
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> ## Demonstrate a simple trading strategy for the
> ## financial time series German stock index DAX.
> x <- EuStockMarkets[,1]
> k1 <- kernel("daniell", 50) # a long moving average
> k2 <- kernel("daniell", 10) # and a short one
> plot(k1)
> plot(k2)
> x1 <- kernapply(x, k1)
> x2 <- kernapply(x, k2)
> plot(x)
> lines(x1, col = "red") # go long if the short crosses the long upwards
> lines(x2, col = "green") # and go short otherwise
>
> ## More interesting kernels
> kd <- kernel("daniell", c(3, 3))
> kd # note the unusual indexing
Daniell(3,3)
coef[-6] = 0.02041
coef[-5] = 0.04082
coef[-4] = 0.06122
coef[-3] = 0.08163
coef[-2] = 0.10204
coef[-1] = 0.12245
coef[ 0] = 0.14286
coef[ 1] = 0.12245
coef[ 2] = 0.10204
coef[ 3] = 0.08163
coef[ 4] = 0.06122
coef[ 5] = 0.04082
coef[ 6] = 0.02041
> kd[-2:2]
[1] 0.1020408 0.1224490 0.1428571 0.1224490 0.1020408
> plot(kernel("fejer", 100, r = 6))
> plot(kernel("modified.daniell", c(7,5,3)))
>
> # Reproduce example 10.4.3 from Brockwell and Davis (1991)
> spectrum(sunspot.year, kernel = kernel("daniell", c(11,7,3)), log = "no")
>
>
>
> cleanEx()
> nameEx("kmeans")
> ### * kmeans
>
> flush(stderr()); flush(stdout())
>
> ### Name: kmeans
> ### Title: K-Means Clustering
> ### Aliases: kmeans print.kmeans fitted.kmeans
> ### Keywords: multivariate cluster
>
> ### ** Examples
>
> require(graphics)
>
> # a 2-dimensional example
> x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
+ matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
> colnames(x) <- c("x", "y")
> (cl <- kmeans(x, 2))
K-means clustering with 2 clusters of sizes 51, 49
Cluster means:
x y
1 0.94443633 1.01712793
2 0.02149367 0.02121248
Clustering vector:
[1] 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Within cluster sum of squares by cluster:
[1] 8.392416 6.525480
(between_SS / total_SS = 75.5 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"
> plot(x, col = cl$cluster)
> points(cl$centers, col = 1:2, pch = 8, cex = 2)
>
> # sum of squares
> ss <- function(x) sum(scale(x, scale = FALSE)^2)
>
> ## cluster centers "fitted" to each obs.:
> fitted.x <- fitted(cl); head(fitted.x)
x y
2 0.02149367 0.02121248
2 0.02149367 0.02121248
2 0.02149367 0.02121248
2 0.02149367 0.02121248
2 0.02149367 0.02121248
2 0.02149367 0.02121248
> resid.x <- x - fitted(cl)
>
> ## Equalities : ----------------------------------
> cbind(cl[c("betweenss", "tot.withinss", "totss")], # the same two columns
+ c(ss(fitted.x), ss(resid.x), ss(x)))
[,1] [,2]
betweenss 46.07333 46.07333
tot.withinss 14.9179 14.9179
totss 60.99123 60.99123
> stopifnot(all.equal(cl$ totss, ss(x)),
+ all.equal(cl$ tot.withinss, ss(resid.x)),
+ ## these three are the same:
+ all.equal(cl$ betweenss, ss(fitted.x)),
+ all.equal(cl$ betweenss, cl$totss - cl$tot.withinss),
+ ## and hence also
+ all.equal(ss(x), ss(fitted.x) + ss(resid.x))
+ )
>
> kmeans(x,1)$withinss # trivial one-cluster, (its W.SS == ss(x))
[1] 60.99123
>
> ## random starts do help here with too many clusters
> ## (and are often recommended anyway!):
> (cl <- kmeans(x, 5, nstart = 25))
K-means clustering with 5 clusters of sizes 24, 15, 24, 25, 12
Cluster means:
x y
1 0.1581362 -0.1761590
2 0.8609139 1.3145869
3 0.8043520 0.7805033
4 -0.1096832 0.2106891
5 1.3290081 1.1185534
Clustering vector:
[1] 4 1 4 1 4 4 1 1 4 4 3 1 4 4 1 4 1 4 1 4 1 1 4 4 1 4 1 4 4 1 1 1 4 1 4 4 4
[38] 1 1 1 1 4 4 4 4 4 1 1 1 1 2 3 3 3 3 5 5 5 3 5 2 3 5 2 3 2 3 3 5 2 2 5 2 3
[75] 3 5 2 2 2 2 3 2 5 3 5 3 2 3 3 3 3 5 3 2 3 3 5 3 2 3
Within cluster sum of squares by cluster:
[1] 1.2816507 0.7104553 1.5056575 2.5330710 1.0314888
(between_SS / total_SS = 88.4 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"
> plot(x, col = cl$cluster)
> points(cl$centers, col = 1:5, pch = 8)
>
>
>
> cleanEx()
> nameEx("kruskal.test")
> ### * kruskal.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: kruskal.test
> ### Title: Kruskal-Wallis Rank Sum Test
> ### Aliases: kruskal.test kruskal.test.default kruskal.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> ## Hollander & Wolfe (1973), 116.
> ## Mucociliary efficiency from the rate of removal of dust in normal
> ## subjects, subjects with obstructive airway disease, and subjects
> ## with asbestosis.
> x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
> y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
> z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
> kruskal.test(list(x, y, z))
Kruskal-Wallis rank sum test
data: list(x, y, z)
Kruskal-Wallis chi-squared = 0.7714, df = 2, p-value = 0.68
> ## Equivalently,
> x <- c(x, y, z)
> g <- factor(rep(1:3, c(5, 4, 5)),
+ labels = c("Normal subjects",
+ "Subjects with obstructive airway disease",
+ "Subjects with asbestosis"))
> kruskal.test(x, g)
Kruskal-Wallis rank sum test
data: x and g
Kruskal-Wallis chi-squared = 0.7714, df = 2, p-value = 0.68
>
> ## Formula interface.
> require(graphics)
> boxplot(Ozone ~ Month, data = airquality)
> kruskal.test(Ozone ~ Month, data = airquality)
Kruskal-Wallis rank sum test
data: Ozone by Month
Kruskal-Wallis chi-squared = 29.2666, df = 4, p-value = 6.901e-06
>
>
>
> cleanEx()
> nameEx("ks.test")
> ### * ks.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: ks.test
> ### Title: Kolmogorov-Smirnov Tests
> ### Aliases: ks.test
> ### Keywords: htest
>
> ### ** Examples
>
> require(graphics)
>
> x <- rnorm(50)
> y <- runif(30)
> # Do x and y come from the same distribution?
> ks.test(x, y)
Two-sample Kolmogorov-Smirnov test
data: x and y
D = 0.48, p-value = 0.0002033
alternative hypothesis: two-sided
> # Does x come from a shifted gamma distribution with shape 3 and rate 2?
> ks.test(x+2, "pgamma", 3, 2) # two-sided, exact
One-sample Kolmogorov-Smirnov test
data: x + 2
D = 0.4096, p-value = 4.227e-08
alternative hypothesis: two-sided
> ks.test(x+2, "pgamma", 3, 2, exact = FALSE)
One-sample Kolmogorov-Smirnov test
data: x + 2
D = 0.4096, p-value = 1.033e-07
alternative hypothesis: two-sided
> ks.test(x+2, "pgamma", 3, 2, alternative = "gr")
One-sample Kolmogorov-Smirnov test
data: x + 2
D^+ = 0.04, p-value = 0.8302
alternative hypothesis: the CDF of x lies above the null hypothesis
>
> # test if x is stochastically larger than x2
> x2 <- rnorm(50, -1)
> plot(ecdf(x), xlim = range(c(x, x2)))
> plot(ecdf(x2), add = TRUE, lty = "dashed")
> t.test(x, x2, alternative = "g")
Welch Two Sample t-test
data: x and x2
t = 5.6742, df = 96.85, p-value = 7.242e-08
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
0.7069751 Inf
sample estimates:
mean of x mean of y
0.1004483 -0.8990693
> wilcox.test(x, x2, alternative = "g")
Wilcoxon rank sum test with continuity correction
data: x and x2
W = 1983, p-value = 2.212e-07
alternative hypothesis: true location shift is greater than 0
> ks.test(x, x2, alternative = "l")
Two-sample Kolmogorov-Smirnov test
data: x and x2
D^- = 0.5, p-value = 3.727e-06
alternative hypothesis: the CDF of x lies below that of y
>
>
>
> cleanEx()
> nameEx("ksmooth")
> ### * ksmooth
>
> flush(stderr()); flush(stdout())
>
> ### Name: ksmooth
> ### Title: Kernel Regression Smoother
> ### Aliases: ksmooth
> ### Keywords: smooth
>
> ### ** Examples
>
> require(graphics)
>
> with(cars, {
+ plot(speed, dist)
+ lines(ksmooth(speed, dist, "normal", bandwidth = 2), col = 2)
+ lines(ksmooth(speed, dist, "normal", bandwidth = 5), col = 3)
+ })
>
>
>
> cleanEx()
> nameEx("lag")
> ### * lag
>
> flush(stderr()); flush(stdout())
>
> ### Name: lag
> ### Title: Lag a Time Series
> ### Aliases: lag lag.default
> ### Keywords: ts
>
> ### ** Examples
>
> lag(ldeaths, 12) # starts one year earlier
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1973 3035 2552 2704 2554 2014 1655 1721 1524 1596 2074 2199 2512
1974 2933 2889 2938 2497 1870 1726 1607 1545 1396 1787 2076 2837
1975 2787 3891 3179 2011 1636 1580 1489 1300 1356 1653 2013 2823
1976 3102 2294 2385 2444 1748 1554 1498 1361 1346 1564 1640 2293
1977 2815 3137 2679 1969 1870 1633 1529 1366 1357 1570 1535 2491
1978 3084 2605 2573 2143 1693 1504 1461 1354 1333 1492 1781 1915
>
>
>
> cleanEx()
> nameEx("lag.plot")
> ### * lag.plot
>
> flush(stderr()); flush(stdout())
>
> ### Name: lag.plot
> ### Title: Time Series Lag Plots
> ### Aliases: lag.plot
> ### Keywords: hplot ts
>
> ### ** Examples
>
> require(graphics)
>
> lag.plot(nhtemp, 8, diag.col = "forest green")
> lag.plot(nhtemp, 5, main = "Average Temperatures in New Haven")
> ## ask defaults to TRUE when we have more than one page:
> lag.plot(nhtemp, 6, layout = c(2,1), asp = NA,
+ main = "New Haven Temperatures", col.main = "blue")
>
> ## Multivariate (but non-stationary! ...)
> lag.plot(freeny.x, lags = 3)
>
> ## no lines for long series :
> lag.plot(sqrt(sunspots), set = c(1:4, 9:12), pch = ".", col = "gold")
>
>
>
> cleanEx()
> nameEx("line")
> ### * line
>
> flush(stderr()); flush(stdout())
>
> ### Name: line
> ### Title: Robust Line Fitting
> ### Aliases: line residuals.tukeyline
> ### Keywords: robust regression
>
> ### ** Examples
>
> require(graphics)
>
> plot(cars)
> (z <- line(cars))
Call:
line(cars)
Coefficients:
[1] -26.053 4.421
> abline(coef(z))
> ## Tukey-Anscombe Plot :
> plot(residuals(z) ~ fitted(z), main = deparse(z$call))
>
>
>
> cleanEx()
> nameEx("lm")
> ### * lm
>
> flush(stderr()); flush(stdout())
>
> ### Name: lm
> ### Title: Fitting Linear Models
> ### Aliases: lm
> ### Keywords: regression
>
> ### ** Examples
>
> require(graphics)
>
> ## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
> ## Page 9: Plant Weight Data.
> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
> group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
> weight <- c(ctl, trt)
> lm.D9 <- lm(weight ~ group)
> lm.D90 <- lm(weight ~ group - 1) # omitting intercept
> opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
> plot(lm.D9, las = 1) # Residuals, Fitted, ...
> par(opar)
> ## Don't show:
> ## model frame :
> stopifnot(identical(lm(weight ~ group, method = "model.frame"),
+ model.frame(lm.D9)))
> ## End Don't show
> ### less simple examples in "See Also" above
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("lm.influence")
> ### * lm.influence
>
> flush(stderr()); flush(stdout())
>
> ### Name: lm.influence
> ### Title: Regression Diagnostics
> ### Aliases: lm.influence influence influence.lm influence.glm
> ### Keywords: regression
>
> ### ** Examples
>
> ## Analysis of the life-cycle savings data
> ## given in Belsley, Kuh and Welsch.
> summary(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi,
+ data = LifeCycleSavings),
+ corr = TRUE)
Call:
lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
Residuals:
Min 1Q Median 3Q Max
-8.2422 -2.6857 -0.2488 2.4280 9.7509
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
pop15 -0.4611931 0.1446422 -3.189 0.002603 **
pop75 -1.6914977 1.0835989 -1.561 0.125530
dpi -0.0003369 0.0009311 -0.362 0.719173
ddpi 0.4096949 0.1961971 2.088 0.042471 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.803 on 45 degrees of freedom
Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
Correlation of Coefficients:
(Intercept) pop15 pop75 dpi
pop15 -0.98
pop75 -0.81 0.77
dpi -0.17 0.18 -0.37
ddpi -0.19 0.10 -0.05 0.26
> utils::str(lmI <- lm.influence(lm.SR))
List of 4
$ hat : Named num [1:50] 0.0677 0.1204 0.0875 0.0895 0.0696 ...
..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
$ coefficients: num [1:50, 1:5] 0.0916 -0.0747 -0.4752 0.0429 0.6604 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
.. ..$ : chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
$ sigma : Named num [1:50] 3.84 3.84 3.83 3.84 3.81 ...
..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
$ wt.res : Named num [1:50] 0.864 0.616 2.219 -0.698 3.553 ...
..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
>
> ## For more "user level" examples, use example(influence.measures)
>
>
>
> cleanEx()
> nameEx("lm.summaries")
> ### * lm.summaries
>
> flush(stderr()); flush(stdout())
>
> ### Name: lm.summaries
> ### Title: Accessing Linear Model Fits
> ### Aliases: family.lm formula.lm residuals.lm labels.lm
> ### Keywords: regression models
>
> ### ** Examples
>
> ## Don't show:
> utils::example("lm", echo = FALSE)
> ## End Don't show
> ##-- Continuing the lm(.) example:
> coef(lm.D90) # the bare coefficients
groupCtl groupTrt
5.032 4.661
>
> ## The 2 basic regression diagnostic plots [plot.lm(.) is preferred]
> plot(resid(lm.D90), fitted(lm.D90)) # Tukey-Anscombe's
> abline(h = 0, lty = 2, col = "gray")
>
> qqnorm(residuals(lm.D90))
>
>
>
> cleanEx()
> nameEx("lmfit")
> ### * lmfit
>
> flush(stderr()); flush(stdout())
>
> ### Name: lm.fit
> ### Title: Fitter Functions for Linear Models
> ### Aliases: lm.fit lm.wfit .lm.fit
> ### Keywords: regression array
>
> ### ** Examples
>
> require(utils)
> set.seed(129)
>
> n <- 7 ; p <- 2
> X <- matrix(rnorm(n * p), n, p) # no intercept!
> y <- rnorm(n)
> w <- rnorm(n)^2
>
> str(lmw <- lm.wfit(x = X, y = y, w = w))
List of 9
$ coefficients : Named num [1:2] -0.0432 -0.5612
..- attr(*, "names")= chr [1:2] "x1" "x2"
$ residuals : num [1:7] -0.132 -1.308 -0.256 1.468 0.439 ...
$ fitted.values: num [1:7] 0.05 -0.5232 0.6151 -0.5766 0.0512 ...
$ effects : Named num [1:7] 0.804 1.722 -0.072 2.047 0.392 ...
..- attr(*, "names")= chr [1:7] "x1" "x2" "" "" ...
$ weights : num [1:7] 0.3195 0.0123 0.0569 1.8154 0.8359 ...
$ rank : int 2
$ assign : NULL
$ qr :List of 5
..$ qr : num [1:7, 1:2] 3.0953 0.0355 0.106 0.5901 -0.5898 ...
..$ qraux: num [1:2] 1.2 1.02
..$ pivot: int [1:2] 1 2
..$ tol : num 1e-07
..$ rank : int 2
..- attr(*, "class")= chr "qr"
$ df.residual : int 5
>
> str(lm. <- lm.fit (x = X, y = y))
List of 8
$ coefficients : Named num [1:2] 0.132 -0.553
..- attr(*, "names")= chr [1:2] "x1" "x2"
$ residuals : num [1:7] 0.06433 -1.14333 -0.00708 1.69606 0.09095 ...
$ effects : Named num [1:7] 0.791 1.476 -0.415 1.983 0.133 ...
..- attr(*, "names")= chr [1:7] "x1" "x2" "" "" ...
$ rank : int 2
$ fitted.values: num [1:7] -0.146 -0.688 0.366 -0.804 0.399 ...
$ assign : NULL
$ qr :List of 5
..$ qr : num [1:7, 1:2] 3.321 0.298 0.414 0.408 -0.601 ...
..$ qraux: num [1:2] 1.34 1.32
..$ pivot: int [1:2] 1 2
..$ tol : num 1e-07
..$ rank : int 2
..- attr(*, "class")= chr "qr"
$ df.residual : int 5
> ## Don't show:
> ## These are the same calculations at C level, but a parallel BLAS
> ## might not do them the same way twice, and if seems serial MKL does not.
> lm.. <- .lm.fit(X,y)
> lm.w <- .lm.fit(X*sqrt(w), y*sqrt(w))
> id <- function(x, y) all.equal(x, y, tolerance = 1e-15, scale = 1)
> stopifnot(id(unname(lm.$coef), lm..$coef),
+ id(unname(lmw$coef), lm.w$coef))
> ## End Don't show
>
>
>
> cleanEx()
> nameEx("loess")
> ### * loess
>
> flush(stderr()); flush(stdout())
>
> ### Name: loess
> ### Title: Local Polynomial Regression Fitting
> ### Aliases: loess
> ### Keywords: smooth loess
>
> ### ** Examples
>
> cars.lo <- loess(dist ~ speed, cars)
> predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE)
$fit
1 2 3 4 5 6 7 8
7.797353 10.002308 12.499786 15.281082 18.446568 21.865315 25.517015 29.350386
9 10 11 12 13 14 15 16
33.230660 37.167935 41.205226 45.055736 48.355889 49.824812 51.986702 56.461318
17 18 19 20 21 22 23 24
61.959729 68.569313 76.316068 85.212121 95.324047 NA NA NA
25 26
NA NA
$se.fit
1 2 3 4 5 6 7 8
7.568120 5.945831 4.990827 4.545284 4.308639 4.115049 3.789542 3.716231
9 10 11 12 13 14 15 16
3.776947 4.091747 4.709568 4.245427 4.035929 3.753410 4.004705 4.043190
17 18 19 20 21 22 23 24
4.026105 4.074664 4.570818 5.954217 8.302014 NA NA NA
25 26
NA NA
$residual.scale
[1] 15.29496
$df
[1] 44.6179
> # to allow extrapolation
> cars.lo2 <- loess(dist ~ speed, cars,
+ control = loess.control(surface = "direct"))
> predict(cars.lo2, data.frame(speed = seq(5, 30, 1)), se = TRUE)
$fit
1 2 3 4 5 6 7
7.741006 9.926596 12.442424 15.281082 18.425712 21.865315 25.713413
8 9 10 11 12 13 14
29.350386 33.230660 37.167935 41.205226 45.781544 48.355889 50.067148
15 16 17 18 19 20 21
51.986702 56.445263 62.025404 68.569313 76.193111 85.053364 95.300523
22 23 24 25 26
106.974661 120.092581 134.665851 150.698545 168.190283
$se.fit
1 2 3 4 5 6 7 8
7.565991 5.959097 5.012013 4.550013 4.321596 4.119331 3.939804 3.720098
9 10 11 12 13 14 15 16
3.780877 4.096004 4.714469 4.398936 4.040129 4.184257 4.008873 4.061865
17 18 19 20 21 22 23 24
4.033998 4.078904 4.584606 5.952480 8.306901 11.601911 15.792480 20.864660
25 26
26.823827 33.683999
$residual.scale
[1] 15.31087
$df
[1] 44.55085
>
>
>
> cleanEx()
> nameEx("logLik")
> ### * logLik
>
> flush(stderr()); flush(stdout())
>
> ### Name: logLik
> ### Title: Extract Log-Likelihood
> ### Aliases: logLik logLik.lm
> ### Keywords: models
>
> ### ** Examples
>
> x <- 1:5
> lmx <- lm(x ~ 1)
> logLik(lmx) # using print.logLik() method
'log Lik.' -8.827561 (df=2)
> utils::str(logLik(lmx))
Class 'logLik' : -8.828 (df=2)
>
> ## lm method
> (fm1 <- lm(rating ~ ., data = attitude))
Call:
lm(formula = rating ~ ., data = attitude)
Coefficients:
(Intercept) complaints privileges learning raises critical
10.78708 0.61319 -0.07305 0.32033 0.08173 0.03838
advance
-0.21706
> logLik(fm1)
'log Lik.' -97.24991 (df=8)
> logLik(fm1, REML = TRUE)
'log Lik.' -102.6851 (df=8)
>
>
>
> cleanEx()
> nameEx("loglin")
> ### * loglin
>
> flush(stderr()); flush(stdout())
>
> ### Name: loglin
> ### Title: Fitting Log-Linear Models
> ### Aliases: loglin
> ### Keywords: category models
>
> ### ** Examples
>
> ## Model of joint independence of sex from hair and eye color.
> fm <- loglin(HairEyeColor, list(c(1, 2), c(1, 3), c(2, 3)))
5 iterations: deviation 0.04093795
> fm
$lrt
[1] 6.761258
$pearson
[1] 6.868292
$df
[1] 9
$margin
$margin[[1]]
[1] "Hair" "Eye"
$margin[[2]]
[1] "Hair" "Sex"
$margin[[3]]
[1] "Eye" "Sex"
> 1 - pchisq(fm$lrt, fm$df)
[1] 0.66196
> ## Model with no three-factor interactions fits well.
>
>
>
> cleanEx()
> nameEx("lowess")
> ### * lowess
>
> flush(stderr()); flush(stdout())
>
> ### Name: lowess
> ### Title: Scatter Plot Smoothing
> ### Aliases: lowess
> ### Keywords: smooth
>
> ### ** Examples
>
> require(graphics)
>
> plot(cars, main = "lowess(cars)")
> lines(lowess(cars), col = 2)
> lines(lowess(cars, f = .2), col = 3)
> legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)
>
>
>
> cleanEx()
> nameEx("ls.diag")
> ### * ls.diag
>
> flush(stderr()); flush(stdout())
>
> ### Name: ls.diag
> ### Title: Compute Diagnostics for 'lsfit' Regression Results
> ### Aliases: ls.diag
> ### Keywords: regression
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("lsfit")
> ### * lsfit
>
> flush(stderr()); flush(stdout())
>
> ### Name: lsfit
> ### Title: Find the Least Squares Fit
> ### Aliases: lsfit
> ### Keywords: regression
>
> ### ** Examples
>
> ## Don't show:
> utils::example("lm", echo = FALSE)
> ## End Don't show
> ##-- Using the same data as the lm(.) example:
> lsD9 <- lsfit(x = unclass(gl(2, 10)), y = weight)
> ls.print(lsD9)
Residual Standard Error=0.6964
R-Square=0.0731
F-statistic (df=1, 18)=1.4191
p-value=0.249
Estimate Std.Err t-value Pr(>|t|)
Intercept 5.403 0.4924 10.9723 0.000
X -0.371 0.3114 -1.1913 0.249
>
>
>
> cleanEx()
> nameEx("mad")
> ### * mad
>
> flush(stderr()); flush(stdout())
>
> ### Name: mad
> ### Title: Median Absolute Deviation
> ### Aliases: mad
> ### Keywords: univar robust
>
> ### ** Examples
>
> mad(c(1:9))
[1] 2.9652
> print(mad(c(1:9), constant = 1)) ==
+ mad(c(1:8, 100), constant = 1) # = 2 ; TRUE
[1] 2
[1] TRUE
> x <- c(1,2,3,5,7,8)
> sort(abs(x - median(x)))
[1] 1 1 2 3 3 4
> c(mad(x, constant = 1),
+ mad(x, constant = 1, low = TRUE),
+ mad(x, constant = 1, high = TRUE))
[1] 2.5 2.0 3.0
>
>
>
> cleanEx()
> nameEx("mahalanobis")
> ### * mahalanobis
>
> flush(stderr()); flush(stdout())
>
> ### Name: mahalanobis
> ### Title: Mahalanobis Distance
> ### Aliases: mahalanobis
> ### Keywords: multivariate
>
> ### ** Examples
>
> require(graphics)
>
> ma <- cbind(1:6, 1:3)
> (S <- var(ma))
[,1] [,2]
[1,] 3.5 0.8
[2,] 0.8 0.8
> mahalanobis(c(0, 0), 1:2, S)
[1] 5.37037
>
> x <- matrix(rnorm(100*3), ncol = 3)
> stopifnot(mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x))
> ##- Here, D^2 = usual squared Euclidean distances
>
> Sx <- cov(x)
> D2 <- mahalanobis(x, colMeans(x), Sx)
> plot(density(D2, bw = 0.5),
+ main="Squared Mahalanobis distances, n=100, p=3") ; rug(D2)
> qqplot(qchisq(ppoints(100), df = 3), D2,
+ main = expression("Q-Q plot of Mahalanobis" * ~D^2 *
+ " vs. quantiles of" * ~ chi[3]^2))
> abline(0, 1, col = 'gray')
>
>
>
> cleanEx()
> nameEx("make.link")
> ### * make.link
>
> flush(stderr()); flush(stdout())
>
> ### Name: make.link
> ### Title: Create a Link for GLM Families
> ### Aliases: make.link
> ### Keywords: models
>
> ### ** Examples
>
> utils::str(make.link("logit"))
List of 5
$ linkfun :function (mu)
$ linkinv :function (eta)
$ mu.eta :function (eta)
$ valideta:function (eta)
$ name : chr "logit"
- attr(*, "class")= chr "link-glm"
>
>
>
> cleanEx()
> nameEx("makepredictcall")
> ### * makepredictcall
>
> flush(stderr()); flush(stdout())
>
> ### Name: makepredictcall
> ### Title: Utility Function for Safe Prediction
> ### Aliases: makepredictcall makepredictcall.default SafePrediction
> ### Keywords: models
>
> ### ** Examples
>
> require(graphics)
>
> ## using poly: this did not work in R < 1.5.0
> fm <- lm(weight ~ poly(height, 2), data = women)
> plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
> ht <- seq(57, 73, len = 200)
> lines(ht, predict(fm, data.frame(height = ht)))
>
> ## see also example(cars)
>
> ## see bs and ns for spline examples.
>
>
>
> cleanEx()
> nameEx("manova")
> ### * manova
>
> flush(stderr()); flush(stdout())
>
> ### Name: manova
> ### Title: Multivariate Analysis of Variance
> ### Aliases: manova
> ### Keywords: models
>
> ### ** Examples
>
> ## Set orthogonal contrasts.
> op <- options(contrasts = c("contr.helmert", "contr.poly"))
>
> ## Fake a 2nd response variable
> npk2 <- within(npk, foo <- rnorm(24))
> ( npk2.aov <- manova(cbind(yield, foo) ~ block + N*P*K, npk2) )
Call:
manova(cbind(yield, foo) ~ block + N * P * K, npk2)
Terms:
block N P K N:P N:K P:K
resp 1 343.2950 189.2817 8.4017 95.2017 21.2817 33.1350 0.4817
resp 2 2.9548 0.0223 1.3807 0.0097 2.7585 0.9724 5.5258
Deg. of Freedom 5 1 1 1 1 1 1
Residuals
resp 1 185.2867
resp 2 7.8286
Deg. of Freedom 12
Residual standard errors: 3.929447 0.8077039
1 out of 13 effects not estimable
Estimated effects are balanced
> summary(npk2.aov)
Df Pillai approx F num Df den Df Pr(>F)
block 5 0.89478 1.9430 10 24 0.08861 .
N 1 0.50586 5.6304 2 11 0.02071 *
P 1 0.17088 1.1336 2 11 0.35677
K 1 0.34430 2.8879 2 11 0.09815 .
N:P 1 0.30158 2.3750 2 11 0.13888
N:K 1 0.21654 1.5201 2 11 0.26127
P:K 1 0.41992 3.9814 2 11 0.05003 .
Residuals 12
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
> ( npk2.aovE <- manova(cbind(yield, foo) ~ N*P*K + Error(block), npk2) )
Call:
manova(cbind(yield, foo) ~ N * P * K + Error(block), npk2)
Grand Means:
yield foo
54.8750000 0.1498669
Stratum 1: block
Terms:
N:P:K Residuals
resp 1 37.00167 306.29333
resp 2 0.06988 2.88496
Deg. of Freedom 1 4
Residual standard errors: 8.750619 0.8492579
Estimated effects are balanced
Stratum 2: Within
Terms:
N P K N:P N:K P:K
resp 1 189.28167 8.40167 95.20167 21.28167 33.13500 0.48167
resp 2 0.02235 1.38066 0.00966 2.75852 0.97240 5.52584
Deg. of Freedom 1 1 1 1 1 1
Residuals
resp 1 185.28667
resp 2 7.82863
Deg. of Freedom 12
Residual standard errors: 3.929447 0.8077039
Estimated effects are balanced
> summary(npk2.aovE)
Error: block
Df Pillai approx F num Df den Df Pr(>F)
N:P:K 1 0.20004 0.3751 2 3 0.7155
Residuals 4
Error: Within
Df Pillai approx F num Df den Df Pr(>F)
N 1 0.50586 5.6304 2 11 0.02071 *
P 1 0.17088 1.1336 2 11 0.35677
K 1 0.34430 2.8879 2 11 0.09815 .
N:P 1 0.30158 2.3750 2 11 0.13888
N:K 1 0.21654 1.5201 2 11 0.26127
P:K 1 0.41992 3.9814 2 11 0.05003 .
Residuals 12
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
>
>
>
>
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> cleanEx()
> nameEx("mantelhaen.test")
> ### * mantelhaen.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: mantelhaen.test
> ### Title: Cochran-Mantel-Haenszel Chi-Squared Test for Count Data
> ### Aliases: mantelhaen.test
> ### Keywords: htest
>
> ### ** Examples
>
> ## Agresti (1990), pages 231--237, Penicillin and Rabbits
> ## Investigation of the effectiveness of immediately injected or 1.5
> ## hours delayed penicillin in protecting rabbits against a lethal
> ## injection with beta-hemolytic streptococci.
> Rabbits <-
+ array(c(0, 0, 6, 5,
+ 3, 0, 3, 6,
+ 6, 2, 0, 4,
+ 5, 6, 1, 0,
+ 2, 5, 0, 0),
+ dim = c(2, 2, 5),
+ dimnames = list(
+ Delay = c("None", "1.5h"),
+ Response = c("Cured", "Died"),
+ Penicillin.Level = c("1/8", "1/4", "1/2", "1", "4")))
> Rabbits
, , Penicillin.Level = 1/8
Response
Delay Cured Died
None 0 6
1.5h 0 5
, , Penicillin.Level = 1/4
Response
Delay Cured Died
None 3 3
1.5h 0 6
, , Penicillin.Level = 1/2
Response
Delay Cured Died
None 6 0
1.5h 2 4
, , Penicillin.Level = 1
Response
Delay Cured Died
None 5 1
1.5h 6 0
, , Penicillin.Level = 4
Response
Delay Cured Died
None 2 0
1.5h 5 0
> ## Classical Mantel-Haenszel test
> mantelhaen.test(Rabbits)
Mantel-Haenszel chi-squared test with continuity correction
data: Rabbits
Mantel-Haenszel X-squared = 3.9286, df = 1, p-value = 0.04747
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
1.026713 47.725133
sample estimates:
common odds ratio
7
> ## => p = 0.047, some evidence for higher cure rate of immediate
> ## injection
> ## Exact conditional test
> mantelhaen.test(Rabbits, exact = TRUE)
Exact conditional test of independence in 2 x 2 x k tables
data: Rabbits
S = 16, p-value = 0.03994
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
1.077401 529.837399
sample estimates:
common odds ratio
10.36102
> ## => p - 0.040
> ## Exact conditional test for one-sided alternative of a higher
> ## cure rate for immediate injection
> mantelhaen.test(Rabbits, exact = TRUE, alternative = "greater")
Exact conditional test of independence in 2 x 2 x k tables
data: Rabbits
S = 16, p-value = 0.01997
alternative hypothesis: true common odds ratio is greater than 1
95 percent confidence interval:
1.384239 Inf
sample estimates:
common odds ratio
10.36102
> ## => p = 0.020
>
> ## UC Berkeley Student Admissions
> mantelhaen.test(UCBAdmissions)
Mantel-Haenszel chi-squared test with continuity correction
data: UCBAdmissions
Mantel-Haenszel X-squared = 1.4269, df = 1, p-value = 0.2323
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.7719074 1.0603298
sample estimates:
common odds ratio
0.9046968
> ## No evidence for association between admission and gender
> ## when adjusted for department. However,
> apply(UCBAdmissions, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
A B C D E F
0.3492120 0.8025007 1.1330596 0.9212838 1.2216312 0.8278727
> ## This suggests that the assumption of homogeneous (conditional)
> ## odds ratios may be violated. The traditional approach would be
> ## using the Woolf test for interaction:
> woolf <- function(x) {
+ x <- x + 1 / 2
+ k <- dim(x)[3]
+ or <- apply(x, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
+ w <- apply(x, 3, function(x) 1 / sum(1 / x))
+ 1 - pchisq(sum(w * (log(or) - weighted.mean(log(or), w)) ^ 2), k - 1)
+ }
> woolf(UCBAdmissions)
[1] 0.0034272
> ## => p = 0.003, indicating that there is significant heterogeneity.
> ## (And hence the Mantel-Haenszel test cannot be used.)
>
> ## Agresti (2002), p. 287f and p. 297.
> ## Job Satisfaction example.
> Satisfaction <-
+ as.table(array(c(1, 2, 0, 0, 3, 3, 1, 2,
+ 11, 17, 8, 4, 2, 3, 5, 2,
+ 1, 0, 0, 0, 1, 3, 0, 1,
+ 2, 5, 7, 9, 1, 1, 3, 6),
+ dim = c(4, 4, 2),
+ dimnames =
+ list(Income =
+ c("<5000", "5000-15000",
+ "15000-25000", ">25000"),
+ "Job Satisfaction" =
+ c("V_D", "L_S", "M_S", "V_S"),
+ Gender = c("Female", "Male"))))
> ## (Satisfaction categories abbreviated for convenience.)
> ftable(. ~ Gender + Income, Satisfaction)
Job Satisfaction V_D L_S M_S V_S
Gender Income
Female <5000 1 3 11 2
5000-15000 2 3 17 3
15000-25000 0 1 8 5
>25000 0 2 4 2
Male <5000 1 1 2 1
5000-15000 0 3 5 1
15000-25000 0 0 7 3
>25000 0 1 9 6
> ## Table 7.8 in Agresti (2002), p. 288.
> mantelhaen.test(Satisfaction)
Cochran-Mantel-Haenszel test
data: Satisfaction
Cochran-Mantel-Haenszel M^2 = 10.2001, df = 9, p-value = 0.3345
> ## See Table 7.12 in Agresti (2002), p. 297.
>
>
>
> cleanEx()
> nameEx("mauchly.test")
> ### * mauchly.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: mauchly.test
> ### Title: Mauchly's Test of Sphericity
> ### Aliases: mauchly.test mauchly.test.SSD mauchly.test.mlm
> ### Keywords: htest models multivariate
>
> ### ** Examples
>
> utils::example(SSD) # Brings in the mlmfit and reacttime objects
SSD> # Lifted from Baron+Li:
SSD> # "Notes on the use of R for psychology experiments and questionnaires"
SSD> # Maxwell and Delaney, p. 497
SSD> reacttime <- matrix(c(
SSD+ 420, 420, 480, 480, 600, 780,
SSD+ 420, 480, 480, 360, 480, 600,
SSD+ 480, 480, 540, 660, 780, 780,
SSD+ 420, 540, 540, 480, 780, 900,
SSD+ 540, 660, 540, 480, 660, 720,
SSD+ 360, 420, 360, 360, 480, 540,
SSD+ 480, 480, 600, 540, 720, 840,
SSD+ 480, 600, 660, 540, 720, 900,
SSD+ 540, 600, 540, 480, 720, 780,
SSD+ 480, 420, 540, 540, 660, 780),
SSD+ ncol = 6, byrow = TRUE,
SSD+ dimnames = list(subj = 1:10,
SSD+ cond = c("deg0NA", "deg4NA", "deg8NA",
SSD+ "deg0NP", "deg4NP", "deg8NP")))
SSD> mlmfit <- lm(reacttime ~ 1)
SSD> SSD(mlmfit)
$SSD
cond
cond deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP
deg0NA 29160 30600 26640 23760 32400 25560
deg4NA 30600 66600 32400 7200 36000 30600
deg8NA 26640 32400 56160 41040 57600 69840
deg0NP 23760 7200 41040 70560 72000 63360
deg4NP 32400 36000 57600 72000 108000 100800
deg8NP 25560 30600 69840 63360 100800 122760
$call
lm(formula = reacttime ~ 1)
$df
[1] 9
attr(,"class")
[1] "SSD"
SSD> estVar(mlmfit)
cond
cond deg0NA deg4NA deg8NA deg0NP deg4NP deg8NP
deg0NA 3240 3400 2960 2640 3600 2840
deg4NA 3400 7400 3600 800 4000 3400
deg8NA 2960 3600 6240 4560 6400 7760
deg0NP 2640 800 4560 7840 8000 7040
deg4NP 3600 4000 6400 8000 12000 11200
deg8NP 2840 3400 7760 7040 11200 13640
>
> ### traditional test of intrasubj. contrasts
> mauchly.test(mlmfit, X = ~1)
Mauchly's test of sphericity
Contrasts orthogonal to
~1
data: SSD matrix from lm(formula = reacttime ~ 1)
W = 0.0311, p-value = 0.04765
>
> ### tests using intra-subject 3x2 design
> idata <- data.frame(deg = gl(3, 1, 6, labels = c(0,4,8)),
+ noise = gl(2, 3, 6, labels = c("A","P")))
> mauchly.test(mlmfit, X = ~ deg + noise, idata = idata)
Mauchly's test of sphericity
Contrasts orthogonal to
~deg + noise
data: SSD matrix from lm(formula = reacttime ~ 1)
W = 0.8938, p-value = 0.6381
> mauchly.test(mlmfit, M = ~ deg + noise, X = ~ noise, idata = idata)
Mauchly's test of sphericity
Contrasts orthogonal to
~noise
Contrasts spanned by
~deg + noise
data: SSD matrix from lm(formula = reacttime ~ 1)
W = 0.9601, p-value = 0.8497
>
>
>
> cleanEx()
> nameEx("mcnemar.test")
> ### * mcnemar.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: mcnemar.test
> ### Title: McNemar's Chi-squared Test for Count Data
> ### Aliases: mcnemar.test
> ### Keywords: htest
>
> ### ** Examples
>
> ## Agresti (1990), p. 350.
> ## Presidential Approval Ratings.
> ## Approval of the President's performance in office in two surveys,
> ## one month apart, for a random sample of 1600 voting-age Americans.
> Performance <-
+ matrix(c(794, 86, 150, 570),
+ nrow = 2,
+ dimnames = list("1st Survey" = c("Approve", "Disapprove"),
+ "2nd Survey" = c("Approve", "Disapprove")))
> Performance
2nd Survey
1st Survey Approve Disapprove
Approve 794 150
Disapprove 86 570
> mcnemar.test(Performance)
McNemar's Chi-squared test with continuity correction
data: Performance
McNemar's chi-squared = 16.8178, df = 1, p-value = 4.115e-05
> ## => significant change (in fact, drop) in approval ratings
>
>
>
> cleanEx()
> nameEx("median")
> ### * median
>
> flush(stderr()); flush(stdout())
>
> ### Name: median
> ### Title: Median Value
> ### Aliases: median median.default
> ### Keywords: univar robust
>
> ### ** Examples
>
> median(1:4) # = 2.5 [even number]
[1] 2.5
> median(c(1:3, 100, 1000)) # = 3 [odd, robust]
[1] 3
>
>
>
> cleanEx()
> nameEx("medpolish")
> ### * medpolish
>
> flush(stderr()); flush(stdout())
>
> ### Name: medpolish
> ### Title: Median Polish of a Matrix
> ### Aliases: medpolish
> ### Keywords: robust
>
> ### ** Examples
>
> require(graphics)
>
> ## Deaths from sport parachuting; from ABC of EDA, p.224:
> deaths <-
+ rbind(c(14,15,14),
+ c( 7, 4, 7),
+ c( 8, 2,10),
+ c(15, 9,10),
+ c( 0, 2, 0))
> dimnames(deaths) <- list(c("1-24", "25-74", "75-199", "200++", "NA"),
+ paste(1973:1975))
> deaths
1973 1974 1975
1-24 14 15 14
25-74 7 4 7
75-199 8 2 10
200++ 15 9 10
NA 0 2 0
> (med.d <- medpolish(deaths))
1: 19
Final: 19
Median Polish Results (Dataset: "deaths")
Overall: 8
Row Effects:
1-24 25-74 75-199 200++ NA
6 -1 0 2 -8
Column Effects:
1973 1974 1975
0 -1 0
Residuals:
1973 1974 1975
1-24 0 2 0
25-74 0 -2 0
75-199 0 -5 2
200++ 5 0 0
NA 0 3 0
> plot(med.d)
> ## Check decomposition:
> all(deaths ==
+ med.d$overall + outer(med.d$row,med.d$col, "+") + med.d$residuals)
[1] TRUE
>
>
>
> cleanEx()
> nameEx("model.extract")
> ### * model.extract
>
> flush(stderr()); flush(stdout())
>
> ### Name: model.extract
> ### Title: Extract Components from a Model Frame
> ### Aliases: model.extract model.offset model.response model.weights
> ### Keywords: manip programming models
>
> ### ** Examples
>
> a <- model.frame(cbind(ncases,ncontrols) ~ agegp + tobgp + alcgp, data = esoph)
> model.extract(a, "response")
ncases ncontrols
1 0 40
2 0 10
3 0 6
4 0 5
5 0 27
6 0 7
7 0 4
8 0 7
9 0 2
10 0 1
11 0 2
12 0 1
13 1 1
14 0 1
15 0 2
16 0 60
17 1 14
18 0 7
19 0 8
20 0 35
21 3 23
22 1 14
23 0 8
24 0 11
25 0 6
26 0 2
27 0 1
28 2 3
29 0 3
30 2 4
31 1 46
32 0 18
33 0 10
34 0 4
35 6 38
36 4 21
37 5 15
38 5 7
39 3 16
40 6 14
41 1 5
42 2 4
43 4 4
44 3 4
45 2 3
46 4 4
47 2 49
48 3 22
49 3 12
50 4 6
51 9 40
52 6 21
53 4 17
54 3 6
55 9 18
56 8 15
57 3 6
58 4 4
59 5 10
60 6 7
61 2 3
62 5 6
63 5 48
64 4 14
65 2 7
66 0 2
67 17 34
68 3 10
69 5 9
70 6 13
71 4 12
72 2 3
73 1 1
74 3 4
75 1 2
76 1 1
77 1 1
78 1 18
79 2 6
80 1 3
81 2 5
82 1 3
83 0 3
84 1 1
85 1 1
86 1 1
87 2 2
88 1 1
> stopifnot(model.extract(a, "response") == model.response(a))
>
> a <- model.frame(ncases/(ncases+ncontrols) ~ agegp + tobgp + alcgp,
+ data = esoph, weights = ncases+ncontrols)
> model.response(a)
1 2 3 4 5 6 7
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
8 9 10 11 12 13 14
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.50000000 0.00000000
15 16 17 18 19 20 21
0.00000000 0.00000000 0.06666667 0.00000000 0.00000000 0.00000000 0.11538462
22 23 24 25 26 27 28
0.06666667 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.40000000
29 30 31 32 33 34 35
0.00000000 0.33333333 0.02127660 0.00000000 0.00000000 0.00000000 0.13636364
36 37 38 39 40 41 42
0.16000000 0.25000000 0.41666667 0.15789474 0.30000000 0.16666667 0.33333333
43 44 45 46 47 48 49
0.50000000 0.42857143 0.40000000 0.50000000 0.03921569 0.12000000 0.20000000
50 51 52 53 54 55 56
0.40000000 0.18367347 0.22222222 0.19047619 0.33333333 0.33333333 0.34782609
57 58 59 60 61 62 63
0.33333333 0.50000000 0.33333333 0.46153846 0.40000000 0.45454545 0.09433962
64 65 66 67 68 69 70
0.22222222 0.22222222 0.00000000 0.33333333 0.23076923 0.35714286 0.31578947
71 72 73 74 75 76 77
0.25000000 0.40000000 0.50000000 0.42857143 0.33333333 0.50000000 0.50000000
78 79 80 81 82 83 84
0.05263158 0.25000000 0.25000000 0.28571429 0.25000000 0.00000000 0.50000000
85 86 87 88
0.50000000 0.50000000 0.50000000 0.50000000
> model.extract(a, "weights")
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
40 10 6 5 27 7 4 7 2 1 2 1 2 1 2 60 15 7 8 35 26 15 8 11 6 2
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
1 5 3 6 47 18 10 4 44 25 20 12 19 20 6 6 8 7 5 8 51 25 15 10 49 27
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
21 9 27 23 9 8 15 13 5 11 53 18 9 2 51 13 14 19 16 5 2 7 3 2 2 19
79 80 81 82 83 84 85 86 87 88
8 4 7 4 3 2 2 2 4 2
>
> a <- model.frame(cbind(ncases,ncontrols) ~ agegp,
+ something = tobgp, data = esoph)
> names(a)
[1] "cbind(ncases, ncontrols)" "agegp"
[3] "(something)"
> stopifnot(model.extract(a, "something") == esoph$tobgp)
>
>
>
> cleanEx()
> nameEx("model.frame")
> ### * model.frame
>
> flush(stderr()); flush(stdout())
>
> ### Name: model.frame
> ### Title: Extracting the Model Frame from a Formula or Fit
> ### Aliases: model.frame model.frame.default model.frame.lm model.frame.glm
> ### model.frame.aovlist get_all_vars
> ### Keywords: models
>
> ### ** Examples
>
> data.class(model.frame(dist ~ speed, data = cars))
[1] "data.frame"
>
>
>
> cleanEx()
> nameEx("model.matrix")
> ### * model.matrix
>
> flush(stderr()); flush(stdout())
>
> ### Name: model.matrix
> ### Title: Construct Design Matrices
> ### Aliases: model.matrix model.matrix.default model.matrix.lm
> ### Keywords: models
>
> ### ** Examples
>
> ff <- log(Volume) ~ log(Height) + log(Girth)
> utils::str(m <- model.frame(ff, trees))
'data.frame': 31 obs. of 3 variables:
$ log(Volume): num 2.33 2.33 2.32 2.8 2.93 ...
$ log(Height): num 4.25 4.17 4.14 4.28 4.39 ...
$ log(Girth) : num 2.12 2.15 2.17 2.35 2.37 ...
- attr(*, "terms")=Classes 'terms', 'formula' length 3 log(Volume) ~ log(Height) + log(Girth)
.. ..- attr(*, "variables")= language list(log(Volume), log(Height), log(Girth))
.. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:3] "log(Volume)" "log(Height)" "log(Girth)"
.. .. .. ..$ : chr [1:2] "log(Height)" "log(Girth)"
.. ..- attr(*, "term.labels")= chr [1:2] "log(Height)" "log(Girth)"
.. ..- attr(*, "order")= int [1:2] 1 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. ..- attr(*, "predvars")= language list(log(Volume), log(Height), log(Girth))
.. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric" "numeric"
.. .. ..- attr(*, "names")= chr [1:3] "log(Volume)" "log(Height)" "log(Girth)"
> mat <- model.matrix(ff, m)
>
> dd <- data.frame(a = gl(3,4), b = gl(4,1,12)) # balanced 2-way
> options("contrasts")
$contrasts
unordered ordered
"contr.treatment" "contr.poly"
> model.matrix(~ a + b, dd)
(Intercept) a2 a3 b2 b3 b4
1 1 0 0 0 0 0
2 1 0 0 1 0 0
3 1 0 0 0 1 0
4 1 0 0 0 0 1
5 1 1 0 0 0 0
6 1 1 0 1 0 0
7 1 1 0 0 1 0
8 1 1 0 0 0 1
9 1 0 1 0 0 0
10 1 0 1 1 0 0
11 1 0 1 0 1 0
12 1 0 1 0 0 1
attr(,"assign")
[1] 0 1 1 2 2 2
attr(,"contrasts")
attr(,"contrasts")$a
[1] "contr.treatment"
attr(,"contrasts")$b
[1] "contr.treatment"
> model.matrix(~ a + b, dd, contrasts = list(a = "contr.sum"))
(Intercept) a1 a2 b2 b3 b4
1 1 1 0 0 0 0
2 1 1 0 1 0 0
3 1 1 0 0 1 0
4 1 1 0 0 0 1
5 1 0 1 0 0 0
6 1 0 1 1 0 0
7 1 0 1 0 1 0
8 1 0 1 0 0 1
9 1 -1 -1 0 0 0
10 1 -1 -1 1 0 0
11 1 -1 -1 0 1 0
12 1 -1 -1 0 0 1
attr(,"assign")
[1] 0 1 1 2 2 2
attr(,"contrasts")
attr(,"contrasts")$a
[1] "contr.sum"
attr(,"contrasts")$b
[1] "contr.treatment"
> model.matrix(~ a + b, dd, contrasts = list(a = "contr.sum", b = "contr.poly"))
(Intercept) a1 a2 b.L b.Q b.C
1 1 1 0 -0.6708204 0.5 -0.2236068
2 1 1 0 -0.2236068 -0.5 0.6708204
3 1 1 0 0.2236068 -0.5 -0.6708204
4 1 1 0 0.6708204 0.5 0.2236068
5 1 0 1 -0.6708204 0.5 -0.2236068
6 1 0 1 -0.2236068 -0.5 0.6708204
7 1 0 1 0.2236068 -0.5 -0.6708204
8 1 0 1 0.6708204 0.5 0.2236068
9 1 -1 -1 -0.6708204 0.5 -0.2236068
10 1 -1 -1 -0.2236068 -0.5 0.6708204
11 1 -1 -1 0.2236068 -0.5 -0.6708204
12 1 -1 -1 0.6708204 0.5 0.2236068
attr(,"assign")
[1] 0 1 1 2 2 2
attr(,"contrasts")
attr(,"contrasts")$a
[1] "contr.sum"
attr(,"contrasts")$b
[1] "contr.poly"
> m.orth <- model.matrix(~a+b, dd, contrasts = list(a = "contr.helmert"))
> crossprod(m.orth) # m.orth is ALMOST orthogonal
(Intercept) a1 a2 b2 b3 b4
(Intercept) 12 0 0 3 3 3
a1 0 8 0 0 0 0
a2 0 0 24 0 0 0
b2 3 0 0 3 0 0
b3 3 0 0 0 3 0
b4 3 0 0 0 0 3
>
>
>
> cleanEx()
> nameEx("model.tables")
> ### * model.tables
>
> flush(stderr()); flush(stdout())
>
> ### Name: model.tables
> ### Title: Compute Tables of Results from an Aov Model Fit
> ### Aliases: model.tables model.tables.aov model.tables.aovlist
> ### Keywords: models
>
> ### ** Examples
>
>
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> cleanEx()
> nameEx("monthplot")
> ### * monthplot
>
> flush(stderr()); flush(stdout())
>
> ### Name: monthplot
> ### Title: Plot a Seasonal or other Subseries from a Time Series
> ### Aliases: monthplot monthplot.default monthplot.ts monthplot.stl
> ### monthplot.StructTS
> ### Keywords: hplot ts
>
> ### ** Examples
>
> require(graphics)
>
> ## The CO2 data
> fit <- stl(log(co2), s.window = 20, t.window = 20)
> plot(fit)
> op <- par(mfrow = c(2,2))
> monthplot(co2, ylab = "data", cex.axis = 0.8)
> monthplot(fit, choice = "seasonal", cex.axis = 0.8)
> monthplot(fit, choice = "trend", cex.axis = 0.8)
> monthplot(fit, choice = "remainder", type = "h", cex.axis = 0.8)
> par(op)
>
> ## The CO2 data, grouped quarterly
> quarter <- (cycle(co2) - 1) %/% 3
> monthplot(co2, phase = quarter)
>
> ## see also JohnsonJohnson
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("mood.test")
> ### * mood.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: mood.test
> ### Title: Mood Two-Sample Test of Scale
> ### Aliases: mood.test mood.test.default mood.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> ## Same data as for the Ansari-Bradley test:
> ## Serum iron determination using Hyland control sera
> ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
+ 101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
> jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,
+ 100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)
> mood.test(ramsay, jung.parekh)
Mood two-sample test of scale
data: ramsay and jung.parekh
Z = 1.0371, p-value = 0.2997
alternative hypothesis: two.sided
> ## Compare this to ansari.test(ramsay, jung.parekh)
>
>
>
> cleanEx()
> nameEx("na.action")
> ### * na.action
>
> flush(stderr()); flush(stdout())
>
> ### Name: na.action
> ### Title: NA Action
> ### Aliases: na.action na.action.default
> ### Keywords: NA methods
>
> ### ** Examples
>
> na.action(na.omit(c(1, NA)))
[1] 2
attr(,"class")
[1] "omit"
>
>
>
> cleanEx()
> nameEx("na.contiguous")
> ### * na.contiguous
>
> flush(stderr()); flush(stdout())
>
> ### Name: na.contiguous
> ### Title: Find Longest Contiguous Stretch of non-NAs
> ### Aliases: na.contiguous na.contiguous.default
> ### Keywords: ts
>
> ### ** Examples
>
> na.contiguous(presidents)
Qtr1 Qtr2 Qtr3 Qtr4
1952 32
1953 59 74 75 60
1954 71 61 71 57
1955 71 68 79 73
1956 76 71 67 75
1957 79 62 63 57
1958 60 49 48 52
1959 57 62 61 66
1960 71 62 61 57
1961 72 83 71 78
1962 79 71 62 74
1963 76 64 62 57
1964 80 73 69 69
1965 71 64 69 62
1966 63 46 56 44
1967 44 52 38 46
1968 36 49 35 44
1969 59 65 65 56
1970 66 53 61 52
1971 51 48 54 49
1972 49 61
>
>
>
> cleanEx()
> nameEx("na.fail")
> ### * na.fail
>
> flush(stderr()); flush(stdout())
>
> ### Name: na.fail
> ### Title: Handle Missing Values in Objects
> ### Aliases: na.fail na.fail.default na.omit na.omit.data.frame
> ### na.omit.default na.exclude na.exclude.data.frame na.exclude.default
> ### na.pass
> ### Keywords: NA
>
> ### ** Examples
>
> DF <- data.frame(x = c(1, 2, 3), y = c(0, 10, NA))
> na.omit(DF)
x y
1 1 0
2 2 10
> m <- as.matrix(DF)
> na.omit(m)
x y
[1,] 1 0
[2,] 2 10
attr(,"na.action")
[1] 3
attr(,"class")
[1] "omit"
> stopifnot(all(na.omit(1:3) == 1:3)) # does not affect objects with no NA's
> try(na.fail(DF)) #> Error: missing values in ...
Error in na.fail.default(DF) : missing values in object
>
> options("na.action")
$na.action
[1] "na.omit"
>
>
>
> cleanEx()
> nameEx("nextn")
> ### * nextn
>
> flush(stderr()); flush(stdout())
>
> ### Name: nextn
> ### Title: Highly Composite Numbers
> ### Aliases: nextn
> ### Keywords: math
>
> ### ** Examples
>
> nextn(1001) # 1024
[1] 1024
> table(sapply(599:630, nextn))
600 625 640
2 25 5
>
>
>
> cleanEx()
> nameEx("nlm")
> ### * nlm
>
> flush(stderr()); flush(stdout())
>
> ### Name: nlm
> ### Title: Non-Linear Minimization
> ### Aliases: nlm
> ### Keywords: nonlinear optimize
>
> ### ** Examples
>
> f <- function(x) sum((x-1:length(x))^2)
> nlm(f, c(10,10))
$minimum
[1] 4.303458e-26
$estimate
[1] 1 2
$gradient
[1] 2.757794e-13 -3.099743e-13
$code
[1] 1
$iterations
[1] 2
> nlm(f, c(10,10), print.level = 2)
iteration = 0
Step:
[1] 0 0
Parameter:
[1] 10 10
Function Value
[1] 145
Gradient:
[1] 18.00001 16.00001
iteration = 1
Step:
[1] -9 -8
Parameter:
[1] 1 2
Function Value
[1] 1.721748e-13
Gradient:
[1] 1.551336e-06 1.379735e-06
iteration = 2
Parameter:
[1] 1 2
Function Value
[1] 4.303458e-26
Gradient:
[1] 2.757794e-13 -3.099743e-13
Relative gradient close to zero.
Current iterate is probably solution.
$minimum
[1] 4.303458e-26
$estimate
[1] 1 2
$gradient
[1] 2.757794e-13 -3.099743e-13
$code
[1] 1
$iterations
[1] 2
> utils::str(nlm(f, c(5), hessian = TRUE))
List of 6
$ minimum : num 2.44e-24
$ estimate : num 1
$ gradient : num 1e-06
$ hessian : num [1, 1] 2
$ code : int 1
$ iterations: int 1
>
> f <- function(x, a) sum((x-a)^2)
> nlm(f, c(10,10), a = c(3,5))
$minimum
[1] 3.371781e-25
$estimate
[1] 3 5
$gradient
[1] 6.750156e-13 -9.450218e-13
$code
[1] 1
$iterations
[1] 2
> f <- function(x, a)
+ {
+ res <- sum((x-a)^2)
+ attr(res, "gradient") <- 2*(x-a)
+ res
+ }
> nlm(f, c(10,10), a = c(3,5))
$minimum
[1] 0
$estimate
[1] 3 5
$gradient
[1] 0 0
$code
[1] 1
$iterations
[1] 1
>
> ## more examples, including the use of derivatives.
> ## Not run: demo(nlm)
>
>
>
> cleanEx()
> nameEx("nlminb")
> ### * nlminb
>
> flush(stderr()); flush(stdout())
>
> ### Name: nlminb
> ### Title: Optimization using PORT routines
> ### Aliases: nlminb
> ### Keywords: optimize
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("nls")
> ### * nls
>
> flush(stderr()); flush(stdout())
>
> ### Name: nls
> ### Title: Nonlinear Least Squares
> ### Aliases: nls
> ### Keywords: nonlinear regression models
>
> ### ** Examples
>
> ## Don't show:
> od <- options(digits=5)
> ## End Don't show
> require(graphics)
>
> DNase1 <- subset(DNase, Run == 1)
>
> ## using a selfStart model
> fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)
> summary(fm1DNase1)
Formula: density ~ SSlogis(log(conc), Asym, xmid, scal)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Asym 2.3452 0.0782 30.0 2.2e-13 ***
xmid 1.4831 0.0814 18.2 1.2e-10 ***
scal 1.0415 0.0323 32.3 8.5e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.0192 on 13 degrees of freedom
> ## the coefficients only:
> coef(fm1DNase1)
Asym xmid scal
2.3452 1.4831 1.0415
> ## including their SE, etc:
> coef(summary(fm1DNase1))
Estimate Std. Error t value Pr(>|t|)
Asym 2.3452 0.078154 30.007 2.1655e-13
xmid 1.4831 0.081353 18.230 1.2185e-10
scal 1.0415 0.032271 32.272 8.5069e-14
>
> ## using conditional linearity
> fm2DNase1 <- nls(density ~ 1/(1 + exp((xmid - log(conc))/scal)),
+ data = DNase1,
+ start = list(xmid = 0, scal = 1),
+ algorithm = "plinear")
> summary(fm2DNase1)
Formula: density ~ 1/(1 + exp((xmid - log(conc))/scal))
Parameters:
Estimate Std. Error t value Pr(>|t|)
xmid 1.4831 0.0814 18.2 1.2e-10 ***
scal 1.0415 0.0323 32.3 8.5e-14 ***
.lin 2.3452 0.0782 30.0 2.2e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.0192 on 13 degrees of freedom
>
> ## without conditional linearity
> fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
+ data = DNase1,
+ start = list(Asym = 3, xmid = 0, scal = 1))
> summary(fm3DNase1)
Formula: density ~ Asym/(1 + exp((xmid - log(conc))/scal))
Parameters:
Estimate Std. Error t value Pr(>|t|)
Asym 2.3452 0.0782 30.0 2.2e-13 ***
xmid 1.4831 0.0814 18.2 1.2e-10 ***
scal 1.0415 0.0323 32.3 8.5e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.0192 on 13 degrees of freedom
>
> ## using Port's nl2sol algorithm
> fm4DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
+ data = DNase1,
+ start = list(Asym = 3, xmid = 0, scal = 1),
+ algorithm = "port")
> summary(fm4DNase1)
Formula: density ~ Asym/(1 + exp((xmid - log(conc))/scal))
Parameters:
Estimate Std. Error t value Pr(>|t|)
Asym 2.3452 0.0782 30.0 2.2e-13 ***
xmid 1.4831 0.0814 18.2 1.2e-10 ***
scal 1.0415 0.0323 32.3 8.5e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.0192 on 13 degrees of freedom
Algorithm "port", convergence message: relative convergence (4)
>
> ## weighted nonlinear regression
> Treated <- Puromycin[Puromycin$state == "treated", ]
> weighted.MM <- function(resp, conc, Vm, K)
+ {
+ ## Purpose: exactly as white book p. 451 -- RHS for nls()
+ ## Weighted version of Michaelis-Menten model
+ ## ----------------------------------------------------------
+ ## Arguments: 'y', 'x' and the two parameters (see book)
+ ## ----------------------------------------------------------
+ ## Author: Martin Maechler, Date: 23 Mar 2001
+
+ pred <- (Vm * conc)/(K + conc)
+ (resp - pred) / sqrt(pred)
+ }
>
> Pur.wt <- nls( ~ weighted.MM(rate, conc, Vm, K), data = Treated,
+ start = list(Vm = 200, K = 0.1))
> summary(Pur.wt)
Formula: 0 ~ weighted.MM(rate, conc, Vm, K)
Parameters:
Estimate Std. Error t value Pr(>|t|)
Vm 2.07e+02 9.22e+00 22.42 7.0e-10 ***
K 5.46e-02 7.98e-03 6.84 4.5e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.21 on 10 degrees of freedom
>
> ## Passing arguments using a list that can not be coerced to a data.frame
> lisTreat <- with(Treated,
+ list(conc1 = conc[1], conc.1 = conc[-1], rate = rate))
>
> weighted.MM1 <- function(resp, conc1, conc.1, Vm, K)
+ {
+ conc <- c(conc1, conc.1)
+ pred <- (Vm * conc)/(K + conc)
+ (resp - pred) / sqrt(pred)
+ }
> Pur.wt1 <- nls( ~ weighted.MM1(rate, conc1, conc.1, Vm, K),
+ data = lisTreat, start = list(Vm = 200, K = 0.1))
> stopifnot(all.equal(coef(Pur.wt), coef(Pur.wt1)))
>
> ## Chambers and Hastie (1992) Statistical Models in S (p. 537):
> ## If the value of the right side [of formula] has an attribute called
> ## 'gradient' this should be a matrix with the number of rows equal
> ## to the length of the response and one column for each parameter.
>
> weighted.MM.grad <- function(resp, conc1, conc.1, Vm, K)
+ {
+ conc <- c(conc1, conc.1)
+
+ K.conc <- K+conc
+ dy.dV <- conc/K.conc
+ dy.dK <- -Vm*dy.dV/K.conc
+ pred <- Vm*dy.dV
+ pred.5 <- sqrt(pred)
+ dev <- (resp - pred) / pred.5
+ Ddev <- -0.5*(resp+pred)/(pred.5*pred)
+ attr(dev, "gradient") <- Ddev * cbind(Vm = dy.dV, K = dy.dK)
+ dev
+ }
>
> Pur.wt.grad <- nls( ~ weighted.MM.grad(rate, conc1, conc.1, Vm, K),
+ data = lisTreat, start = list(Vm = 200, K = 0.1))
>
> rbind(coef(Pur.wt), coef(Pur.wt1), coef(Pur.wt.grad))
Vm K
[1,] 206.83 0.054611
[2,] 206.83 0.054611
[3,] 206.83 0.054611
>
> ## In this example, there seems no advantage to providing the gradient.
> ## In other cases, there might be.
>
>
> ## The two examples below show that you can fit a model to
> ## artificial data with noise but not to artificial data
> ## without noise.
> x <- 1:10
> y <- 2*x + 3 # perfect fit
> yeps <- y + rnorm(length(y), sd = 0.01) # added noise
> nls(yeps ~ a + b*x, start = list(a = 0.12345, b = 0.54321))
Nonlinear regression model
model: yeps ~ a + b * x
data: parent.frame()
a b
3 2
residual sum-of-squares: 0.000524
> ## terminates in an error, because convergence cannot be confirmed:
> try(nls(y ~ a + b*x, start = list(a = 0.12345, b = 0.54321)))
Error in nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321)) :
number of iterations exceeded maximum of 50
>
> ## the nls() internal cheap guess for starting values can be sufficient:
>
> x <- -(1:100)/10
> y <- 100 + 10 * exp(x / 2) + rnorm(x)/10
> nlmod <- nls(y ~ Const + A * exp(B * x))
Warning in nls(y ~ Const + A * exp(B * x)) :
No starting values specified for some parameters.
Initializing ‘Const’, ‘A’, ‘B’ to '1.'.
Consider specifying 'start' or using a selfStart model
>
> plot(x,y, main = "nls(*), data, true function and fit, n=100")
> curve(100 + 10 * exp(x / 2), col = 4, add = TRUE)
> lines(x, predict(nlmod), col = 2)
>
>
> ## Don't show:
> options(od)
> ## End Don't show
>
>
>
> cleanEx()
> nameEx("nls.control")
> ### * nls.control
>
> flush(stderr()); flush(stdout())
>
> ### Name: nls.control
> ### Title: Control the Iterations in nls
> ### Aliases: nls.control
> ### Keywords: nonlinear regression models
>
> ### ** Examples
>
> nls.control(minFactor = 1/2048)
$maxiter
[1] 50
$tol
[1] 1e-05
$minFactor
[1] 0.0004882812
$printEval
[1] FALSE
$warnOnly
[1] FALSE
>
>
>
> cleanEx()
> nameEx("numericDeriv")
> ### * numericDeriv
>
> flush(stderr()); flush(stdout())
>
> ### Name: numericDeriv
> ### Title: Evaluate Derivatives Numerically
> ### Aliases: numericDeriv
> ### Keywords: models
>
> ### ** Examples
>
> ## Don't show:
> od <- options(digits = 4)
> ## End Don't show
> myenv <- new.env()
> assign("mean", 0., envir = myenv)
> assign("sd", 1., envir = myenv)
> assign("x", seq(-3., 3., len = 31), envir = myenv)
> numericDeriv(quote(pnorm(x, mean, sd)), c("mean", "sd"), myenv)
[1] 0.001350 0.002555 0.004661 0.008198 0.013903 0.022750 0.035930 0.054799
[9] 0.080757 0.115070 0.158655 0.211855 0.274253 0.344578 0.420740 0.500000
[17] 0.579260 0.655422 0.725747 0.788145 0.841345 0.884930 0.919243 0.945201
[25] 0.964070 0.977250 0.986097 0.991802 0.995339 0.997445 0.998650
attr(,"gradient")
[,1] [,2]
[1,] -0.004432 0.01330
[2,] -0.007915 0.02216
[3,] -0.013583 0.03532
[4,] -0.022395 0.05375
[5,] -0.035475 0.07804
[6,] -0.053991 0.10798
[7,] -0.078950 0.14211
[8,] -0.110921 0.17747
[9,] -0.149727 0.20962
[10,] -0.194186 0.23302
[11,] -0.241971 0.24197
[12,] -0.289692 0.23175
[13,] -0.333225 0.19993
[14,] -0.368270 0.14731
[15,] -0.391043 0.07821
[16,] -0.398942 0.00000
[17,] -0.391043 -0.07821
[18,] -0.368270 -0.14731
[19,] -0.333225 -0.19993
[20,] -0.289692 -0.23175
[21,] -0.241971 -0.24197
[22,] -0.194186 -0.23302
[23,] -0.149727 -0.20962
[24,] -0.110921 -0.17747
[25,] -0.078950 -0.14211
[26,] -0.053991 -0.10798
[27,] -0.035475 -0.07804
[28,] -0.022395 -0.05375
[29,] -0.013583 -0.03532
[30,] -0.007915 -0.02216
[31,] -0.004432 -0.01330
> ## Don't show:
> options(od)
> ## End Don't show
>
>
>
> cleanEx()
> nameEx("oneway.test")
> ### * oneway.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: oneway.test
> ### Title: Test for Equal Means in a One-Way Layout
> ### Aliases: oneway.test
> ### Keywords: htest
>
> ### ** Examples
>
> ## Not assuming equal variances
> oneway.test(extra ~ group, data = sleep)
One-way analysis of means (not assuming equal variances)
data: extra and group
F = 3.4626, num df = 1.000, denom df = 17.776, p-value = 0.07939
> ## Assuming equal variances
> oneway.test(extra ~ group, data = sleep, var.equal = TRUE)
One-way analysis of means
data: extra and group
F = 3.4626, num df = 1, denom df = 18, p-value = 0.07919
> ## which gives the same result as
> anova(lm(extra ~ group, data = sleep))
Analysis of Variance Table
Response: extra
Df Sum Sq Mean Sq F value Pr(>F)
group 1 12.482 12.4820 3.4626 0.07919 .
Residuals 18 64.886 3.6048
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
>
>
> cleanEx()
> nameEx("optim")
> ### * optim
>
> flush(stderr()); flush(stdout())
>
> ### Name: optim
> ### Title: General-purpose Optimization
> ### Aliases: optim optimHess
> ### Keywords: nonlinear optimize
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("optimize")
> ### * optimize
>
> flush(stderr()); flush(stdout())
>
> ### Name: optimize
> ### Title: One Dimensional Optimization
> ### Aliases: optimize optimise
> ### Keywords: optimize
>
> ### ** Examples
>
> require(graphics)
>
> f <- function (x, a) (x - a)^2
> xmin <- optimize(f, c(0, 1), tol = 0.0001, a = 1/3)
> xmin
$minimum
[1] 0.3333333
$objective
[1] 0
>
> ## See where the function is evaluated:
> optimize(function(x) x^2*(print(x)-1), lower = 0, upper = 10)
[1] 3.81966
[1] 6.18034
[1] 2.36068
[1] 2.077939
[1] 1.505823
[1] 0.9306496
[1] 0.9196752
[1] 0.772905
[1] 0.4776816
[1] 0.6491436
[1] 0.656315
[1] 0.6653777
[1] 0.6667786
[1] 0.6666728
[1] 0.6666321
[1] 0.6667135
[1] 0.6666728
$minimum
[1] 0.6666728
$objective
[1] -0.1481481
>
> ## "wrong" solution with unlucky interval and piecewise constant f():
> f <- function(x) ifelse(x > -1, ifelse(x < 4, exp(-1/abs(x - 1)), 10), 10)
> fp <- function(x) { print(x); f(x) }
>
> plot(f, -2,5, ylim = 0:1, col = 2)
> optimize(fp, c(-4, 20)) # doesn't see the minimum
[1] 5.167184
[1] 10.83282
[1] 14.33437
[1] 16.49845
[1] 17.83592
[1] 18.66253
[1] 19.1734
[1] 19.48913
[1] 19.68427
[1] 19.80487
[1] 19.8794
[1] 19.92547
[1] 19.95393
[1] 19.97153
[1] 19.9824
[1] 19.98913
[1] 19.99328
[1] 19.99585
[1] 19.99743
[1] 19.99841
[1] 19.99902
[1] 19.99939
[1] 19.99963
[1] 19.99977
[1] 19.99986
[1] 19.99991
[1] 19.99995
[1] 19.99995
$minimum
[1] 19.99995
$objective
[1] 10
> optimize(fp, c(-7, 20)) # ok
[1] 3.313082
[1] 9.686918
[1] -0.6261646
[1] 1.244956
[1] 1.250965
[1] 0.771827
[1] 0.2378417
[1] 1.000451
[1] 0.9906964
[1] 0.9955736
[1] 0.9980122
[1] 0.9992315
[1] 0.9998411
[1] 0.9996083
[1] 0.9994644
[1] 0.9993754
[1] 0.9993204
[1] 0.9992797
[1] 0.9992797
$minimum
[1] 0.9992797
$objective
[1] 0
>
>
>
> cleanEx()
> nameEx("order.dendrogram")
> ### * order.dendrogram
>
> flush(stderr()); flush(stdout())
>
> ### Name: order.dendrogram
> ### Title: Ordering or Labels of the Leaves in a Dendrogram
> ### Aliases: order.dendrogram labels.dendrogram
> ### Keywords: manip
>
> ### ** Examples
>
> set.seed(123)
> x <- rnorm(10)
> hc <- hclust(dist(x))
> hc$order
[1] 3 6 7 2 4 5 8 9 1 10
> dd <- as.dendrogram(hc)
> order.dendrogram(dd) ## the same :
[1] 3 6 7 2 4 5 8 9 1 10
> stopifnot(hc$order == order.dendrogram(dd))
>
> d2 <- as.dendrogram(hclust(dist(USArrests)))
> labels(d2) ## in this case the same as
[1] "Florida" "North Carolina" "Delaware" "Alabama"
[5] "Louisiana" "Alaska" "Mississippi" "South Carolina"
[9] "Maryland" "Arizona" "New Mexico" "California"
[13] "Illinois" "New York" "Michigan" "Nevada"
[17] "Missouri" "Arkansas" "Tennessee" "Georgia"
[21] "Colorado" "Texas" "Rhode Island" "Wyoming"
[25] "Oregon" "Oklahoma" "Virginia" "Washington"
[29] "Massachusetts" "New Jersey" "Ohio" "Utah"
[33] "Connecticut" "Pennsylvania" "Nebraska" "Kentucky"
[37] "Montana" "Idaho" "Indiana" "Kansas"
[41] "Hawaii" "Minnesota" "Wisconsin" "Iowa"
[45] "New Hampshire" "West Virginia" "Maine" "South Dakota"
[49] "North Dakota" "Vermont"
> stopifnot(identical(labels(d2),
+ rownames(USArrests)[order.dendrogram(d2)]))
>
>
>
> cleanEx()
> nameEx("p.adjust")
> ### * p.adjust
>
> flush(stderr()); flush(stdout())
>
> ### Name: p.adjust
> ### Title: Adjust P-values for Multiple Comparisons
> ### Aliases: p.adjust p.adjust.methods
> ### Keywords: htest
>
> ### ** Examples
>
> require(graphics)
>
> set.seed(123)
> x <- rnorm(50, mean = c(rep(0, 25), rep(3, 25)))
> p <- 2*pnorm(sort(-abs(x)))
>
> round(p, 3)
[1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002
[13] 0.003 0.004 0.005 0.007 0.007 0.009 0.009 0.011 0.021 0.049 0.061 0.063
[25] 0.074 0.083 0.086 0.119 0.189 0.206 0.221 0.286 0.305 0.466 0.483 0.492
[37] 0.532 0.575 0.578 0.619 0.636 0.645 0.656 0.689 0.719 0.818 0.827 0.897
[49] 0.912 0.944
> round(p.adjust(p), 3)
[1] 0.000 0.001 0.001 0.005 0.005 0.006 0.006 0.007 0.009 0.016 0.024 0.063
[13] 0.125 0.131 0.189 0.239 0.240 0.291 0.301 0.350 0.635 1.000 1.000 1.000
[25] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[37] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[49] 1.000 1.000
> round(p.adjust(p, "BH"), 3)
[1] 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.007
[13] 0.013 0.013 0.017 0.021 0.021 0.024 0.025 0.028 0.050 0.112 0.130 0.130
[25] 0.148 0.159 0.160 0.213 0.326 0.343 0.356 0.446 0.462 0.684 0.684 0.684
[37] 0.719 0.741 0.741 0.763 0.763 0.763 0.763 0.782 0.799 0.880 0.880 0.930
[49] 0.930 0.944
>
> ## or all of them at once (dropping the "fdr" alias):
> p.adjust.M <- p.adjust.methods[p.adjust.methods != "fdr"]
> p.adj <- sapply(p.adjust.M, function(meth) p.adjust(p, meth))
> p.adj.60 <- sapply(p.adjust.M, function(meth) p.adjust(p, meth, n = 60))
> stopifnot(identical(p.adj[,"none"], p), p.adj <= p.adj.60)
> round(p.adj, 3)
holm hochberg hommel bonferroni BH BY none
[1,] 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[2,] 0.001 0.001 0.001 0.001 0.000 0.002 0.000
[3,] 0.001 0.001 0.001 0.001 0.000 0.002 0.000
[4,] 0.005 0.005 0.004 0.005 0.001 0.004 0.000
[5,] 0.005 0.005 0.005 0.005 0.001 0.004 0.000
[6,] 0.006 0.006 0.005 0.006 0.001 0.004 0.000
[7,] 0.006 0.006 0.006 0.007 0.001 0.004 0.000
[8,] 0.007 0.007 0.007 0.008 0.001 0.004 0.000
[9,] 0.009 0.009 0.009 0.011 0.001 0.006 0.000
[10,] 0.016 0.016 0.015 0.019 0.002 0.009 0.000
[11,] 0.024 0.024 0.024 0.031 0.003 0.013 0.001
[12,] 0.063 0.063 0.058 0.081 0.007 0.030 0.002
[13,] 0.125 0.125 0.109 0.165 0.013 0.057 0.003
[14,] 0.131 0.131 0.117 0.177 0.013 0.057 0.004
[15,] 0.189 0.189 0.168 0.262 0.017 0.079 0.005
[16,] 0.239 0.239 0.212 0.342 0.021 0.093 0.007
[17,] 0.240 0.240 0.219 0.353 0.021 0.093 0.007
[18,] 0.291 0.291 0.273 0.440 0.024 0.110 0.009
[19,] 0.301 0.301 0.291 0.470 0.025 0.111 0.009
[20,] 0.350 0.350 0.339 0.565 0.028 0.127 0.011
[21,] 0.635 0.635 0.571 1.000 0.050 0.227 0.021
[22,] 1.000 0.944 0.944 1.000 0.112 0.503 0.049
[23,] 1.000 0.944 0.944 1.000 0.130 0.587 0.061
[24,] 1.000 0.944 0.944 1.000 0.130 0.587 0.063
[25,] 1.000 0.944 0.944 1.000 0.148 0.665 0.074
[26,] 1.000 0.944 0.944 1.000 0.159 0.717 0.083
[27,] 1.000 0.944 0.944 1.000 0.160 0.719 0.086
[28,] 1.000 0.944 0.944 1.000 0.213 0.957 0.119
[29,] 1.000 0.944 0.944 1.000 0.326 1.000 0.189
[30,] 1.000 0.944 0.944 1.000 0.343 1.000 0.206
[31,] 1.000 0.944 0.944 1.000 0.356 1.000 0.221
[32,] 1.000 0.944 0.944 1.000 0.446 1.000 0.286
[33,] 1.000 0.944 0.944 1.000 0.462 1.000 0.305
[34,] 1.000 0.944 0.944 1.000 0.684 1.000 0.466
[35,] 1.000 0.944 0.944 1.000 0.684 1.000 0.483
[36,] 1.000 0.944 0.944 1.000 0.684 1.000 0.492
[37,] 1.000 0.944 0.944 1.000 0.719 1.000 0.532
[38,] 1.000 0.944 0.944 1.000 0.741 1.000 0.575
[39,] 1.000 0.944 0.944 1.000 0.741 1.000 0.578
[40,] 1.000 0.944 0.944 1.000 0.763 1.000 0.619
[41,] 1.000 0.944 0.944 1.000 0.763 1.000 0.636
[42,] 1.000 0.944 0.944 1.000 0.763 1.000 0.645
[43,] 1.000 0.944 0.944 1.000 0.763 1.000 0.656
[44,] 1.000 0.944 0.944 1.000 0.782 1.000 0.689
[45,] 1.000 0.944 0.944 1.000 0.799 1.000 0.719
[46,] 1.000 0.944 0.944 1.000 0.880 1.000 0.818
[47,] 1.000 0.944 0.944 1.000 0.880 1.000 0.827
[48,] 1.000 0.944 0.944 1.000 0.930 1.000 0.897
[49,] 1.000 0.944 0.944 1.000 0.930 1.000 0.912
[50,] 1.000 0.944 0.944 1.000 0.944 1.000 0.944
> ## or a bit nicer:
> noquote(apply(p.adj, 2, format.pval, digits = 3))
holm hochberg hommel bonferroni BH BY none
[1,] 1.18e-05 1.18e-05 1.18e-05 1.18e-05 1.18e-05 5.3e-05 2.35e-07
[2,] 0.00103 0.00103 0.00101 0.00105 0.000429 0.00193 2.10e-05
[3,] 0.00124 0.00124 0.00124 0.00129 0.000429 0.00193 2.58e-05
[4,] 0.00461 0.00461 0.00422 0.00491 0.000947 0.00426 9.81e-05
[5,] 0.00484 0.00484 0.00453 0.00526 0.000947 0.00426 0.000105
[6,] 0.00559 0.00559 0.00521 0.00621 0.000947 0.00426 0.000124
[7,] 0.00583 0.00583 0.00557 0.00663 0.000947 0.00426 0.000133
[8,] 0.00674 0.00674 0.00659 0.00784 0.000980 0.00441 0.000157
[9,] 0.00947 0.00947 0.00924 0.01127 0.001253 0.00564 0.000225
[10,] 0.01556 0.01556 0.01518 0.01898 0.001898 0.00854 0.000380
[11,] 0.02446 0.02446 0.02446 0.03057 0.002780 0.01251 0.000611
[12,] 0.06294 0.06294 0.05810 0.08070 0.006725 0.03026 0.001614
[13,] 0.12549 0.12549 0.10898 0.16512 0.012637 0.05686 0.003302
[14,] 0.13092 0.13092 0.11677 0.17692 0.012637 0.05686 0.003538
[15,] 0.18853 0.18853 0.16758 0.26185 0.017457 0.07854 0.005237
[16,] 0.23912 0.23912 0.21179 0.34160 0.020762 0.09341 0.006832
[17,] 0.24001 0.24001 0.21884 0.35296 0.020762 0.09341 0.007059
[18,] 0.29057 0.29057 0.27296 0.44026 0.024459 0.11004 0.008805
[19,] 0.30083 0.30083 0.29143 0.47005 0.024740 0.11131 0.009401
[20,] 0.35024 0.35024 0.33894 0.56490 0.028245 0.12708 0.011298
[21,] 0.63451 0.63451 0.57105 1.00000 0.050358 0.22657 0.021150
[22,] 1.00000 0.94379 0.94379 1.00000 0.111880 0.50337 0.049227
[23,] 1.00000 0.94379 0.94379 1.00000 0.130463 0.58698 0.060533
[24,] 1.00000 0.94379 0.94379 1.00000 0.130463 0.58698 0.062622
[25,] 1.00000 0.94379 0.94379 1.00000 0.147903 0.66545 0.073952
[26,] 1.00000 0.94379 0.94379 1.00000 0.159252 0.71651 0.082811
[27,] 1.00000 0.94379 0.94379 1.00000 0.159877 0.71932 0.086333
[28,] 1.00000 0.94379 0.94379 1.00000 0.212617 0.95661 0.119065
[29,] 1.00000 0.94379 0.94379 1.00000 0.325999 1.00000 0.189080
[30,] 1.00000 0.94379 0.94379 1.00000 0.343082 1.00000 0.205849
[31,] 1.00000 0.94379 0.94379 1.00000 0.356325 1.00000 0.220921
[32,] 1.00000 0.94379 0.94379 1.00000 0.446250 1.00000 0.285600
[33,] 1.00000 0.94379 0.94379 1.00000 0.461954 1.00000 0.304889
[34,] 1.00000 0.94379 0.94379 1.00000 0.683577 1.00000 0.466068
[35,] 1.00000 0.94379 0.94379 1.00000 0.683577 1.00000 0.483081
[36,] 1.00000 0.94379 0.94379 1.00000 0.683577 1.00000 0.492175
[37,] 1.00000 0.94379 0.94379 1.00000 0.718845 1.00000 0.531945
[38,] 1.00000 0.94379 0.94379 1.00000 0.741435 1.00000 0.575155
[39,] 1.00000 0.94379 0.94379 1.00000 0.741435 1.00000 0.578319
[40,] 1.00000 0.94379 0.94379 1.00000 0.762606 1.00000 0.618589
[41,] 1.00000 0.94379 0.94379 1.00000 0.762606 1.00000 0.636362
[42,] 1.00000 0.94379 0.94379 1.00000 0.762606 1.00000 0.644859
[43,] 1.00000 0.94379 0.94379 1.00000 0.762606 1.00000 0.655841
[44,] 1.00000 0.94379 0.94379 1.00000 0.782487 1.00000 0.688588
[45,] 1.00000 0.94379 0.94379 1.00000 0.798874 1.00000 0.718986
[46,] 1.00000 0.94379 0.94379 1.00000 0.880265 1.00000 0.817954
[47,] 1.00000 0.94379 0.94379 1.00000 0.880265 1.00000 0.827449
[48,] 1.00000 0.94379 0.94379 1.00000 0.930478 1.00000 0.897130
[49,] 1.00000 0.94379 0.94379 1.00000 0.930478 1.00000 0.911868
[50,] 1.00000 0.94379 0.94379 1.00000 0.943789 1.00000 0.943789
>
>
> ## and a graphic:
> matplot(p, p.adj, ylab="p.adjust(p, meth)", type = "l", asp = 1, lty = 1:6,
+ main = "P-value adjustments")
> legend(0.7, 0.6, p.adjust.M, col = 1:6, lty = 1:6)
>
> ## Can work with NA's:
> pN <- p; iN <- c(46, 47); pN[iN] <- NA
> pN.a <- sapply(p.adjust.M, function(meth) p.adjust(pN, meth))
> ## The smallest 20 P-values all affected by the NA's :
> round((pN.a / p.adj)[1:20, ] , 4)
holm hochberg hommel bonferroni BH BY none
[1,] 0.9600 0.9600 0.9600 0.96 0.96 0.9514 1
[2,] 0.9592 0.9592 0.9583 0.96 0.96 0.9514 1
[3,] 0.9583 0.9583 0.9583 0.96 0.96 0.9514 1
[4,] 0.9574 0.9574 0.9535 0.96 0.96 0.9514 1
[5,] 0.9565 0.9565 0.9535 0.96 0.96 0.9514 1
[6,] 0.9556 0.9556 0.9524 0.96 0.96 0.9514 1
[7,] 0.9545 0.9545 0.9524 0.96 0.96 0.9514 1
[8,] 0.9535 0.9535 0.9524 0.96 0.96 0.9514 1
[9,] 0.9524 0.9524 0.9512 0.96 0.96 0.9514 1
[10,] 0.9512 0.9512 0.9500 0.96 0.96 0.9514 1
[11,] 0.9500 0.9500 0.9500 0.96 0.96 0.9514 1
[12,] 0.9487 0.9487 0.9444 0.96 0.96 0.9514 1
[13,] 0.9474 0.9474 0.9394 0.96 0.96 0.9514 1
[14,] 0.9459 0.9459 0.9394 0.96 0.96 0.9514 1
[15,] 0.9444 0.9444 0.9375 0.96 0.96 0.9514 1
[16,] 0.9429 0.9429 0.9355 0.96 0.96 0.9514 1
[17,] 0.9412 0.9412 0.9355 0.96 0.96 0.9514 1
[18,] 0.9394 0.9394 0.9355 0.96 0.96 0.9514 1
[19,] 0.9375 0.9375 0.9355 0.96 0.96 0.9514 1
[20,] 0.9355 0.9355 0.9333 0.96 0.96 0.9514 1
>
>
>
> cleanEx()
> nameEx("pairwise.prop.test")
> ### * pairwise.prop.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: pairwise.prop.test
> ### Title: Pairwise comparisons for proportions
> ### Aliases: pairwise.prop.test
> ### Keywords: htest
>
> ### ** Examples
>
> smokers <- c( 83, 90, 129, 70 )
> patients <- c( 86, 93, 136, 82 )
> pairwise.prop.test(smokers, patients)
Warning in prop.test(x[c(i, j)], n[c(i, j)], ...) :
Chi-squared approximation may be incorrect
Warning in prop.test(x[c(i, j)], n[c(i, j)], ...) :
Chi-squared approximation may be incorrect
Warning in prop.test(x[c(i, j)], n[c(i, j)], ...) :
Chi-squared approximation may be incorrect
Pairwise comparisons using Pairwise comparison of proportions
data: smokers out of patients
1 2 3
2 1.000 - -
3 1.000 1.000 -
4 0.119 0.093 0.124
P value adjustment method: holm
>
>
>
> cleanEx()
> nameEx("pairwise.t.test")
> ### * pairwise.t.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: pairwise.t.test
> ### Title: Pairwise t tests
> ### Aliases: pairwise.t.test
> ### Keywords: htest
>
> ### ** Examples
>
> attach(airquality)
> Month <- factor(Month, labels = month.abb[5:9])
> pairwise.t.test(Ozone, Month)
Pairwise comparisons using t tests with pooled SD
data: Ozone and Month
May Jun Jul Aug
Jun 1.00000 - - -
Jul 0.00026 0.05113 - -
Aug 0.00019 0.04987 1.00000 -
Sep 1.00000 1.00000 0.00488 0.00388
P value adjustment method: holm
> pairwise.t.test(Ozone, Month, p.adj = "bonf")
Pairwise comparisons using t tests with pooled SD
data: Ozone and Month
May Jun Jul Aug
Jun 1.00000 - - -
Jul 0.00029 0.10225 - -
Aug 0.00019 0.08312 1.00000 -
Sep 1.00000 1.00000 0.00697 0.00485
P value adjustment method: bonferroni
> pairwise.t.test(Ozone, Month, pool.sd = FALSE)
Pairwise comparisons using t tests with non-pooled SD
data: Ozone and Month
May Jun Jul Aug
Jun 1.00000 - - -
Jul 0.00026 0.01527 - -
Aug 0.00195 0.02135 1.00000 -
Sep 0.86321 1.00000 0.00589 0.01721
P value adjustment method: holm
> detach()
>
>
>
> cleanEx()
> nameEx("pairwise.wilcox.test")
> ### * pairwise.wilcox.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: pairwise.wilcox.test
> ### Title: Pairwise Wilcoxon Rank Sum Tests
> ### Aliases: pairwise.wilcox.test
> ### Keywords: htest
>
> ### ** Examples
>
> attach(airquality)
> Month <- factor(Month, labels = month.abb[5:9])
> ## These give warnings because of ties :
> pairwise.wilcox.test(Ozone, Month)
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Pairwise comparisons using Wilcoxon rank sum test
data: Ozone and Month
May Jun Jul Aug
Jun 0.5775 - - -
Jul 0.0003 0.0848 - -
Aug 0.0011 0.1295 1.0000 -
Sep 0.4744 1.0000 0.0060 0.0227
P value adjustment method: holm
> pairwise.wilcox.test(Ozone, Month, p.adj = "bonf")
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Warning in wilcox.test.default(xi, xj, paired = paired, ...) :
cannot compute exact p-value with ties
Pairwise comparisons using Wilcoxon rank sum test
data: Ozone and Month
May Jun Jul Aug
Jun 1.0000 - - -
Jul 0.0003 0.1414 - -
Aug 0.0012 0.2591 1.0000 -
Sep 1.0000 1.0000 0.0074 0.0325
P value adjustment method: bonferroni
> detach()
>
>
>
> cleanEx()
> nameEx("plot.acf")
> ### * plot.acf
>
> flush(stderr()); flush(stdout())
>
> ### Name: plot.acf
> ### Title: Plot Autocovariance and Autocorrelation Functions
> ### Aliases: plot.acf
> ### Keywords: hplot ts
>
> ### ** Examples
>
> require(graphics)
>
> z4 <- ts(matrix(rnorm(400), 100, 4), start = c(1961, 1), frequency = 12)
> z7 <- ts(matrix(rnorm(700), 100, 7), start = c(1961, 1), frequency = 12)
> acf(z4)
> acf(z7, max.mfrow = 7) # squeeze onto 1 page
> acf(z7) # multi-page
>
>
>
> cleanEx()
> nameEx("plot.isoreg")
> ### * plot.isoreg
>
> flush(stderr()); flush(stdout())
>
> ### Name: plot.isoreg
> ### Title: Plot Method for isoreg Objects
> ### Aliases: plot.isoreg lines.isoreg
> ### Keywords: hplot print
>
> ### ** Examples
>
> require(graphics)
>
> utils::example(isoreg) # for the examples there
isoreg> require(graphics)
isoreg> (ir <- isoreg(c(1,0,4,3,3,5,4,2,0)))
Isotonic regression from isoreg(x = c(1, 0, 4, 3, 3, 5, 4, 2, 0)),
with 2 knots / breaks at obs.nr. 2 9 ;
initially ordered 'x'
and further components List of 4
$ x : num [1:9] 1 2 3 4 5 6 7 8 9
$ y : num [1:9] 1 0 4 3 3 5 4 2 0
$ yf: num [1:9] 0.5 0.5 3 3 3 3 3 3 3
$ yc: num [1:10] 0 1 1 5 8 11 16 20 22 22
isoreg> plot(ir, plot.type = "row")
isoreg> (ir3 <- isoreg(y3 <- c(1,0,4,3,3,5,4,2, 3))) # last "3", not "0"
Isotonic regression from isoreg(x = y3 <- c(1, 0, 4, 3, 3, 5, 4, 2, 3)),
with 3 knots / breaks at obs.nr. 2 5 9 ;
initially ordered 'x'
and further components List of 4
$ x : num [1:9] 1 2 3 4 5 6 7 8 9
$ y : num [1:9] 1 0 4 3 3 5 4 2 3
$ yf: num [1:9] 0.5 0.5 3.33 3.33 3.33 ...
$ yc: num [1:10] 0 1 1 5 8 11 16 20 22 25
isoreg> (fi3 <- as.stepfun(ir3))
Step function
Call: isoreg(x = y3 <- c(1, 0, 4, 3, 3, 5, 4, 2, 3))
x[1:3] = 2, 5, 9
4 plateau levels = 0.5, 0.5, 3.3333, 3.5
isoreg> (ir4 <- isoreg(1:10, y4 <- c(5, 9, 1:2, 5:8, 3, 8)))
Isotonic regression from isoreg(x = 1:10, y = y4 <- c(5, 9, 1:2, 5:8, 3, 8)),
with 5 knots / breaks at obs.nr. 4 5 6 9 10 ;
initially ordered 'x'
and further components List of 4
$ x : num [1:10] 1 2 3 4 5 6 7 8 9 10
$ y : num [1:10] 5 9 1 2 5 6 7 8 3 8
$ yf: num [1:10] 4.25 4.25 4.25 4.25 5 6 6 6 6 8
$ yc: num [1:11] 0 5 14 15 17 22 28 35 43 46 ...
isoreg> cat(sprintf("R^2 = %.2f\n",
isoreg+ 1 - sum(residuals(ir4)^2) / ((10-1)*var(y4))))
R^2 = 0.21
isoreg> ## If you are interested in the knots alone :
isoreg> with(ir4, cbind(iKnots, yf[iKnots]))
iKnots
[1,] 4 4.25
[2,] 5 5.00
[3,] 6 6.00
[4,] 9 6.00
[5,] 10 8.00
isoreg> ## Example of unordered x[] with ties:
isoreg> x <- sample((0:30)/8)
isoreg> y <- exp(x)
isoreg> x. <- round(x) # ties!
isoreg> plot(m <- isoreg(x., y))
isoreg> stopifnot(all.equal(with(m, yf[iKnots]),
isoreg+ as.vector(tapply(y, x., mean))))
>
> plot(y3, main = "simple plot(.) + lines(<isoreg>)")
> lines(ir3)
>
> ## 'same' plot as above, "proving" that only ranks of 'x' are important
> plot(isoreg(2^(1:9), c(1,0,4,3,3,5,4,2,0)), plot.type = "row", log = "x")
Warning in xy.coords(x, y, xlabel, ylabel, log) :
1 x value <= 0 omitted from logarithmic plot
Warning in xy.coords(x, y, xlabel, ylabel, log) :
1 x value <= 0 omitted from logarithmic plot
>
> plot(ir3, plot.type = "row", ylab = "y3")
> plot(isoreg(y3 - 4), plot.t="r", ylab = "y3 - 4")
> plot(ir4, plot.type = "ro", ylab = "y4", xlab = "x = 1:n")
>
> ## experiment a bit with these (C-c C-j):
> plot(isoreg(sample(9), y3), plot.type = "row")
> plot(isoreg(sample(9), y3), plot.type = "col.wise")
>
> plot(ir <- isoreg(sample(10), sample(10, replace = TRUE)),
+ plot.type = "r")
>
>
>
> cleanEx()
> nameEx("plot.lm")
> ### * plot.lm
>
> flush(stderr()); flush(stdout())
>
> ### Name: plot.lm
> ### Title: Plot Diagnostics for an lm Object
> ### Aliases: plot.lm
> ### Keywords: hplot regression
>
> ### ** Examples
>
> require(graphics)
>
> ## Analysis of the life-cycle savings data
> ## given in Belsley, Kuh and Welsch.
> lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
> plot(lm.SR)
>
> ## 4 plots on 1 page;
> ## allow room for printing model formula in outer margin:
> par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))
> plot(lm.SR)
> plot(lm.SR, id.n = NULL) # no id's
> plot(lm.SR, id.n = 5, labels.id = NULL) # 5 id numbers
>
> ## Was default in R <= 2.1.x:
> ## Cook's distances instead of Residual-Leverage plot
> plot(lm.SR, which = 1:4)
>
> ## Fit a smooth curve, where applicable:
> plot(lm.SR, panel = panel.smooth)
> ## Gives a smoother curve
> plot(lm.SR, panel = function(x, y) panel.smooth(x, y, span = 1))
>
> par(mfrow = c(2,1)) # same oma as above
> plot(lm.SR, which = 1:2, sub.caption = "Saving Rates, n=50, p=5")
>
> ## Don't show:
> ## An example with *long* formula that needs abbreviation:
> for(i in 1:5) assign(paste("long.var.name", i, sep = "."), runif(10))
> plot(lm(long.var.name.1 ~
+ long.var.name.2 + long.var.name.3 + long.var.name.4 + long.var.name.5))
> ## End Don't show
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("plot.ppr")
> ### * plot.ppr
>
> flush(stderr()); flush(stdout())
>
> ### Name: plot.ppr
> ### Title: Plot Ridge Functions for Projection Pursuit Regression Fit
> ### Aliases: plot.ppr
> ### Keywords: hplot
>
> ### ** Examples
>
> require(graphics)
>
> with(rock, {
+ area1 <- area/10000; peri1 <- peri/10000
+ par(mfrow = c(3,2)) # maybe: , pty = "s")
+ rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,
+ data = rock, nterms = 2, max.terms = 5)
+ plot(rock.ppr, main = "ppr(log(perm)~ ., nterms=2, max.terms=5)")
+ plot(update(rock.ppr, bass = 5), main = "update(..., bass = 5)")
+ plot(update(rock.ppr, sm.method = "gcv", gcvpen = 2),
+ main = "update(..., sm.method=\"gcv\", gcvpen=2)")
+ })
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("plot.profile.nls")
> ### * plot.profile.nls
>
> flush(stderr()); flush(stdout())
>
> ### Name: plot.profile.nls
> ### Title: Plot a profile.nls Object
> ### Aliases: plot.profile.nls
> ### Keywords: nonlinear regression models
>
> ### ** Examples
>
> require(graphics)
>
> # obtain the fitted object
> fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
> # get the profile for the fitted model
> pr1 <- profile(fm1, alpha = 0.05)
> opar <- par(mfrow = c(2,2), oma = c(1.1, 0, 1.1, 0), las = 1)
> plot(pr1, conf = c(95, 90, 80, 50)/100)
> plot(pr1, conf = c(95, 90, 80, 50)/100, absVal = FALSE)
> mtext("Confidence intervals based on the profile sum of squares",
+ side = 3, outer = TRUE)
> mtext("BOD data - confidence levels of 50%, 80%, 90% and 95%",
+ side = 1, outer = TRUE)
> par(opar)
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("plot.stepfun")
> ### * plot.stepfun
>
> flush(stderr()); flush(stdout())
>
> ### Name: plot.stepfun
> ### Title: Plot Step Functions
> ### Aliases: plot.stepfun lines.stepfun
> ### Keywords: hplot
>
> ### ** Examples
>
> require(graphics)
>
> y0 <- c(1,2,4,3)
> sfun0 <- stepfun(1:3, y0, f = 0)
> sfun.2 <- stepfun(1:3, y0, f = .2)
> sfun1 <- stepfun(1:3, y0, right = TRUE)
>
> tt <- seq(0, 3, by = 0.1)
> op <- par(mfrow = c(2,2))
> plot(sfun0); plot(sfun0, xval = tt, add = TRUE, col.hor = "bisque")
> plot(sfun.2);plot(sfun.2, xval = tt, add = TRUE, col = "orange") # all colors
> plot(sfun1);lines(sfun1, xval = tt, col.hor = "coral")
> ##-- This is revealing :
> plot(sfun0, verticals = FALSE,
+ main = "stepfun(x, y0, f=f) for f = 0, .2, 1")
> for(i in 1:3)
+ lines(list(sfun0, sfun.2, stepfun(1:3, y0, f = 1))[[i]], col = i)
> legend(2.5, 1.9, paste("f =", c(0, 0.2, 1)), col = 1:3, lty = 1, y.intersp = 1)
> par(op)
>
> # Extend and/or restrict 'viewport':
> plot(sfun0, xlim = c(0,5), ylim = c(0, 3.5),
+ main = "plot(stepfun(*), xlim= . , ylim = .)")
>
> ##-- this works too (automatic call to ecdf(.)):
> plot.stepfun(rt(50, df = 3), col.vert = "gray20")
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("plot.ts")
> ### * plot.ts
>
> flush(stderr()); flush(stdout())
>
> ### Name: plot.ts
> ### Title: Plotting Time-Series Objects
> ### Aliases: plot.ts lines.ts
> ### Keywords: hplot ts
>
> ### ** Examples
>
> require(graphics)
>
> ## Multivariate
> z <- ts(matrix(rt(200 * 8, df = 3), 200, 8),
+ start = c(1961, 1), frequency = 12)
> plot(z, yax.flip = TRUE)
> plot(z, axes = FALSE, ann = FALSE, frame.plot = TRUE,
+ mar.multi = c(0,0,0,0), oma.multi = c(1,1,5,1))
> title("plot(ts(..), axes=FALSE, ann=FALSE, frame.plot=TRUE, mar..., oma...)")
>
> z <- window(z[,1:3], end = c(1969,12))
> plot(z, type = "b") # multiple
> plot(z, plot.type = "single", lty = 1:3, col = 4:2)
>
> ## A phase plot:
> plot(nhtemp, lag(nhtemp, 1), cex = .8, col = "blue",
+ main = "Lag plot of New Haven temperatures")
>
> ## xy.lines and xy.labels are FALSE for large series:
> plot(lag(sunspots, 1), sunspots, pch = ".")
>
> SMI <- EuStockMarkets[, "SMI"]
> plot(lag(SMI, 1), SMI, pch = ".")
> plot(lag(SMI, 20), SMI, pch = ".", log = "xy",
+ main = "4 weeks lagged SMI stocks -- log scale", xy.lines = TRUE)
>
>
>
> cleanEx()
> nameEx("poisson.test")
> ### * poisson.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: poisson.test
> ### Title: Exact Poisson tests
> ### Aliases: poisson.test
> ### Keywords: htest
>
> ### ** Examples
>
> ### These are paraphrased from data sets in the ISwR package
>
> ## SMR, Welsh Nickel workers
> poisson.test(137, 24.19893)
Exact Poisson test
data: 137 time base: 24.19893
number of events = 137, time base = 24.199, p-value < 2.2e-16
alternative hypothesis: true event rate is not equal to 1
95 percent confidence interval:
4.753125 6.692709
sample estimates:
event rate
5.661407
>
> ## eba1977, compare Fredericia to other three cities for ages 55-59
> poisson.test(c(11, 6+8+7), c(800, 1083+1050+878))
Comparison of Poisson rates
data: c(11, 6 + 8 + 7) time base: c(800, 1083 + 1050 + 878)
count1 = 11, expected count1 = 6.717, p-value = 0.07967
alternative hypothesis: true rate ratio is not equal to 1
95 percent confidence interval:
0.8584264 4.2772659
sample estimates:
rate ratio
1.971488
>
>
>
> cleanEx()
> nameEx("poly")
> ### * poly
>
> flush(stderr()); flush(stdout())
>
> ### Name: poly
> ### Title: Compute Orthogonal Polynomials
> ### Aliases: poly polym predict.poly makepredictcall.poly
> ### Keywords: math
>
> ### ** Examples
>
> od <- options(digits = 3) # avoid too much visual clutter
> (z <- poly(1:10, 3))
1 2 3
[1,] -0.495 0.522 -0.453
[2,] -0.385 0.174 0.151
[3,] -0.275 -0.087 0.378
[4,] -0.165 -0.261 0.335
[5,] -0.055 -0.348 0.130
[6,] 0.055 -0.348 -0.130
[7,] 0.165 -0.261 -0.335
[8,] 0.275 -0.087 -0.378
[9,] 0.385 0.174 -0.151
[10,] 0.495 0.522 0.453
attr(,"degree")
[1] 1 2 3
attr(,"coefs")
attr(,"coefs")$alpha
[1] 5.5 5.5 5.5
attr(,"coefs")$norm2
[1] 1.0 10.0 82.5 528.0 3088.8
attr(,"class")
[1] "poly" "matrix"
> predict(z, seq(2, 4, 0.5))
1 2 3
[1,] -0.385 0.1741 0.151
[2,] -0.330 0.0326 0.305
[3,] -0.275 -0.0870 0.378
[4,] -0.220 -0.1850 0.383
[5,] -0.165 -0.2611 0.335
attr(,"degree")
[1] 1 2 3
attr(,"coefs")
attr(,"coefs")$alpha
[1] 5.5 5.5 5.5
attr(,"coefs")$norm2
[1] 1.0 10.0 82.5 528.0 3088.8
attr(,"class")
[1] "poly" "matrix"
> zapsmall(poly(seq(4, 6, 0.5), 3, coefs = attr(z, "coefs")))
1 2 3
[1,] -0.165 -0.261 0.335
[2,] -0.110 -0.316 0.246
[3,] -0.055 -0.348 0.130
[4,] 0.000 -0.359 0.000
[5,] 0.055 -0.348 -0.130
attr(,"degree")
[1] 1 2 3
attr(,"coefs")
attr(,"coefs")$alpha
[1] 5.5 5.5 5.5
attr(,"coefs")$norm2
[1] 1.0 10.0 82.5 528.0 3088.8
attr(,"class")
[1] "poly" "matrix"
>
> zapsmall(polym(1:4, c(1, 4:6), degree = 3)) # or just poly()
1.0 2.0 3.0 0.1 1.1 2.1 0.2 1.2 0.3
[1,] -0.671 0.5 -0.224 -0.802 0.538 -0.401 0.323 -0.217 -0.053
[2,] -0.224 -0.5 0.671 0.000 0.000 0.000 -0.688 0.154 0.526
[3,] 0.224 -0.5 -0.671 0.267 0.060 -0.134 -0.239 -0.053 -0.788
[4,] 0.671 0.5 0.224 0.535 0.359 0.267 0.604 0.405 0.315
attr(,"degree")
[1] 1 2 3 1 2 3 2 3 3
> zapsmall(poly(cbind(1:4, c(1, 4:6)), degree = 3))
1.0 2.0 3.0 0.1 1.1 2.1 0.2 1.2 0.3
[1,] -0.671 0.5 -0.224 -0.802 0.538 -0.401 0.323 -0.217 -0.053
[2,] -0.224 -0.5 0.671 0.000 0.000 0.000 -0.688 0.154 0.526
[3,] 0.224 -0.5 -0.671 0.267 0.060 -0.134 -0.239 -0.053 -0.788
[4,] 0.671 0.5 0.224 0.535 0.359 0.267 0.604 0.405 0.315
attr(,"degree")
[1] 1 2 3 1 2 3 2 3 3
> options(od)
>
>
>
> cleanEx()
> nameEx("power")
> ### * power
>
> flush(stderr()); flush(stdout())
>
> ### Name: power
> ### Title: Create a Power Link Object
> ### Aliases: power
> ### Keywords: models
>
> ### ** Examples
>
> power()
$linkfun
function (mu)
mu
<environment: namespace:stats>
$linkinv
function (eta)
eta
<environment: namespace:stats>
$mu.eta
function (eta)
rep.int(1, length(eta))
<environment: namespace:stats>
$valideta
function (eta)
TRUE
<environment: namespace:stats>
$name
[1] "identity"
attr(,"class")
[1] "link-glm"
> quasi(link = power(1/3))[c("linkfun", "linkinv")]
$linkfun
function (mu)
mu^lambda
<bytecode: 0x3848b28>
<environment: 0x383c608>
$linkinv
function (eta)
pmax(eta^(1/lambda), .Machine$double.eps)
<bytecode: 0x38471f8>
<environment: 0x383c608>
>
>
>
> cleanEx()
> nameEx("power.anova.test")
> ### * power.anova.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: power.anova.test
> ### Title: Power Calculations for Balanced One-Way Analysis of Variance
> ### Tests
> ### Aliases: power.anova.test
> ### Keywords: htest
>
> ### ** Examples
>
> power.anova.test(groups = 4, n = 5, between.var = 1, within.var = 3)
Balanced one-way analysis of variance power calculation
groups = 4
n = 5
between.var = 1
within.var = 3
sig.level = 0.05
power = 0.3535594
NOTE: n is number in each group
> # Power = 0.3535594
>
> power.anova.test(groups = 4, between.var = 1, within.var = 3,
+ power = .80)
Balanced one-way analysis of variance power calculation
groups = 4
n = 11.92613
between.var = 1
within.var = 3
sig.level = 0.05
power = 0.8
NOTE: n is number in each group
> # n = 11.92613
>
> ## Assume we have prior knowledge of the group means:
> groupmeans <- c(120, 130, 140, 150)
> power.anova.test(groups = length(groupmeans),
+ between.var = var(groupmeans),
+ within.var = 500, power = .90) # n = 15.18834
Balanced one-way analysis of variance power calculation
groups = 4
n = 15.18834
between.var = 166.6667
within.var = 500
sig.level = 0.05
power = 0.9
NOTE: n is number in each group
>
>
>
> cleanEx()
> nameEx("power.prop.test")
> ### * power.prop.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: power.prop.test
> ### Title: Power Calculations for Two-Sample Test for Proportions
> ### Aliases: power.prop.test
> ### Keywords: htest
>
> ### ** Examples
>
> power.prop.test(n = 50, p1 = .50, p2 = .75)
Two-sample comparison of proportions power calculation
n = 50
p1 = 0.5
p2 = 0.75
sig.level = 0.05
power = 0.7401659
alternative = two.sided
NOTE: n is number in *each* group
> power.prop.test(p1 = .50, p2 = .75, power = .90)
Two-sample comparison of proportions power calculation
n = 76.70693
p1 = 0.5
p2 = 0.75
sig.level = 0.05
power = 0.9
alternative = two.sided
NOTE: n is number in *each* group
> power.prop.test(n = 50, p1 = .5, power = .90)
Two-sample comparison of proportions power calculation
n = 50
p1 = 0.5
p2 = 0.8026141
sig.level = 0.05
power = 0.9
alternative = two.sided
NOTE: n is number in *each* group
>
>
>
> cleanEx()
> nameEx("power.t.test")
> ### * power.t.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: power.t.test
> ### Title: Power calculations for one and two sample t tests
> ### Aliases: power.t.test
> ### Keywords: htest
>
> ### ** Examples
>
> power.t.test(n = 20, delta = 1)
Two-sample t test power calculation
n = 20
delta = 1
sd = 1
sig.level = 0.05
power = 0.8689528
alternative = two.sided
NOTE: n is number in *each* group
> power.t.test(power = .90, delta = 1)
Two-sample t test power calculation
n = 22.0211
delta = 1
sd = 1
sig.level = 0.05
power = 0.9
alternative = two.sided
NOTE: n is number in *each* group
> power.t.test(power = .90, delta = 1, alternative = "one.sided")
Two-sample t test power calculation
n = 17.84713
delta = 1
sd = 1
sig.level = 0.05
power = 0.9
alternative = one.sided
NOTE: n is number in *each* group
>
>
>
> cleanEx()
> nameEx("pp.test")
> ### * pp.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: PP.test
> ### Title: Phillips-Perron Test for Unit Roots
> ### Aliases: PP.test
> ### Keywords: ts
>
> ### ** Examples
>
> x <- rnorm(1000)
> PP.test(x)
Phillips-Perron Unit Root Test
data: x
Dickey-Fuller = -33.0567, Truncation lag parameter = 7, p-value = 0.01
> y <- cumsum(x) # has unit root
> PP.test(y)
Phillips-Perron Unit Root Test
data: y
Dickey-Fuller = -2.6899, Truncation lag parameter = 7, p-value = 0.2863
>
>
>
> cleanEx()
> nameEx("ppoints")
> ### * ppoints
>
> flush(stderr()); flush(stdout())
>
> ### Name: ppoints
> ### Title: Ordinates for Probability Plotting
> ### Aliases: ppoints
> ### Keywords: dplot arith distribution
>
> ### ** Examples
>
> ppoints(4) # the same as ppoints(1:4)
[1] 0.1470588 0.3823529 0.6176471 0.8529412
> ppoints(10)
[1] 0.06097561 0.15853659 0.25609756 0.35365854 0.45121951 0.54878049
[7] 0.64634146 0.74390244 0.84146341 0.93902439
> ppoints(10, a = 1/2)
[1] 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
>
>
>
> cleanEx()
> nameEx("ppr")
> ### * ppr
>
> flush(stderr()); flush(stdout())
>
> ### Name: ppr
> ### Title: Projection Pursuit Regression
> ### Aliases: ppr ppr.default ppr.formula
> ### Keywords: regression
>
> ### ** Examples
>
> require(graphics)
>
> # Note: your numerical values may differ
> attach(rock)
> area1 <- area/10000; peri1 <- peri/10000
> rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,
+ data = rock, nterms = 2, max.terms = 5)
> rock.ppr
Call:
ppr(formula = log(perm) ~ area1 + peri1 + shape, data = rock,
nterms = 2, max.terms = 5)
Goodness of fit:
2 terms 3 terms 4 terms 5 terms
8.737806 5.289517 4.745799 4.490378
> # Call:
> # ppr.formula(formula = log(perm) ~ area1 + peri1 + shape, data = rock,
> # nterms = 2, max.terms = 5)
> #
> # Goodness of fit:
> # 2 terms 3 terms 4 terms 5 terms
> # 8.737806 5.289517 4.745799 4.490378
>
> summary(rock.ppr)
Call:
ppr(formula = log(perm) ~ area1 + peri1 + shape, data = rock,
nterms = 2, max.terms = 5)
Goodness of fit:
2 terms 3 terms 4 terms 5 terms
8.737806 5.289517 4.745799 4.490378
Projection direction vectors:
term 1 term 2
area1 0.34357179 0.37071027
peri1 -0.93781471 -0.61923542
shape 0.04961846 0.69218595
Coefficients of ridge terms:
term 1 term 2
1.6079271 0.5460971
> # ..... (same as above)
> # .....
> #
> # Projection direction vectors:
> # term 1 term 2
> # area1 0.34357179 0.37071027
> # peri1 -0.93781471 -0.61923542
> # shape 0.04961846 0.69218595
> #
> # Coefficients of ridge terms:
> # term 1 term 2
> # 1.6079271 0.5460971
>
> par(mfrow = c(3,2)) # maybe: , pty = "s")
> plot(rock.ppr, main = "ppr(log(perm)~ ., nterms=2, max.terms=5)")
> plot(update(rock.ppr, bass = 5), main = "update(..., bass = 5)")
> plot(update(rock.ppr, sm.method = "gcv", gcvpen = 2),
+ main = "update(..., sm.method=\"gcv\", gcvpen=2)")
> cbind(perm = rock$perm, prediction = round(exp(predict(rock.ppr)), 1))
perm prediction
1 6.3 5.9
2 6.3 6.5
3 6.3 12.1
4 6.3 7.4
5 17.1 16.3
6 17.1 13.2
7 17.1 41.2
8 17.1 10.6
9 119.0 101.9
10 119.0 73.0
11 119.0 46.8
12 119.0 121.7
13 82.4 107.8
14 82.4 79.7
15 82.4 98.3
16 82.4 128.8
17 58.6 66.8
18 58.6 33.2
19 58.6 58.7
20 58.6 111.6
21 142.0 118.9
22 142.0 128.4
23 142.0 91.9
24 142.0 188.5
25 740.0 341.7
26 740.0 577.9
27 740.0 895.7
28 740.0 1041.0
29 890.0 560.8
30 890.0 721.8
31 890.0 937.9
32 890.0 848.5
33 950.0 806.4
34 950.0 1085.4
35 950.0 945.6
36 950.0 848.5
37 100.0 154.1
38 100.0 178.0
39 100.0 321.5
40 100.0 232.7
41 1300.0 1067.0
42 1300.0 697.8
43 1300.0 1236.6
44 1300.0 1301.8
45 580.0 485.1
46 580.0 285.1
47 580.0 644.3
48 580.0 571.5
> detach()
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("prcomp")
> ### * prcomp
>
> flush(stderr()); flush(stdout())
>
> ### Name: prcomp
> ### Title: Principal Components Analysis
> ### Aliases: prcomp prcomp.formula prcomp.default plot.prcomp
> ### predict.prcomp print.prcomp summary.prcomp print.summary.prcomp
> ### Keywords: multivariate
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("predict.HoltWinters")
> ### * predict.HoltWinters
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict.HoltWinters
> ### Title: Prediction Function for Fitted Holt-Winters Models
> ### Aliases: predict.HoltWinters
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> m <- HoltWinters(co2)
> p <- predict(m, 50, prediction.interval = TRUE)
> plot(m, p)
>
>
>
> cleanEx()
> nameEx("predict")
> ### * predict
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict
> ### Title: Model Predictions
> ### Aliases: predict
> ### Keywords: methods
>
> ### ** Examples
>
> ## Don't show:
> old <- Sys.setlocale("LC_COLLATE", "C")
> ## End Don't show
> require(utils)
>
> ## All the "predict" methods found
> ## NB most of the methods in the standard packages are hidden.
> for(fn in methods("predict"))
+ try({
+ f <- eval(substitute(getAnywhere(fn)$objs[[1]], list(fn = fn)))
+ cat(fn, ":\n\t", deparse(args(f)), "\n")
+ }, silent = TRUE)
predict.Arima :
function (object, n.ahead = 1L, newxreg = NULL, se.fit = TRUE, ...) NULL
predict.HoltWinters :
function (object, n.ahead = 1L, prediction.interval = FALSE, level = 0.95, ...) NULL
predict.StructTS :
function (object, n.ahead = 1L, se.fit = TRUE, ...) NULL
predict.ar :
function (object, newdata, n.ahead = 1L, se.fit = TRUE, ...) NULL
predict.arima0 :
function (object, n.ahead = 1L, newxreg = NULL, se.fit = TRUE, ...) NULL
predict.bSpline :
function (object, x, nseg = 50, deriv = 0, ...) NULL
predict.bs :
function (object, newx, ...) NULL
predict.glm :
function (object, newdata = NULL, type = c("link", "response", "terms"), se.fit = FALSE, dispersion = NULL, terms = NULL, na.action = na.pass, ...) NULL
predict.lm :
function (object, newdata, se.fit = FALSE, scale = NULL, df = Inf, interval = c("none", "confidence", "prediction"), level = 0.95, type = c("response", "terms"), terms = NULL, na.action = na.pass, pred.var = res.var/weights, weights = 1, ...) NULL
predict.loess :
function (object, newdata = NULL, se = FALSE, na.action = na.pass, ...) NULL
predict.mlm :
function (object, newdata, se.fit = FALSE, na.action = na.pass, ...) NULL
predict.nbSpline :
function (object, x, nseg = 50, deriv = 0, ...) NULL
predict.nls :
function (object, newdata, se.fit = FALSE, scale = NULL, df = Inf, interval = c("none", "confidence", "prediction"), level = 0.95, ...) NULL
predict.npolySpline :
function (object, x, nseg = 50, deriv = 0, ...) NULL
predict.ns :
function (object, newx, ...) NULL
predict.pbSpline :
function (object, x, nseg = 50, deriv = 0, ...) NULL
predict.poly :
function (object, newdata, ...) NULL
predict.polySpline :
function (object, x, nseg = 50, deriv = 0, ...) NULL
predict.ppolySpline :
function (object, x, nseg = 50, deriv = 0, ...) NULL
predict.ppr :
function (object, newdata, ...) NULL
predict.prcomp :
function (object, newdata, ...) NULL
predict.princomp :
function (object, newdata, ...) NULL
predict.smooth.spline :
function (object, x, deriv = 0, ...) NULL
predict.smooth.spline.fit :
function (object, x, deriv = 0, ...) NULL
> ## Don't show:
> old <- Sys.setlocale("LC_COLLATE", old)
> ## End Don't show
>
>
>
> cleanEx()
> nameEx("predict.arima")
> ### * predict.arima
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict.Arima
> ### Title: Forecast from ARIMA fits
> ### Aliases: predict.Arima
> ### Keywords: ts
>
> ### ** Examples
>
> od <- options(digits = 5) # avoid too much spurious accuracy
> predict(arima(lh, order = c(3,0,0)), n.ahead = 12)
$pred
Time Series:
Start = 49
End = 60
Frequency = 1
[1] 2.4602 2.2708 2.1986 2.2607 2.3470 2.4145 2.4389 2.4315 2.4102 2.3917
[11] 2.3827 2.3827
$se
Time Series:
Start = 49
End = 60
Frequency = 1
[1] 0.42268 0.50293 0.52452 0.52472 0.53055 0.53692 0.53880 0.53884 0.53910
[10] 0.53952 0.53970 0.53971
>
> (fit <- arima(USAccDeaths, order = c(0,1,1),
+ seasonal = list(order = c(0,1,1))))
Call:
arima(x = USAccDeaths, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1)))
Coefficients:
ma1 sma1
-0.430 -0.553
s.e. 0.123 0.178
sigma^2 estimated as 99347: log likelihood = -425.44, aic = 856.88
> predict(fit, n.ahead = 6)
$pred
Jan Feb Mar Apr May Jun
1979 8336.1 7531.8 8314.6 8616.9 9488.9 9859.8
$se
Jan Feb Mar Apr May Jun
1979 315.45 363.01 405.02 443.06 478.09 510.72
> options(od)
>
>
>
> cleanEx()
> nameEx("predict.glm")
> ### * predict.glm
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict.glm
> ### Title: Predict Method for GLM Fits
> ### Aliases: predict.glm
> ### Keywords: models regression
>
> ### ** Examples
>
> require(graphics)
>
> ## example from Venables and Ripley (2002, pp. 190-2.)
> ldose <- rep(0:5, 2)
> numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
> sex <- factor(rep(c("M", "F"), c(6, 6)))
> SF <- cbind(numdead, numalive = 20-numdead)
> budworm.lg <- glm(SF ~ sex*ldose, family = binomial)
> summary(budworm.lg)
Call:
glm(formula = SF ~ sex * ldose, family = binomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.39849 -0.32094 -0.07592 0.38220 1.10375
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.9935 0.5527 -5.416 6.09e-08 ***
sexM 0.1750 0.7783 0.225 0.822
ldose 0.9060 0.1671 5.422 5.89e-08 ***
sexM:ldose 0.3529 0.2700 1.307 0.191
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 124.8756 on 11 degrees of freedom
Residual deviance: 4.9937 on 8 degrees of freedom
AIC: 43.104
Number of Fisher Scoring iterations: 4
>
> plot(c(1,32), c(0,1), type = "n", xlab = "dose",
+ ylab = "prob", log = "x")
> text(2^ldose, numdead/20, as.character(sex))
> ld <- seq(0, 5, 0.1)
> lines(2^ld, predict(budworm.lg, data.frame(ldose = ld,
+ sex = factor(rep("M", length(ld)), levels = levels(sex))),
+ type = "response"))
> lines(2^ld, predict(budworm.lg, data.frame(ldose = ld,
+ sex = factor(rep("F", length(ld)), levels = levels(sex))),
+ type = "response"))
>
>
>
> cleanEx()
> nameEx("predict.lm")
> ### * predict.lm
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict.lm
> ### Title: Predict method for Linear Model Fits
> ### Aliases: predict.lm
> ### Keywords: regression
>
> ### ** Examples
>
> require(graphics)
>
> ## Predictions
> x <- rnorm(15)
> y <- x + rnorm(15)
> predict(lm(y ~ x))
1 2 3 4 5 6 7
-0.6270917 0.2550840 -0.8548779 1.7923222 0.4139268 -0.8383687 0.5858991
8 9 10 11 12 13 14
0.8591183 0.6821126 -0.2774594 1.7013932 0.4796306 -0.6214146 -2.3566523
15
1.2801229
> new <- data.frame(x = seq(-3, 3, 0.5))
> predict(lm(y ~ x), new, se.fit = TRUE)
$fit
1 2 3 4 5 6
-3.21182462 -2.66733702 -2.12284942 -1.57836182 -1.03387422 -0.48938662
7 8 9 10 11 12
0.05510098 0.59958858 1.14407618 1.68856379 2.23305139 2.77753899
13
3.32202659
$se.fit
1 2 3 4 5 6 7 8
0.7545246 0.6449274 0.5380108 0.4357521 0.3423511 0.2672616 0.2292452 0.2461261
9 10 11 12 13
0.3090353 0.3966456 0.4960370 0.6013965 0.7100725
$df
[1] 13
$residual.scale
[1] 0.8832292
> pred.w.plim <- predict(lm(y ~ x), new, interval = "prediction")
> pred.w.clim <- predict(lm(y ~ x), new, interval = "confidence")
> matplot(new$x, cbind(pred.w.clim, pred.w.plim[,-1]),
+ lty = c(1,2,2,3,3), type = "l", ylab = "predicted y")
>
> ## Prediction intervals, special cases
> ## The first three of these throw warnings
> w <- 1 + x^2
> fit <- lm(y ~ x)
> wfit <- lm(y ~ x, weights = w)
> predict(fit, interval = "prediction")
Warning in predict.lm(fit, interval = "prediction") :
predictions on current data refer to _future_ responses
fit lwr upr
1 -0.6270917 -2.6311852 1.37700188
2 0.2550840 -1.7160306 2.22619860
3 -0.8548779 -2.8806560 1.17090027
4 1.7923222 -0.3158417 3.90048609
5 0.4139268 -1.5600794 2.38793297
6 -0.8383687 -2.8624006 1.18566313
7 0.5858991 -1.3942769 2.56607519
8 0.8591183 -1.1372816 2.85551813
9 0.6821126 -1.3028836 2.66710884
10 -0.2774594 -2.2586227 1.70370390
11 1.7013932 -0.3922734 3.79505973
12 0.4796306 -1.4963611 2.45562227
13 -0.6214146 -2.6250348 1.38220556
14 -2.3566523 -4.6435457 -0.06975883
15 1.2801229 -0.7562734 3.31651909
> predict(wfit, interval = "prediction")
Warning in predict.lm(wfit, interval = "prediction") :
predictions on current data refer to _future_ responses
Warning in predict.lm(wfit, interval = "prediction") :
assuming prediction variance inversely proportional to weights used for fitting
fit lwr upr
1 -0.6795401 -2.7152943 1.3562142
2 0.2726114 -2.0676598 2.6128825
3 -0.9253947 -2.7873163 0.9365269
4 1.9317861 0.5179227 3.3456495
5 0.4440538 -1.8206181 2.7087257
6 -0.9075760 -2.7817747 0.9666227
7 0.6296673 -1.5219043 2.7812390
8 0.9245587 -1.0206112 2.8697287
9 0.7335126 -1.3468740 2.8138992
10 -0.3021743 -2.5805044 1.9761557
11 1.8336444 0.3867018 3.2805870
12 0.5149694 -1.7094216 2.7393604
13 -0.6734127 -2.7135353 1.3667099
14 -2.5462925 -3.8073357 -1.2852494
15 1.3789581 -0.2749888 3.0329051
> predict(wfit, new, interval = "prediction")
Warning in predict.lm(wfit, new, interval = "prediction") :
Assuming constant prediction variance even though model fit is weighted
fit lwr upr
1 -3.46929871 -6.02669183 -0.9119056
2 -2.88162137 -5.38456191 -0.3786808
3 -2.29394403 -4.75159401 0.1637059
4 -1.70626669 -4.12830217 0.7157688
5 -1.11858935 -3.51511782 1.2779391
6 -0.53091201 -2.91236575 1.8505417
7 0.05676532 -2.32024444 2.4337751
8 0.64444266 -1.73881338 3.0276987
9 1.23212000 -1.16798909 3.6322291
10 1.81979734 -0.60755066 4.2471453
11 2.40747468 -0.05715376 4.8721031
12 2.99515202 0.48364874 5.5066553
13 3.58282936 1.01538228 6.1502764
> predict(wfit, new, interval = "prediction", weights = (new$x)^2)
fit lwr upr
1 -3.46929871 -4.7661745 -2.17242292
2 -2.88162137 -4.1752786 -1.58796414
3 -2.29394403 -3.6870669 -0.90082115
4 -1.70626669 -3.3884596 -0.02407382
5 -1.11858935 -3.5151178 1.27793911
6 -0.53091201 -5.2286061 4.16678211
7 0.05676532 -Inf Inf
8 0.64444266 -4.0541654 5.34305071
9 1.23212000 -1.1679891 3.63222909
10 1.81979734 0.1299644 3.50963027
11 2.40747468 1.0020775 3.81287188
12 2.99515202 1.6850045 4.30529950
13 3.58282936 2.2662384 4.89942029
> predict(wfit, new, interval = "prediction", weights = ~x^2)
fit lwr upr
1 -3.46929871 -4.7661745 -2.17242292
2 -2.88162137 -4.1752786 -1.58796414
3 -2.29394403 -3.6870669 -0.90082115
4 -1.70626669 -3.3884596 -0.02407382
5 -1.11858935 -3.5151178 1.27793911
6 -0.53091201 -5.2286061 4.16678211
7 0.05676532 -Inf Inf
8 0.64444266 -4.0541654 5.34305071
9 1.23212000 -1.1679891 3.63222909
10 1.81979734 0.1299644 3.50963027
11 2.40747468 1.0020775 3.81287188
12 2.99515202 1.6850045 4.30529950
13 3.58282936 2.2662384 4.89942029
>
> ##-- From aov(.) example ---- predict(.. terms)
> npk.aov <- aov(yield ~ block + N*P*K, npk)
> (termL <- attr(terms(npk.aov), "term.labels"))
[1] "block" "N" "P" "K" "N:P" "N:K" "P:K" "N:P:K"
> (pt <- predict(npk.aov, type = "terms"))
block N P K N:P N:K P:K N:P:K
1 -0.850 -4.925 0.2083333 -0.9583333 0.9416667 1.175 0.4250000 0
2 -0.850 4.925 0.2083333 0.9583333 -2.8250000 1.175 -0.1416667 0
3 -0.850 -4.925 -0.2083333 0.9583333 0.9416667 1.175 -0.1416667 0
4 -0.850 4.925 -0.2083333 -0.9583333 0.9416667 -3.525 -0.1416667 0
5 2.575 4.925 -0.2083333 0.9583333 0.9416667 1.175 -0.1416667 0
6 2.575 4.925 0.2083333 -0.9583333 -2.8250000 -3.525 0.4250000 0
7 2.575 -4.925 -0.2083333 -0.9583333 0.9416667 1.175 -0.1416667 0
8 2.575 -4.925 0.2083333 0.9583333 0.9416667 1.175 -0.1416667 0
9 5.900 -4.925 0.2083333 0.9583333 0.9416667 1.175 -0.1416667 0
10 5.900 4.925 0.2083333 -0.9583333 -2.8250000 -3.525 0.4250000 0
11 5.900 4.925 -0.2083333 0.9583333 0.9416667 1.175 -0.1416667 0
12 5.900 -4.925 -0.2083333 -0.9583333 0.9416667 1.175 -0.1416667 0
13 -4.750 4.925 -0.2083333 0.9583333 0.9416667 1.175 -0.1416667 0
14 -4.750 4.925 0.2083333 -0.9583333 -2.8250000 -3.525 0.4250000 0
15 -4.750 -4.925 -0.2083333 -0.9583333 0.9416667 1.175 -0.1416667 0
16 -4.750 -4.925 0.2083333 0.9583333 0.9416667 1.175 -0.1416667 0
17 -4.350 4.925 0.2083333 0.9583333 -2.8250000 1.175 -0.1416667 0
18 -4.350 -4.925 -0.2083333 0.9583333 0.9416667 1.175 -0.1416667 0
19 -4.350 4.925 -0.2083333 -0.9583333 0.9416667 -3.525 -0.1416667 0
20 -4.350 -4.925 0.2083333 -0.9583333 0.9416667 1.175 0.4250000 0
21 1.475 4.925 -0.2083333 -0.9583333 0.9416667 -3.525 -0.1416667 0
22 1.475 4.925 0.2083333 0.9583333 -2.8250000 1.175 -0.1416667 0
23 1.475 -4.925 0.2083333 -0.9583333 0.9416667 1.175 0.4250000 0
24 1.475 -4.925 -0.2083333 0.9583333 0.9416667 1.175 -0.1416667 0
attr(,"constant")
[1] 54.875
> pt. <- predict(npk.aov, type = "terms", terms = termL[1:4])
> stopifnot(all.equal(pt[,1:4], pt.,
+ tolerance = 1e-12, check.attributes = FALSE))
>
>
>
> cleanEx()
> nameEx("predict.loess")
> ### * predict.loess
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict.loess
> ### Title: Predict Loess Curve or Surface
> ### Aliases: predict.loess
> ### Keywords: smooth
>
> ### ** Examples
>
> cars.lo <- loess(dist ~ speed, cars)
> predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE)
$fit
1 2 3 4 5 6 7 8
7.797353 10.002308 12.499786 15.281082 18.446568 21.865315 25.517015 29.350386
9 10 11 12 13 14 15 16
33.230660 37.167935 41.205226 45.055736 48.355889 49.824812 51.986702 56.461318
17 18 19 20 21 22 23 24
61.959729 68.569313 76.316068 85.212121 95.324047 NA NA NA
25 26
NA NA
$se.fit
1 2 3 4 5 6 7 8
7.568120 5.945831 4.990827 4.545284 4.308639 4.115049 3.789542 3.716231
9 10 11 12 13 14 15 16
3.776947 4.091747 4.709568 4.245427 4.035929 3.753410 4.004705 4.043190
17 18 19 20 21 22 23 24
4.026105 4.074664 4.570818 5.954217 8.302014 NA NA NA
25 26
NA NA
$residual.scale
[1] 15.29496
$df
[1] 44.6179
> # to get extrapolation
> cars.lo2 <- loess(dist ~ speed, cars,
+ control = loess.control(surface = "direct"))
> predict(cars.lo2, data.frame(speed = seq(5, 30, 1)), se = TRUE)
$fit
1 2 3 4 5 6 7
7.741006 9.926596 12.442424 15.281082 18.425712 21.865315 25.713413
8 9 10 11 12 13 14
29.350386 33.230660 37.167935 41.205226 45.781544 48.355889 50.067148
15 16 17 18 19 20 21
51.986702 56.445263 62.025404 68.569313 76.193111 85.053364 95.300523
22 23 24 25 26
106.974661 120.092581 134.665851 150.698545 168.190283
$se.fit
1 2 3 4 5 6 7 8
7.565991 5.959097 5.012013 4.550013 4.321596 4.119331 3.939804 3.720098
9 10 11 12 13 14 15 16
3.780877 4.096004 4.714469 4.398936 4.040129 4.184257 4.008873 4.061865
17 18 19 20 21 22 23 24
4.033998 4.078904 4.584606 5.952480 8.306901 11.601911 15.792480 20.864660
25 26
26.823827 33.683999
$residual.scale
[1] 15.31087
$df
[1] 44.55085
>
>
>
> cleanEx()
> nameEx("predict.nls")
> ### * predict.nls
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict.nls
> ### Title: Predicting from Nonlinear Least Squares Fits
> ### Aliases: predict.nls
> ### Keywords: nonlinear regression models
>
> ### ** Examples
>
> ## Don't show:
> od <- options(digits = 5)
> ## End Don't show
> require(graphics)
>
> fm <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
> predict(fm) # fitted values at observed times
[1] 7.8874 12.5250 15.2517 16.8549 17.7975 18.6776
> ## Form data plot and smooth line for the predictions
> opar <- par(las = 1)
> plot(demand ~ Time, data = BOD, col = 4,
+ main = "BOD data and fitted first-order curve",
+ xlim = c(0,7), ylim = c(0, 20) )
> tt <- seq(0, 8, length = 101)
> lines(tt, predict(fm, list(Time = tt)))
> par(opar)
> ## Don't show:
> options(od)
> ## End Don't show
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("predict.smooth.spline")
> ### * predict.smooth.spline
>
> flush(stderr()); flush(stdout())
>
> ### Name: predict.smooth.spline
> ### Title: Predict from Smoothing Spline Fit
> ### Aliases: predict.smooth.spline
> ### Keywords: smooth
>
> ### ** Examples
>
> require(graphics)
>
> attach(cars)
> cars.spl <- smooth.spline(speed, dist, df = 6.4)
> ## Don't show:
> print.default(cars.spl)
$x
[1] 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25
$y
[1] 5.833836 12.575603 15.037250 17.795007 20.935898 24.228479 28.488199
[8] 33.969567 38.578804 40.986090 43.494687 47.156344 50.862366 52.692043
[15] 54.754531 66.036824 75.010419 85.290273 95.014670
$w
[1] 2 2 1 1 3 2 4 4 4 3 2 3 4 3 5 1 1 4 1
$yin
[1] 6.00000 13.00000 16.00000 10.00000 26.00000 22.50000 21.50000 35.00000
[9] 50.50000 33.33333 36.00000 40.66667 64.50000 50.00000 50.40000 66.00000
[17] 54.00000 93.75000 85.00000
$data
$data$x
[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
[26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
$data$y
[1] 2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34 34 46
[20] 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76 84 36 46 68
[39] 32 48 52 56 64 66 54 70 92 93 120 85
$data$w
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[39] 1 1 1 1 1 1 1 1 1 1 1 1
$lev
[1] 0.8934338 0.4379689 0.1842314 0.1529048 0.3641292 0.2022506 0.3399561
[8] 0.3123173 0.3248036 0.2745481 0.1965797 0.2777060 0.3368286 0.2546068
[15] 0.5210306 0.1743541 0.1531692 0.6249904 0.3750748
$cv.crit
[1] 257.2678
$pen.crit
[1] 3015.936
$crit
[1] 3
$df
[1] 6.400884
$spar
[1] 0.4873957
$lambda
[1] 0.0008526606
$iparms
icrit ispar iter
3 0 13
$fit
$knot
[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.1428571 0.1904762 0.2380952
[8] 0.2857143 0.3333333 0.3809524 0.4285714 0.4761905 0.5238095 0.5714286
[15] 0.6190476 0.6666667 0.7142857 0.7619048 0.8571429 0.9047619 0.9523810
[22] 1.0000000 1.0000000 1.0000000 1.0000000
$nk
[1] 21
$min
[1] 4
$range
[1] 21
$coef
[1] 5.833836 8.018090 10.929996 14.991332 17.703639 20.964154 24.055137
[8] 28.186176 34.129352 39.113818 40.888197 43.249931 47.080201 51.367328
[15] 52.624683 54.840036 62.675393 74.718525 85.502238 91.843521 95.014670
attr(,"class")
[1] "smooth.spline.fit"
$call
smooth.spline(x = speed, y = dist, df = 6.4)
attr(,"class")
[1] "smooth.spline"
> ## End Don't show
>
> ## "Proof" that the derivatives are okay, by comparing with approximation
> diff.quot <- function(x, y) {
+ ## Difference quotient (central differences where available)
+ n <- length(x); i1 <- 1:2; i2 <- (n-1):n
+ c(diff(y[i1]) / diff(x[i1]), (y[-i1] - y[-i2]) / (x[-i1] - x[-i2]),
+ diff(y[i2]) / diff(x[i2]))
+ }
>
> xx <- unique(sort(c(seq(0, 30, by = .2), kn <- unique(speed))))
> i.kn <- match(kn, xx) # indices of knots within xx
> op <- par(mfrow = c(2,2))
> plot(speed, dist, xlim = range(xx), main = "Smooth.spline & derivatives")
> lines(pp <- predict(cars.spl, xx), col = "red")
> points(kn, pp$y[i.kn], pch = 3, col = "dark red")
> mtext("s(x)", col = "red")
> for(d in 1:3){
+ n <- length(pp$x)
+ plot(pp$x, diff.quot(pp$x,pp$y), type = "l", xlab = "x", ylab = "",
+ col = "blue", col.main = "red",
+ main = paste0("s" ,paste(rep("'", d), collapse = ""), "(x)"))
+ mtext("Difference quotient approx.(last)", col = "blue")
+ lines(pp <- predict(cars.spl, xx, deriv = d), col = "red")
+ ## Don't show:
+ print(pp)
+ ## End Don't show
+ points(kn, pp$y[i.kn], pch = 3, col = "dark red")
+ abline(h = 0, lty = 3, col = "gray")
+ }
$x
[1] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
[16] 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8
[31] 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8
[46] 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8
[61] 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8
[76] 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8
[91] 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8
[106] 21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6 22.8 23.0 23.2 23.4 23.6 23.8
[121] 24.0 24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8
[136] 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.8
[151] 30.0
$y
[1] 2.184254 2.184254 2.184254 2.184254 2.184254 2.184254 2.184254
[8] 2.184254 2.184254 2.184254 2.184254 2.184254 2.184254 2.184254
[15] 2.184254 2.184254 2.184254 2.184254 2.184254 2.184254 2.184254
[22] 2.185055 2.187545 2.191723 2.197591 2.205146 2.214391 2.225324
[29] 2.237946 2.252257 2.268256 2.285944 2.305321 2.326387 2.349141
[36] 2.373584 2.401852 2.436084 2.476278 2.522435 2.574554 2.635109
[43] 2.706573 2.788944 2.882223 2.986411 3.081697 3.148275 3.186142
[50] 3.195300 3.175749 3.166034 3.204703 3.291756 3.427192 3.611011
[57] 3.834464 4.088800 4.374019 4.690122 5.037108 5.344118 5.540295
[64] 5.625638 5.600147 5.463821 5.227052 4.900227 4.483347 3.976412
[71] 3.379422 2.813354 2.399183 2.136910 2.026534 2.068056 2.203151
[78] 2.373493 2.579082 2.819918 3.096002 3.369475 3.602482 3.795021
[85] 3.947094 4.058699 4.080338 3.962512 3.705220 3.308463 2.772241
[92] 2.234965 1.835047 1.572485 1.447281 1.459435 1.588383 1.813566
[99] 2.134982 2.552632 3.066516 3.621455 4.162272 4.688967 5.201539
[106] 5.699989 6.184317 6.654523 7.110606 7.552567 7.980405 8.394132
[113] 8.793758 9.179284 9.550708 9.908031 10.197841 10.366724 10.414682
[120] 10.341713 10.147818 9.918957 9.741090 9.614215 9.538335 9.513448
[127] 9.513448 9.513448 9.513448 9.513448 9.513448 9.513448 9.513448
[134] 9.513448 9.513448 9.513448 9.513448 9.513448 9.513448 9.513448
[141] 9.513448 9.513448 9.513448 9.513448 9.513448 9.513448 9.513448
[148] 9.513448 9.513448 9.513448 9.513448
$x
[1] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
[16] 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8
[31] 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8
[46] 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8
[61] 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8
[76] 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8
[91] 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8
[106] 21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6 22.8 23.0 23.2 23.4 23.6 23.8
[121] 24.0 24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8
[136] 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.8
[151] 30.0
$y
[1] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[6] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[11] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[16] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[21] -0.0002165147 0.0082269950 0.0166705047 0.0251140144 0.0335575241
[26] 0.0420010338 0.0504445435 0.0588880532 0.0673315629 0.0757750726
[31] 0.0842185822 0.0926620919 0.1011056016 0.1095491113 0.1179926210
[36] 0.1264361307 0.1562499762 0.1860638217 0.2158776671 0.2456915126
[41] 0.2755053581 0.3300457726 0.3845861870 0.4391266015 0.4936670160
[46] 0.5482074305 0.4046596591 0.2611118877 0.1175641163 -0.0259836551
[51] -0.1695314264 0.0723860374 0.3143035013 0.5562209652 0.7981384291
[56] 1.0400558930 1.1944722898 1.3488886866 1.5033050835 1.6577214803
[61] 1.8121378771 1.2579681380 0.7037983989 0.1496286598 -0.4045410793
[66] -0.9587108185 -1.4089861032 -1.8592613879 -2.3095366727 -2.7598119574
[71] -3.2100872422 -2.4505987906 -1.6911103389 -0.9316218873 -0.1721334357
[76] 0.5873550159 0.7635912416 0.9398274674 1.1160636931 1.2922999189
[81] 1.4685361447 1.2662005031 1.0638648615 0.8615292198 0.6591935782
[86] 0.4568579366 -0.2404682740 -0.9377944846 -1.6351206952 -2.3324469058
[91] -3.0297731165 -2.3429865119 -1.6561999074 -0.9694133029 -0.2826266984
[96] 0.4041599061 0.8853283585 1.3664968109 1.8476652633 2.3288337157
[101] 2.8100021681 2.7393907024 2.6687792367 2.5981677710 2.5275563053
[106] 2.4569448396 2.3863333739 2.3157219082 2.2451104425 2.1744989768
[111] 2.1038875112 2.0333827893 1.9628780674 1.8923733455 1.8218686237
[116] 1.7513639018 1.1467332516 0.5421026014 -0.0625280487 -0.6671586989
[121] -1.2717893491 -1.0168219086 -0.7618544680 -0.5068870274 -0.2519195869
[126] 0.0030478537 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[131] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[136] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[141] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[146] 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
[151] 0.0000000000
$x
[1] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
[16] 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8
[31] 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8
[46] 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8
[61] 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8
[76] 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8
[91] 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8
[106] 21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6 22.8 23.0 23.2 23.4 23.6 23.8
[121] 24.0 24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8
[136] 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.8
[151] 30.0
$y
[1] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[7] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[13] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[19] 0.00000000 0.00000000 0.04221755 0.04221755 0.04221755 0.04221755
[25] 0.04221755 0.04221755 0.04221755 0.04221755 0.04221755 0.04221755
[31] 0.04221755 0.04221755 0.04221755 0.04221755 0.04221755 0.14906923
[37] 0.14906923 0.14906923 0.14906923 0.14906923 0.27270207 0.27270207
[43] 0.27270207 0.27270207 0.27270207 -0.71773886 -0.71773886 -0.71773886
[49] -0.71773886 -0.71773886 1.20958732 1.20958732 1.20958732 1.20958732
[55] 1.20958732 0.77208198 0.77208198 0.77208198 0.77208198 0.77208198
[61] -2.77084870 -2.77084870 -2.77084870 -2.77084870 -2.77084870 -2.25137642
[67] -2.25137642 -2.25137642 -2.25137642 -2.25137642 3.79744226 3.79744226
[73] 3.79744226 3.79744226 3.79744226 0.88118113 0.88118113 0.88118113
[79] 0.88118113 0.88118113 -1.01167821 -1.01167821 -1.01167821 -1.01167821
[85] -1.01167821 -3.48663105 -3.48663105 -3.48663105 -3.48663105 -3.48663105
[91] 3.43393302 3.43393302 3.43393302 3.43393302 3.43393302 2.40584226
[97] 2.40584226 2.40584226 2.40584226 2.40584226 -0.35305733 -0.35305733
[103] -0.35305733 -0.35305733 -0.35305733 -0.35305733 -0.35305733 -0.35305733
[109] -0.35305733 -0.35305733 -0.35252361 -0.35252361 -0.35252361 -0.35252361
[115] -0.35252361 -3.02315325 -3.02315325 -3.02315325 -3.02315325 -3.02315325
[121] 1.27483720 1.27483720 1.27483720 1.27483720 1.27483720 1.27483720
[127] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[133] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[139] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[145] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[151] 0.00000000
> detach(); par(op)
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("princomp")
> ### * princomp
>
> flush(stderr()); flush(stdout())
>
> ### Name: princomp
> ### Title: Principal Components Analysis
> ### Aliases: princomp princomp.formula princomp.default plot.princomp
> ### print.princomp predict.princomp
> ### Keywords: multivariate
>
> ### ** Examples
>
> require(graphics)
>
> ## The variances of the variables in the
> ## USArrests data vary by orders of magnitude, so scaling is appropriate
> (pc.cr <- princomp(USArrests)) # inappropriate
Call:
princomp(x = USArrests)
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
82.890847 14.069560 6.424204 2.457837
4 variables and 50 observations.
> princomp(USArrests, cor = TRUE) # =^= prcomp(USArrests, scale=TRUE)
Call:
princomp(x = USArrests, cor = TRUE)
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
1.5748783 0.9948694 0.5971291 0.4164494
4 variables and 50 observations.
> ## Similar, but different:
> ## The standard deviations differ by a factor of sqrt(49/50)
>
> summary(pc.cr <- princomp(USArrests, cor = TRUE))
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.5748783 0.9948694 0.5971291 0.41644938
Proportion of Variance 0.6200604 0.2474413 0.0891408 0.04335752
Cumulative Proportion 0.6200604 0.8675017 0.9566425 1.00000000
> loadings(pc.cr) # note that blank entries are small but not zero
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
Murder -0.536 0.418 -0.341 0.649
Assault -0.583 0.188 -0.268 -0.743
UrbanPop -0.278 -0.873 -0.378 0.134
Rape -0.543 -0.167 0.818
Comp.1 Comp.2 Comp.3 Comp.4
SS loadings 1.00 1.00 1.00 1.00
Proportion Var 0.25 0.25 0.25 0.25
Cumulative Var 0.25 0.50 0.75 1.00
> ## The signs of the columns are arbitrary
> plot(pc.cr) # shows a screeplot.
> biplot(pc.cr)
>
> ## Formula interface
> princomp(~ ., data = USArrests, cor = TRUE)
Call:
princomp(formula = ~., data = USArrests, cor = TRUE)
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
1.5748783 0.9948694 0.5971291 0.4164494
4 variables and 50 observations.
>
> ## NA-handling
> USArrests[1, 2] <- NA
> pc.cr <- princomp(~ Murder + Assault + UrbanPop,
+ data = USArrests, na.action = na.exclude, cor = TRUE)
>
> ## (Simple) Robust PCA:
> ## Classical:
> (pc.cl <- princomp(stackloss))
Call:
princomp(x = stackloss)
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
13.596589 4.676077 2.617533 1.366320
4 variables and 21 observations.
>
>
> cleanEx()
> nameEx("print.ts")
> ### * print.ts
>
> flush(stderr()); flush(stdout())
>
> ### Name: print.ts
> ### Title: Printing and Formatting of Time-Series Objects
> ### Aliases: .preformat.ts print.ts
> ### Keywords: ts
>
> ### ** Examples
>
> print(ts(1:10, frequency = 7, start = c(12, 2)), calendar = TRUE)
p1 p2 p3 p4 p5 p6 p7
12 1 2 3 4 5 6
13 7 8 9 10
>
> print(sunsp.1 <- window(sunspot.month, end=c(1756, 12)))
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1749 58.0 62.6 70.0 55.7 85.0 83.5 94.8 66.3 75.9 75.5 158.6 85.2
1750 73.3 75.9 89.2 88.3 90.0 100.0 85.4 103.0 91.2 65.7 63.3 75.4
1751 70.0 43.5 45.3 56.4 60.7 50.7 66.3 59.8 23.5 23.2 28.5 44.0
1752 35.0 50.0 71.0 59.3 59.7 39.6 78.4 29.3 27.1 46.6 37.6 40.0
1753 44.0 32.0 45.7 38.0 36.0 31.7 22.0 39.0 28.0 25.0 20.0 6.7
1754 0.0 3.0 1.7 13.7 20.7 26.7 18.8 12.3 8.2 24.1 13.2 4.2
1755 10.2 11.2 6.8 6.5 0.0 0.0 8.6 3.2 17.8 23.7 6.8 20.0
1756 12.5 7.1 5.4 9.4 12.5 12.9 3.6 6.4 11.8 14.3 17.0 9.4
> m <- .preformat.ts(sunsp.1) # a character matrix
>
>
>
> cleanEx()
> nameEx("printCoefmat")
> ### * printCoefmat
>
> flush(stderr()); flush(stdout())
>
> ### Name: printCoefmat
> ### Title: Print Coefficient Matrices
> ### Aliases: printCoefmat
> ### Keywords: print
>
> ### ** Examples
>
> cmat <- cbind(rnorm(3, 10), sqrt(rchisq(3, 12)))
> cmat <- cbind(cmat, cmat[, 1]/cmat[, 2])
> cmat <- cbind(cmat, 2*pnorm(-cmat[, 3]))
> colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")
> printCoefmat(cmat[, 1:3])
Estimate Std.Err Z value
[1,] 9.3735 4.4447 2.1089
[2,] 10.1836 3.5496 2.8689
[3,] 9.1644 2.7365 3.3490
> printCoefmat(cmat)
Estimate Std.Err Z value Pr(>z)
[1,] 9.3735 4.4447 2.1089 0.0349492 *
[2,] 10.1836 3.5496 2.8689 0.0041185 **
[3,] 9.1644 2.7365 3.3490 0.0008111 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> op <- options(show.coef.Pvalues = FALSE)
> printCoefmat(cmat, digits = 2)
Estimate Std.Err Z value
[1,] 9.4 4.4 2.1
[2,] 10.2 3.5 2.9
[3,] 9.2 2.7 3.3
> printCoefmat(cmat, digits = 2, P.values = TRUE)
Estimate Std.Err Z value Pr(>z)
[1,] 9.4 4.4 2.1 0.035 *
[2,] 10.2 3.5 2.9 0.004 **
[3,] 9.2 2.7 3.3 8e-04 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> options(op) # restore
>
>
>
> cleanEx()
> nameEx("profile.nls")
> ### * profile.nls
>
> flush(stderr()); flush(stdout())
>
> ### Name: profile.nls
> ### Title: Method for Profiling nls Objects
> ### Aliases: profile.nls
> ### Keywords: nonlinear regression models
>
> ### ** Examples
>
> ## Don't show:
> od <- options(digits = 4)
> ## End Don't show
> # obtain the fitted object
> fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
> # get the profile for the fitted model: default level is too extreme
> pr1 <- profile(fm1, alpha = 0.05)
> # profiled values for the two parameters
> pr1$A
tau par.vals.A par.vals.lrc
1 -3.0873 13.59751 0.14033
2 -2.4957 14.46884 0.01607
3 -1.8906 15.41836 -0.11787
4 -1.2634 16.49088 -0.26877
5 -0.6080 17.75662 -0.44553
6 0.0000 19.14258 -0.63282
7 0.4998 20.52853 -0.80750
8 0.9465 22.06851 -0.98233
9 1.3780 23.98253 -1.17103
10 1.7908 26.44552 -1.37431
11 2.1841 29.75928 -1.59599
12 2.5559 34.43804 -1.84209
13 2.9028 41.42542 -2.12176
> pr1$lrc
tau par.vals.A par.vals.lrc
1 -2.9550 42.395076 -2.184153
2 -2.5201 33.446683 -1.836926
3 -2.0570 28.124205 -1.547326
4 -1.5710 24.656989 -1.293871
5 -1.0653 22.245847 -1.063030
6 -0.5412 20.482887 -0.845157
7 0.0000 19.142578 -0.632822
8 0.5539 18.095015 -0.420487
9 1.1022 17.273414 -0.207623
10 1.6298 16.621533 0.007939
11 2.1335 16.086803 0.234850
12 2.6052 15.638807 0.485009
13 3.0276 15.265409 0.779458
> # see also example(plot.profile.nls)
> ## Don't show:
> options(od)
> ## End Don't show
>
>
>
> cleanEx()
> nameEx("proj")
> ### * proj
>
> flush(stderr()); flush(stdout())
>
> ### Name: proj
> ### Title: Projections of Models
> ### Aliases: proj proj.default proj.lm proj.aov proj.aovlist
> ### Keywords: models
>
> ### ** Examples
>
> N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
> P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
> K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
> yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
+ 55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)
>
> npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),
+ K = factor(K), yield = yield)
> npk.aov <- aov(yield ~ block + N*P*K, npk)
> proj(npk.aov)
(Intercept) block N P K N:P N:K
1 54.875 -0.850 -2.808333 -0.5916667 -1.991667 0.9416667 1.175
2 54.875 -0.850 2.808333 -0.5916667 1.991667 -0.9416667 1.175
3 54.875 -0.850 -2.808333 0.5916667 1.991667 -0.9416667 -1.175
4 54.875 -0.850 2.808333 0.5916667 -1.991667 0.9416667 -1.175
5 54.875 2.575 2.808333 0.5916667 1.991667 0.9416667 1.175
6 54.875 2.575 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175
7 54.875 2.575 -2.808333 0.5916667 -1.991667 -0.9416667 1.175
8 54.875 2.575 -2.808333 -0.5916667 1.991667 0.9416667 -1.175
9 54.875 5.900 -2.808333 -0.5916667 1.991667 0.9416667 -1.175
10 54.875 5.900 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175
11 54.875 5.900 2.808333 0.5916667 1.991667 0.9416667 1.175
12 54.875 5.900 -2.808333 0.5916667 -1.991667 -0.9416667 1.175
13 54.875 -4.750 2.808333 0.5916667 1.991667 0.9416667 1.175
14 54.875 -4.750 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175
15 54.875 -4.750 -2.808333 0.5916667 -1.991667 -0.9416667 1.175
16 54.875 -4.750 -2.808333 -0.5916667 1.991667 0.9416667 -1.175
17 54.875 -4.350 2.808333 -0.5916667 1.991667 -0.9416667 1.175
18 54.875 -4.350 -2.808333 0.5916667 1.991667 -0.9416667 -1.175
19 54.875 -4.350 2.808333 0.5916667 -1.991667 0.9416667 -1.175
20 54.875 -4.350 -2.808333 -0.5916667 -1.991667 0.9416667 1.175
21 54.875 1.475 2.808333 0.5916667 -1.991667 0.9416667 -1.175
22 54.875 1.475 2.808333 -0.5916667 1.991667 -0.9416667 1.175
23 54.875 1.475 -2.808333 -0.5916667 -1.991667 0.9416667 1.175
24 54.875 1.475 -2.808333 0.5916667 1.991667 -0.9416667 -1.175
P:K Residuals
1 0.1416667 -1.39166667
2 -0.1416667 4.47500000
3 0.1416667 -5.02500000
4 -0.1416667 1.94166667
5 0.1416667 -5.30000000
6 0.1416667 2.80000000
7 -0.1416667 2.16666667
8 -0.1416667 0.33333333
9 -0.1416667 3.80833333
10 0.1416667 -3.22500000
11 0.1416667 1.07500000
12 -0.1416667 -1.65833333
13 0.1416667 4.22500000
14 0.1416667 0.42500000
15 -0.1416667 -0.50833333
16 -0.1416667 -4.14166667
17 -0.1416667 -2.82500000
18 0.1416667 3.17500000
19 -0.1416667 -1.75833333
20 0.1416667 1.40833333
21 -0.1416667 -0.18333333
22 -0.1416667 -1.65000000
23 0.1416667 -0.01666667
24 0.1416667 1.85000000
attr(,"df")
(Intercept) block N P K N:P
1 5 1 1 1 1
N:K P:K Residuals
1 1 12
attr(,"formula")
yield ~ block + N * P * K
attr(,"onedf")
[1] FALSE
attr(,"factors")
attr(,"factors")$`(Intercept)`
[1] "(Intercept)"
attr(,"factors")$block
[1] "block"
attr(,"factors")$N
[1] "N"
attr(,"factors")$P
[1] "P"
attr(,"factors")$K
[1] "K"
attr(,"factors")$`N:P`
[1] "N" "P"
attr(,"factors")$`N:K`
[1] "N" "K"
attr(,"factors")$`P:K`
[1] "P" "K"
attr(,"factors")$Residuals
[1] "block" "N" "P" "K" "Within"
attr(,"call")
aov(formula = yield ~ block + N * P * K, data = npk)
attr(,"t.factor")
block N P K N:P N:K P:K N:P:K
yield 0 0 0 0 0 0 0 0
block 1 0 0 0 0 0 0 0
N 0 1 0 0 1 1 0 1
P 0 0 1 0 1 0 1 1
K 0 0 0 1 0 1 1 1
attr(,"class")
[1] "aovproj"
>
> ## as a test, not particularly sensible
> options(contrasts = c("contr.helmert", "contr.treatment"))
> npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
> proj(npk.aovE)
(Intercept) :
(Intercept)
1 54.875
2 54.875
3 54.875
4 54.875
5 54.875
6 54.875
7 54.875
8 54.875
9 54.875
10 54.875
11 54.875
12 54.875
13 54.875
14 54.875
15 54.875
16 54.875
17 54.875
18 54.875
19 54.875
20 54.875
21 54.875
22 54.875
23 54.875
24 54.875
attr(,"df")
attr(,"df")$df
(Intercept)
1
attr(,"onedf")
attr(,"onedf")$onedf
[1] FALSE
attr(,"factors")
attr(,"factors")$`(Intercept)`
[1] "(Intercept)"
block :
N:P:K Residuals
1 -1.241667 0.3916667
2 -1.241667 0.3916667
3 -1.241667 0.3916667
4 -1.241667 0.3916667
5 1.241667 1.3333333
6 1.241667 1.3333333
7 1.241667 1.3333333
8 1.241667 1.3333333
9 1.241667 4.6583333
10 1.241667 4.6583333
11 1.241667 4.6583333
12 1.241667 4.6583333
13 1.241667 -5.9916667
14 1.241667 -5.9916667
15 1.241667 -5.9916667
16 1.241667 -5.9916667
17 -1.241667 -3.1083333
18 -1.241667 -3.1083333
19 -1.241667 -3.1083333
20 -1.241667 -3.1083333
21 -1.241667 2.7166667
22 -1.241667 2.7166667
23 -1.241667 2.7166667
24 -1.241667 2.7166667
attr(,"df")
attr(,"df")$df
N:P:K Residuals
1 4
attr(,"onedf")
attr(,"onedf")$onedf
[1] FALSE
attr(,"factors")
attr(,"factors")$`N:P:K`
[1] "N" "P" "K"
attr(,"factors")$Residuals
[1] "block"
Within :
N P K N:P N:K P:K Residuals
1 -2.808333 -0.5916667 -1.991667 0.9416667 1.175 0.1416667 -1.39166667
2 2.808333 -0.5916667 1.991667 -0.9416667 1.175 -0.1416667 4.47500000
3 -2.808333 0.5916667 1.991667 -0.9416667 -1.175 0.1416667 -5.02500000
4 2.808333 0.5916667 -1.991667 0.9416667 -1.175 -0.1416667 1.94166667
5 2.808333 0.5916667 1.991667 0.9416667 1.175 0.1416667 -5.30000000
6 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175 0.1416667 2.80000000
7 -2.808333 0.5916667 -1.991667 -0.9416667 1.175 -0.1416667 2.16666667
8 -2.808333 -0.5916667 1.991667 0.9416667 -1.175 -0.1416667 0.33333333
9 -2.808333 -0.5916667 1.991667 0.9416667 -1.175 -0.1416667 3.80833333
10 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175 0.1416667 -3.22500000
11 2.808333 0.5916667 1.991667 0.9416667 1.175 0.1416667 1.07500000
12 -2.808333 0.5916667 -1.991667 -0.9416667 1.175 -0.1416667 -1.65833333
13 2.808333 0.5916667 1.991667 0.9416667 1.175 0.1416667 4.22500000
14 2.808333 -0.5916667 -1.991667 -0.9416667 -1.175 0.1416667 0.42500000
15 -2.808333 0.5916667 -1.991667 -0.9416667 1.175 -0.1416667 -0.50833333
16 -2.808333 -0.5916667 1.991667 0.9416667 -1.175 -0.1416667 -4.14166667
17 2.808333 -0.5916667 1.991667 -0.9416667 1.175 -0.1416667 -2.82500000
18 -2.808333 0.5916667 1.991667 -0.9416667 -1.175 0.1416667 3.17500000
19 2.808333 0.5916667 -1.991667 0.9416667 -1.175 -0.1416667 -1.75833333
20 -2.808333 -0.5916667 -1.991667 0.9416667 1.175 0.1416667 1.40833333
21 2.808333 0.5916667 -1.991667 0.9416667 -1.175 -0.1416667 -0.18333333
22 2.808333 -0.5916667 1.991667 -0.9416667 1.175 -0.1416667 -1.65000000
23 -2.808333 -0.5916667 -1.991667 0.9416667 1.175 0.1416667 -0.01666667
24 -2.808333 0.5916667 1.991667 -0.9416667 -1.175 0.1416667 1.85000000
attr(,"df")
attr(,"df")$df
N P K N:P N:K P:K Residuals
1 1 1 1 1 1 12
attr(,"onedf")
attr(,"onedf")$onedf
[1] FALSE
attr(,"factors")
attr(,"factors")$N
[1] "N"
attr(,"factors")$P
[1] "P"
attr(,"factors")$K
[1] "K"
attr(,"factors")$`N:P`
[1] "N" "P"
attr(,"factors")$`N:K`
[1] "N" "K"
attr(,"factors")$`P:K`
[1] "P" "K"
attr(,"factors")$Residuals
[1] "block" "Within"
>
>
>
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> cleanEx()
> nameEx("prop.test")
> ### * prop.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: prop.test
> ### Title: Test of Equal or Given Proportions
> ### Aliases: prop.test
> ### Keywords: htest
>
> ### ** Examples
>
> heads <- rbinom(1, size = 100, prob = .5)
> prop.test(heads, 100) # continuity correction TRUE by default
1-sample proportions test with continuity correction
data: heads out of 100, null probability 0.5
X-squared = 0.09, df = 1, p-value = 0.7642
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.4183183 0.6201278
sample estimates:
p
0.52
> prop.test(heads, 100, correct = FALSE)
1-sample proportions test without continuity correction
data: heads out of 100, null probability 0.5
X-squared = 0.16, df = 1, p-value = 0.6892
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.4231658 0.6153545
sample estimates:
p
0.52
>
> ## Data from Fleiss (1981), p. 139.
> ## H0: The null hypothesis is that the four populations from which
> ## the patients were drawn have the same true proportion of smokers.
> ## A: The alternative is that this proportion is different in at
> ## least one of the populations.
>
> smokers <- c( 83, 90, 129, 70 )
> patients <- c( 86, 93, 136, 82 )
> prop.test(smokers, patients)
4-sample test for equality of proportions without continuity
correction
data: smokers out of patients
X-squared = 12.6004, df = 3, p-value = 0.005585
alternative hypothesis: two.sided
sample estimates:
prop 1 prop 2 prop 3 prop 4
0.9651163 0.9677419 0.9485294 0.8536585
>
>
>
> cleanEx()
> nameEx("prop.trend.test")
> ### * prop.trend.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: prop.trend.test
> ### Title: Test for trend in proportions
> ### Aliases: prop.trend.test
> ### Keywords: htest
>
> ### ** Examples
>
> smokers <- c( 83, 90, 129, 70 )
> patients <- c( 86, 93, 136, 82 )
> prop.test(smokers, patients)
4-sample test for equality of proportions without continuity
correction
data: smokers out of patients
X-squared = 12.6004, df = 3, p-value = 0.005585
alternative hypothesis: two.sided
sample estimates:
prop 1 prop 2 prop 3 prop 4
0.9651163 0.9677419 0.9485294 0.8536585
> prop.trend.test(smokers, patients)
Chi-squared Test for Trend in Proportions
data: smokers out of patients ,
using scores: 1 2 3 4
X-squared = 8.2249, df = 1, p-value = 0.004132
> prop.trend.test(smokers, patients, c(0,0,0,1))
Chi-squared Test for Trend in Proportions
data: smokers out of patients ,
using scores: 0 0 0 1
X-squared = 12.1731, df = 1, p-value = 0.0004848
>
>
>
> cleanEx()
> nameEx("qqnorm")
> ### * qqnorm
>
> flush(stderr()); flush(stdout())
>
> ### Name: qqnorm
> ### Title: Quantile-Quantile Plots
> ### Aliases: qqnorm qqnorm.default qqplot qqline
> ### Keywords: hplot distribution
>
> ### ** Examples
>
> require(graphics)
>
> y <- rt(200, df = 5)
> qqnorm(y); qqline(y, col = 2)
> qqplot(y, rt(300, df = 5))
>
> qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")
>
> ## "QQ-Chisquare" : --------------------------
> y <- rchisq(500, df = 3)
> ## Q-Q plot for Chi^2 data against true theoretical distribution:
> qqplot(qchisq(ppoints(500), df = 3), y,
+ main = expression("Q-Q plot for" ~~ {chi^2}[nu == 3]))
> qqline(y, distribution = function(p) qchisq(p, df = 3),
+ prob = c(0.1, 0.6), col = 2)
> mtext("qqline(*, dist = qchisq(., df=3), prob = c(0.1, 0.6))")
>
>
>
> cleanEx()
> nameEx("quade.test")
> ### * quade.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: quade.test
> ### Title: Quade Test
> ### Aliases: quade.test quade.test.default quade.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> ## Conover (1999, p. 375f):
> ## Numbers of five brands of a new hand lotion sold in seven stores
> ## during one week.
> y <- matrix(c( 5, 4, 7, 10, 12,
+ 1, 3, 1, 0, 2,
+ 16, 12, 22, 22, 35,
+ 5, 4, 3, 5, 4,
+ 10, 9, 7, 13, 10,
+ 19, 18, 28, 37, 58,
+ 10, 7, 6, 8, 7),
+ nrow = 7, byrow = TRUE,
+ dimnames =
+ list(Store = as.character(1:7),
+ Brand = LETTERS[1:5]))
> y
Brand
Store A B C D E
1 5 4 7 10 12
2 1 3 1 0 2
3 16 12 22 22 35
4 5 4 3 5 4
5 10 9 7 13 10
6 19 18 28 37 58
7 10 7 6 8 7
> quade.test(y)
Quade test
data: y
Quade F = 3.8293, num df = 4, denom df = 24, p-value = 0.01519
>
>
>
> cleanEx()
> nameEx("quantile")
> ### * quantile
>
> flush(stderr()); flush(stdout())
>
> ### Name: quantile
> ### Title: Sample Quantiles
> ### Aliases: quantile quantile.default
> ### Keywords: univar
>
> ### ** Examples
>
> quantile(x <- rnorm(1001)) # Extremes & Quartiles by default
0% 25% 50% 75% 100%
-3.00804860 -0.69731820 -0.03472603 0.68924373 3.81027668
> quantile(x, probs = c(0.1, 0.5, 1, 2, 5, 10, 50, NA)/100)
0.1% 0.5% 1% 2% 5% 10%
-2.99694930 -2.59232767 -2.42431731 -2.24515257 -1.72663060 -1.33880074
50%
-0.03472603 NA
>
> ### Compare different types
> p <- c(0.1, 0.5, 1, 2, 5, 10, 50)/100
> res <- matrix(as.numeric(NA), 9, 7)
> for(type in 1:9) res[type, ] <- y <- quantile(x, p, type = type)
> dimnames(res) <- list(1:9, names(y))
> round(res, 3)
0.1% 0.5% 1% 2% 5% 10% 50%
1 -2.997 -2.592 -2.424 -2.245 -1.727 -1.339 -0.035
2 -2.997 -2.592 -2.424 -2.245 -1.727 -1.339 -0.035
3 -3.008 -2.596 -2.433 -2.265 -1.733 -1.344 -0.036
4 -3.008 -2.596 -2.433 -2.264 -1.733 -1.344 -0.035
5 -3.002 -2.594 -2.428 -2.255 -1.730 -1.341 -0.035
6 -3.008 -2.596 -2.432 -2.264 -1.733 -1.343 -0.035
7 -2.997 -2.592 -2.424 -2.245 -1.727 -1.339 -0.035
8 -3.004 -2.595 -2.430 -2.258 -1.731 -1.342 -0.035
9 -3.004 -2.595 -2.429 -2.257 -1.730 -1.341 -0.035
>
>
>
> cleanEx()
> nameEx("r2dtable")
> ### * r2dtable
>
> flush(stderr()); flush(stdout())
>
> ### Name: r2dtable
> ### Title: Random 2-way Tables with Given Marginals
> ### Aliases: r2dtable
> ### Keywords: distribution
>
> ### ** Examples
>
> ## Fisher's Tea Drinker data.
> TeaTasting <-
+ matrix(c(3, 1, 1, 3),
+ nrow = 2,
+ dimnames = list(Guess = c("Milk", "Tea"),
+ Truth = c("Milk", "Tea")))
> ## Simulate permutation test for independence based on the maximum
> ## Pearson residuals (rather than their sum).
> rowTotals <- rowSums(TeaTasting)
> colTotals <- colSums(TeaTasting)
> nOfCases <- sum(rowTotals)
> expected <- outer(rowTotals, colTotals, "*") / nOfCases
> maxSqResid <- function(x) max((x - expected) ^ 2 / expected)
> simMaxSqResid <-
+ sapply(r2dtable(1000, rowTotals, colTotals), maxSqResid)
> sum(simMaxSqResid >= maxSqResid(TeaTasting)) / 1000
[1] 0.465
> ## Fisher's exact test gives p = 0.4857 ...
>
>
>
> cleanEx()
> nameEx("rWishart")
> ### * rWishart
>
> flush(stderr()); flush(stdout())
>
> ### Name: rWishart
> ### Title: Random Wishart Distributed Matrices
> ### Aliases: rWishart
> ### Keywords: multivariate
>
> ### ** Examples
>
> ## Artificial
> S <- toeplitz((10:1)/10)
> set.seed(11)
> R <- rWishart(1000, 20, S)
> dim(R) # 10 10 1000
[1] 10 10 1000
> mR <- apply(R, 1:2, mean) # ~= E[ Wish(S, 20) ] = 20 * S
> stopifnot(all.equal(mR, 20*S, tolerance = .009))
>
> ## See Details, the variance is
> Va <- 20*(S^2 + tcrossprod(diag(S)))
> vR <- apply(R, 1:2, var)
> stopifnot(all.equal(vR, Va, tolerance = 1/16))
>
>
>
> cleanEx()
> nameEx("read.ftable")
> ### * read.ftable
>
> flush(stderr()); flush(stdout())
>
> ### Name: read.ftable
> ### Title: Manipulate Flat Contingency Tables
> ### Aliases: read.ftable write.ftable format.ftable print.ftable
> ### Keywords: category
>
> ### ** Examples
>
> ## Agresti (1990), page 157, Table 5.8.
> ## Not in ftable standard format, but o.k.
> file <- tempfile()
> cat(" Intercourse\n",
+ "Race Gender Yes No\n",
+ "White Male 43 134\n",
+ " Female 26 149\n",
+ "Black Male 29 23\n",
+ " Female 22 36\n",
+ file = file)
> ft1 <- read.ftable(file)
> ft1
Intercourse Yes No
Race Gender
White Male 43 134
Female 26 149
Black Male 29 23
Female 22 36
> unlink(file)
>
> ## Agresti (1990), page 297, Table 8.16.
> ## Almost o.k., but misses the name of the row variable.
> file <- tempfile()
> cat(" \"Tonsil Size\"\n",
+ " \"Not Enl.\" \"Enl.\" \"Greatly Enl.\"\n",
+ "Noncarriers 497 560 269\n",
+ "Carriers 19 29 24\n",
+ file = file)
> ft <- read.ftable(file, skip = 2,
+ row.var.names = "Status",
+ col.vars = list("Tonsil Size" =
+ c("Not Enl.", "Enl.", "Greatly Enl.")))
> ft
Tonsil Size Not Enl. Enl. Greatly Enl.
Status
Noncarriers 497 560 269
Carriers 19 29 24
> unlink(file)
>
> ft22 <- ftable(Titanic, row.vars = 2:1, col.vars = 4:3)
> write.ftable(ft22, quote = FALSE)
Survived No Yes
Age Child Adult Child Adult
Sex Class
Male 1st 0 118 5 57
2nd 0 154 11 14
3rd 35 387 13 75
Crew 0 670 0 192
Female 1st 0 4 1 140
2nd 0 13 13 80
3rd 17 89 14 76
Crew 0 3 0 20
> write.ftable(ft22, quote = FALSE, method="row.compact")
Survived No Yes
Sex Class Age Child Adult Child Adult
Male 1st 0 118 5 57
2nd 0 154 11 14
3rd 35 387 13 75
Crew 0 670 0 192
Female 1st 0 4 1 140
2nd 0 13 13 80
3rd 17 89 14 76
Crew 0 3 0 20
> write.ftable(ft22, quote = FALSE, method="col.compact")
Survived No Yes
Age Child Adult Child Adult
Sex Class
Male 1st 0 118 5 57
2nd 0 154 11 14
3rd 35 387 13 75
Crew 0 670 0 192
Female 1st 0 4 1 140
2nd 0 13 13 80
3rd 17 89 14 76
Crew 0 3 0 20
> write.ftable(ft22, quote = FALSE, method="compact")
Survived No Yes
Sex Class | Age Child Adult Child Adult
Male 1st 0 118 5 57
2nd 0 154 11 14
3rd 35 387 13 75
Crew 0 670 0 192
Female 1st 0 4 1 140
2nd 0 13 13 80
3rd 17 89 14 76
Crew 0 3 0 20
> ## Don't show:
> op <- options(warn = 2) # no warnings allowed
> stopifnot(dim(format(ft)) == 4:5,
+ dim(format(ftable(UCBAdmissions))) == c(6,9))
> meths <- c("non.compact", "row.compact", "col.compact", "compact")
> dimform <-
+ function(ft) sapply(meths, function(M) dim(format(ft, method = M)))
> m.eq <- function(M,m) all.equal(unname(M), m, tolerance = 0)
> ## All format(..) w/o warnings:
> stopifnot(m.eq(print(dimform(ft22)),
+ rbind(11:10, rep(7:6, each = 2))),
+ m.eq(print(dimform(ftable(Titanic, row.vars = integer()))),
+ rbind(rep(6:5,2), 33)))
non.compact row.compact col.compact compact
[1,] 11 10 11 10
[2,] 7 7 6 6
non.compact row.compact col.compact compact
[1,] 6 5 6 5
[2,] 33 33 33 33
> options(op)
> ## End Don't show
>
>
>
> cleanEx()
> nameEx("rect.hclust")
> ### * rect.hclust
>
> flush(stderr()); flush(stdout())
>
> ### Name: rect.hclust
> ### Title: Draw Rectangles Around Hierarchical Clusters
> ### Aliases: rect.hclust
> ### Keywords: aplot cluster
>
> ### ** Examples
>
> require(graphics)
>
> hca <- hclust(dist(USArrests))
> plot(hca)
> rect.hclust(hca, k = 3, border = "red")
> x <- rect.hclust(hca, h = 50, which = c(2,7), border = 3:4)
> x
[[1]]
Alabama Alaska Delaware Louisiana Mississippi
1 2 8 18 24
South Carolina
40
[[2]]
Connecticut Idaho Indiana Kansas Kentucky Montana
7 12 14 16 17 26
Nebraska Ohio Pennsylvania Utah
27 35 38 44
>
>
>
> cleanEx()
> nameEx("relevel")
> ### * relevel
>
> flush(stderr()); flush(stdout())
>
> ### Name: relevel
> ### Title: Reorder Levels of Factor
> ### Aliases: relevel relevel.default relevel.factor relevel.ordered
> ### Keywords: utilities models
>
> ### ** Examples
>
> warpbreaks$tension <- relevel(warpbreaks$tension, ref = "M")
> summary(lm(breaks ~ wool + tension, data = warpbreaks))
Call:
lm(formula = breaks ~ wool + tension, data = warpbreaks)
Residuals:
Min 1Q Median 3Q Max
-19.500 -8.083 -2.139 6.472 30.722
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 29.278 3.162 9.260 2e-12 ***
woolB -5.778 3.162 -1.827 0.0736 .
tensionL 10.000 3.872 2.582 0.0128 *
tensionH -4.722 3.872 -1.219 0.2284
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 11.62 on 50 degrees of freedom
Multiple R-squared: 0.2691, Adjusted R-squared: 0.2253
F-statistic: 6.138 on 3 and 50 DF, p-value: 0.00123
>
>
>
> cleanEx()
> nameEx("reorder.dendrogram")
> ### * reorder.dendrogram
>
> flush(stderr()); flush(stdout())
>
> ### Name: reorder.dendrogram
> ### Title: Reorder a Dendrogram
> ### Aliases: reorder.dendrogram
> ### Keywords: manip
>
> ### ** Examples
>
> require(graphics)
>
> set.seed(123)
> x <- rnorm(10)
> hc <- hclust(dist(x))
> dd <- as.dendrogram(hc)
> dd.reorder <- reorder(dd, 10:1)
> plot(dd, main = "random dendrogram 'dd'")
>
> op <- par(mfcol = 1:2)
> plot(dd.reorder, main = "reorder(dd, 10:1)")
> plot(reorder(dd, 10:1, agglo.FUN = mean), main = "reorder(dd, 10:1, mean)")
> par(op)
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("reorder.factor")
> ### * reorder.factor
>
> flush(stderr()); flush(stdout())
>
> ### Name: reorder.default
> ### Title: Reorder Levels of a Factor
> ### Aliases: reorder reorder.default
> ### Keywords: utilities
>
> ### ** Examples
>
> require(graphics)
>
> bymedian <- with(InsectSprays, reorder(spray, count, median))
> boxplot(count ~ bymedian, data = InsectSprays,
+ xlab = "Type of spray", ylab = "Insect count",
+ main = "InsectSprays data", varwidth = TRUE,
+ col = "lightgray")
>
>
>
> cleanEx()
> nameEx("replications")
> ### * replications
>
> flush(stderr()); flush(stdout())
>
> ### Name: replications
> ### Title: Number of Replications of Terms
> ### Aliases: replications
> ### Keywords: models
>
> ### ** Examples
>
> ## From Venables and Ripley (2002) p.165.
> N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
> P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
> K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
> yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
+ 55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)
>
> npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),
+ K = factor(K), yield = yield)
> replications(~ . - yield, npk)
block N P K
4 12 12 12
>
>
>
> cleanEx()
> nameEx("reshape")
> ### * reshape
>
> flush(stderr()); flush(stdout())
>
> ### Name: reshape
> ### Title: Reshape Grouped Data
> ### Aliases: reshape
> ### Keywords: manip
>
> ### ** Examples
>
> summary(Indometh)
Subject time conc
1:11 Min. :0.250 Min. :0.0500
4:11 1st Qu.:0.750 1st Qu.:0.1100
2:11 Median :2.000 Median :0.3400
5:11 Mean :2.886 Mean :0.5918
6:11 3rd Qu.:5.000 3rd Qu.:0.8325
3:11 Max. :8.000 Max. :2.7200
> wide <- reshape(Indometh, v.names = "conc", idvar = "Subject",
+ timevar = "time", direction = "wide")
> wide
Subject conc.0.25 conc.0.5 conc.0.75 conc.1 conc.1.25 conc.2 conc.3 conc.4
1 1 1.50 0.94 0.78 0.48 0.37 0.19 0.12 0.11
12 2 2.03 1.63 0.71 0.70 0.64 0.36 0.32 0.20
23 3 2.72 1.49 1.16 0.80 0.80 0.39 0.22 0.12
34 4 1.85 1.39 1.02 0.89 0.59 0.40 0.16 0.11
45 5 2.05 1.04 0.81 0.39 0.30 0.23 0.13 0.11
56 6 2.31 1.44 1.03 0.84 0.64 0.42 0.24 0.17
conc.5 conc.6 conc.8
1 0.08 0.07 0.05
12 0.25 0.12 0.08
23 0.11 0.08 0.08
34 0.10 0.07 0.07
45 0.08 0.10 0.06
56 0.13 0.10 0.09
>
> reshape(wide, direction = "long")
Subject time conc
1.0.25 1 0.25 1.50
2.0.25 2 0.25 2.03
3.0.25 3 0.25 2.72
4.0.25 4 0.25 1.85
5.0.25 5 0.25 2.05
6.0.25 6 0.25 2.31
1.0.5 1 0.50 0.94
2.0.5 2 0.50 1.63
3.0.5 3 0.50 1.49
4.0.5 4 0.50 1.39
5.0.5 5 0.50 1.04
6.0.5 6 0.50 1.44
1.0.75 1 0.75 0.78
2.0.75 2 0.75 0.71
3.0.75 3 0.75 1.16
4.0.75 4 0.75 1.02
5.0.75 5 0.75 0.81
6.0.75 6 0.75 1.03
1.1 1 1.00 0.48
2.1 2 1.00 0.70
3.1 3 1.00 0.80
4.1 4 1.00 0.89
5.1 5 1.00 0.39
6.1 6 1.00 0.84
1.1.25 1 1.25 0.37
2.1.25 2 1.25 0.64
3.1.25 3 1.25 0.80
4.1.25 4 1.25 0.59
5.1.25 5 1.25 0.30
6.1.25 6 1.25 0.64
1.2 1 2.00 0.19
2.2 2 2.00 0.36
3.2 3 2.00 0.39
4.2 4 2.00 0.40
5.2 5 2.00 0.23
6.2 6 2.00 0.42
1.3 1 3.00 0.12
2.3 2 3.00 0.32
3.3 3 3.00 0.22
4.3 4 3.00 0.16
5.3 5 3.00 0.13
6.3 6 3.00 0.24
1.4 1 4.00 0.11
2.4 2 4.00 0.20
3.4 3 4.00 0.12
4.4 4 4.00 0.11
5.4 5 4.00 0.11
6.4 6 4.00 0.17
1.5 1 5.00 0.08
2.5 2 5.00 0.25
3.5 3 5.00 0.11
4.5 4 5.00 0.10
5.5 5 5.00 0.08
6.5 6 5.00 0.13
1.6 1 6.00 0.07
2.6 2 6.00 0.12
3.6 3 6.00 0.08
4.6 4 6.00 0.07
5.6 5 6.00 0.10
6.6 6 6.00 0.10
1.8 1 8.00 0.05
2.8 2 8.00 0.08
3.8 3 8.00 0.08
4.8 4 8.00 0.07
5.8 5 8.00 0.06
6.8 6 8.00 0.09
> reshape(wide, idvar = "Subject", varying = list(2:12),
+ v.names = "conc", direction = "long")
Subject time conc
1.1 1 1 1.50
2.1 2 1 2.03
3.1 3 1 2.72
4.1 4 1 1.85
5.1 5 1 2.05
6.1 6 1 2.31
1.2 1 2 0.94
2.2 2 2 1.63
3.2 3 2 1.49
4.2 4 2 1.39
5.2 5 2 1.04
6.2 6 2 1.44
1.3 1 3 0.78
2.3 2 3 0.71
3.3 3 3 1.16
4.3 4 3 1.02
5.3 5 3 0.81
6.3 6 3 1.03
1.4 1 4 0.48
2.4 2 4 0.70
3.4 3 4 0.80
4.4 4 4 0.89
5.4 5 4 0.39
6.4 6 4 0.84
1.5 1 5 0.37
2.5 2 5 0.64
3.5 3 5 0.80
4.5 4 5 0.59
5.5 5 5 0.30
6.5 6 5 0.64
1.6 1 6 0.19
2.6 2 6 0.36
3.6 3 6 0.39
4.6 4 6 0.40
5.6 5 6 0.23
6.6 6 6 0.42
1.7 1 7 0.12
2.7 2 7 0.32
3.7 3 7 0.22
4.7 4 7 0.16
5.7 5 7 0.13
6.7 6 7 0.24
1.8 1 8 0.11
2.8 2 8 0.20
3.8 3 8 0.12
4.8 4 8 0.11
5.8 5 8 0.11
6.8 6 8 0.17
1.9 1 9 0.08
2.9 2 9 0.25
3.9 3 9 0.11
4.9 4 9 0.10
5.9 5 9 0.08
6.9 6 9 0.13
1.10 1 10 0.07
2.10 2 10 0.12
3.10 3 10 0.08
4.10 4 10 0.07
5.10 5 10 0.10
6.10 6 10 0.10
1.11 1 11 0.05
2.11 2 11 0.08
3.11 3 11 0.08
4.11 4 11 0.07
5.11 5 11 0.06
6.11 6 11 0.09
>
> ## times need not be numeric
> df <- data.frame(id = rep(1:4, rep(2,4)),
+ visit = I(rep(c("Before","After"), 4)),
+ x = rnorm(4), y = runif(4))
> df
id visit x y
1 1 Before -0.6264538 0.62911404
2 1 After 0.1836433 0.06178627
3 2 Before -0.8356286 0.20597457
4 2 After 1.5952808 0.17655675
5 3 Before -0.6264538 0.62911404
6 3 After 0.1836433 0.06178627
7 4 Before -0.8356286 0.20597457
8 4 After 1.5952808 0.17655675
> reshape(df, timevar = "visit", idvar = "id", direction = "wide")
id x.Before y.Before x.After y.After
1 1 -0.6264538 0.6291140 0.1836433 0.06178627
3 2 -0.8356286 0.2059746 1.5952808 0.17655675
5 3 -0.6264538 0.6291140 0.1836433 0.06178627
7 4 -0.8356286 0.2059746 1.5952808 0.17655675
> ## warns that y is really varying
> reshape(df, timevar = "visit", idvar = "id", direction = "wide", v.names = "x")
Warning in reshapeWide(data, idvar = idvar, timevar = timevar, varying = varying, :
some constant variables (y) are really varying
id y x.Before x.After
1 1 0.6291140 -0.6264538 0.1836433
3 2 0.2059746 -0.8356286 1.5952808
5 3 0.6291140 -0.6264538 0.1836433
7 4 0.2059746 -0.8356286 1.5952808
>
>
> ## unbalanced 'long' data leads to NA fill in 'wide' form
> df2 <- df[1:7, ]
> df2
id visit x y
1 1 Before -0.6264538 0.62911404
2 1 After 0.1836433 0.06178627
3 2 Before -0.8356286 0.20597457
4 2 After 1.5952808 0.17655675
5 3 Before -0.6264538 0.62911404
6 3 After 0.1836433 0.06178627
7 4 Before -0.8356286 0.20597457
> reshape(df2, timevar = "visit", idvar = "id", direction = "wide")
id x.Before y.Before x.After y.After
1 1 -0.6264538 0.6291140 0.1836433 0.06178627
3 2 -0.8356286 0.2059746 1.5952808 0.17655675
5 3 -0.6264538 0.6291140 0.1836433 0.06178627
7 4 -0.8356286 0.2059746 NA NA
>
> ## Alternative regular expressions for guessing names
> df3 <- data.frame(id = 1:4, age = c(40,50,60,50), dose1 = c(1,2,1,2),
+ dose2 = c(2,1,2,1), dose4 = c(3,3,3,3))
> reshape(df3, direction = "long", varying = 3:5, sep = "")
id age time dose
1.1 1 40 1 1
2.1 2 50 1 2
3.1 3 60 1 1
4.1 4 50 1 2
1.2 1 40 2 2
2.2 2 50 2 1
3.2 3 60 2 2
4.2 4 50 2 1
1.4 1 40 4 3
2.4 2 50 4 3
3.4 3 60 4 3
4.4 4 50 4 3
>
>
> ## an example that isn't longitudinal data
> state.x77 <- as.data.frame(state.x77)
> long <- reshape(state.x77, idvar = "state", ids = row.names(state.x77),
+ times = names(state.x77), timevar = "Characteristic",
+ varying = list(names(state.x77)), direction = "long")
>
> reshape(long, direction = "wide")
state Population Income Illiteracy Life Exp
Alabama.Population Alabama 3615 3624 2.1 69.05
Alaska.Population Alaska 365 6315 1.5 69.31
Arizona.Population Arizona 2212 4530 1.8 70.55
Arkansas.Population Arkansas 2110 3378 1.9 70.66
California.Population California 21198 5114 1.1 71.71
Colorado.Population Colorado 2541 4884 0.7 72.06
Connecticut.Population Connecticut 3100 5348 1.1 72.48
Delaware.Population Delaware 579 4809 0.9 70.06
Florida.Population Florida 8277 4815 1.3 70.66
Georgia.Population Georgia 4931 4091 2.0 68.54
Hawaii.Population Hawaii 868 4963 1.9 73.60
Idaho.Population Idaho 813 4119 0.6 71.87
Illinois.Population Illinois 11197 5107 0.9 70.14
Indiana.Population Indiana 5313 4458 0.7 70.88
Iowa.Population Iowa 2861 4628 0.5 72.56
Kansas.Population Kansas 2280 4669 0.6 72.58
Kentucky.Population Kentucky 3387 3712 1.6 70.10
Louisiana.Population Louisiana 3806 3545 2.8 68.76
Maine.Population Maine 1058 3694 0.7 70.39
Maryland.Population Maryland 4122 5299 0.9 70.22
Massachusetts.Population Massachusetts 5814 4755 1.1 71.83
Michigan.Population Michigan 9111 4751 0.9 70.63
Minnesota.Population Minnesota 3921 4675 0.6 72.96
Mississippi.Population Mississippi 2341 3098 2.4 68.09
Missouri.Population Missouri 4767 4254 0.8 70.69
Montana.Population Montana 746 4347 0.6 70.56
Nebraska.Population Nebraska 1544 4508 0.6 72.60
Nevada.Population Nevada 590 5149 0.5 69.03
New Hampshire.Population New Hampshire 812 4281 0.7 71.23
New Jersey.Population New Jersey 7333 5237 1.1 70.93
New Mexico.Population New Mexico 1144 3601 2.2 70.32
New York.Population New York 18076 4903 1.4 70.55
North Carolina.Population North Carolina 5441 3875 1.8 69.21
North Dakota.Population North Dakota 637 5087 0.8 72.78
Ohio.Population Ohio 10735 4561 0.8 70.82
Oklahoma.Population Oklahoma 2715 3983 1.1 71.42
Oregon.Population Oregon 2284 4660 0.6 72.13
Pennsylvania.Population Pennsylvania 11860 4449 1.0 70.43
Rhode Island.Population Rhode Island 931 4558 1.3 71.90
South Carolina.Population South Carolina 2816 3635 2.3 67.96
South Dakota.Population South Dakota 681 4167 0.5 72.08
Tennessee.Population Tennessee 4173 3821 1.7 70.11
Texas.Population Texas 12237 4188 2.2 70.90
Utah.Population Utah 1203 4022 0.6 72.90
Vermont.Population Vermont 472 3907 0.6 71.64
Virginia.Population Virginia 4981 4701 1.4 70.08
Washington.Population Washington 3559 4864 0.6 71.72
West Virginia.Population West Virginia 1799 3617 1.4 69.48
Wisconsin.Population Wisconsin 4589 4468 0.7 72.48
Wyoming.Population Wyoming 376 4566 0.6 70.29
Murder HS Grad Frost Area
Alabama.Population 15.1 41.3 20 50708
Alaska.Population 11.3 66.7 152 566432
Arizona.Population 7.8 58.1 15 113417
Arkansas.Population 10.1 39.9 65 51945
California.Population 10.3 62.6 20 156361
Colorado.Population 6.8 63.9 166 103766
Connecticut.Population 3.1 56.0 139 4862
Delaware.Population 6.2 54.6 103 1982
Florida.Population 10.7 52.6 11 54090
Georgia.Population 13.9 40.6 60 58073
Hawaii.Population 6.2 61.9 0 6425
Idaho.Population 5.3 59.5 126 82677
Illinois.Population 10.3 52.6 127 55748
Indiana.Population 7.1 52.9 122 36097
Iowa.Population 2.3 59.0 140 55941
Kansas.Population 4.5 59.9 114 81787
Kentucky.Population 10.6 38.5 95 39650
Louisiana.Population 13.2 42.2 12 44930
Maine.Population 2.7 54.7 161 30920
Maryland.Population 8.5 52.3 101 9891
Massachusetts.Population 3.3 58.5 103 7826
Michigan.Population 11.1 52.8 125 56817
Minnesota.Population 2.3 57.6 160 79289
Mississippi.Population 12.5 41.0 50 47296
Missouri.Population 9.3 48.8 108 68995
Montana.Population 5.0 59.2 155 145587
Nebraska.Population 2.9 59.3 139 76483
Nevada.Population 11.5 65.2 188 109889
New Hampshire.Population 3.3 57.6 174 9027
New Jersey.Population 5.2 52.5 115 7521
New Mexico.Population 9.7 55.2 120 121412
New York.Population 10.9 52.7 82 47831
North Carolina.Population 11.1 38.5 80 48798
North Dakota.Population 1.4 50.3 186 69273
Ohio.Population 7.4 53.2 124 40975
Oklahoma.Population 6.4 51.6 82 68782
Oregon.Population 4.2 60.0 44 96184
Pennsylvania.Population 6.1 50.2 126 44966
Rhode Island.Population 2.4 46.4 127 1049
South Carolina.Population 11.6 37.8 65 30225
South Dakota.Population 1.7 53.3 172 75955
Tennessee.Population 11.0 41.8 70 41328
Texas.Population 12.2 47.4 35 262134
Utah.Population 4.5 67.3 137 82096
Vermont.Population 5.5 57.1 168 9267
Virginia.Population 9.5 47.8 85 39780
Washington.Population 4.3 63.5 32 66570
West Virginia.Population 6.7 41.6 100 24070
Wisconsin.Population 3.0 54.5 149 54464
Wyoming.Population 6.9 62.9 173 97203
>
> reshape(long, direction = "wide", new.row.names = unique(long$state))
state Population Income Illiteracy Life Exp Murder
Alabama Alabama 3615 3624 2.1 69.05 15.1
Alaska Alaska 365 6315 1.5 69.31 11.3
Arizona Arizona 2212 4530 1.8 70.55 7.8
Arkansas Arkansas 2110 3378 1.9 70.66 10.1
California California 21198 5114 1.1 71.71 10.3
Colorado Colorado 2541 4884 0.7 72.06 6.8
Connecticut Connecticut 3100 5348 1.1 72.48 3.1
Delaware Delaware 579 4809 0.9 70.06 6.2
Florida Florida 8277 4815 1.3 70.66 10.7
Georgia Georgia 4931 4091 2.0 68.54 13.9
Hawaii Hawaii 868 4963 1.9 73.60 6.2
Idaho Idaho 813 4119 0.6 71.87 5.3
Illinois Illinois 11197 5107 0.9 70.14 10.3
Indiana Indiana 5313 4458 0.7 70.88 7.1
Iowa Iowa 2861 4628 0.5 72.56 2.3
Kansas Kansas 2280 4669 0.6 72.58 4.5
Kentucky Kentucky 3387 3712 1.6 70.10 10.6
Louisiana Louisiana 3806 3545 2.8 68.76 13.2
Maine Maine 1058 3694 0.7 70.39 2.7
Maryland Maryland 4122 5299 0.9 70.22 8.5
Massachusetts Massachusetts 5814 4755 1.1 71.83 3.3
Michigan Michigan 9111 4751 0.9 70.63 11.1
Minnesota Minnesota 3921 4675 0.6 72.96 2.3
Mississippi Mississippi 2341 3098 2.4 68.09 12.5
Missouri Missouri 4767 4254 0.8 70.69 9.3
Montana Montana 746 4347 0.6 70.56 5.0
Nebraska Nebraska 1544 4508 0.6 72.60 2.9
Nevada Nevada 590 5149 0.5 69.03 11.5
New Hampshire New Hampshire 812 4281 0.7 71.23 3.3
New Jersey New Jersey 7333 5237 1.1 70.93 5.2
New Mexico New Mexico 1144 3601 2.2 70.32 9.7
New York New York 18076 4903 1.4 70.55 10.9
North Carolina North Carolina 5441 3875 1.8 69.21 11.1
North Dakota North Dakota 637 5087 0.8 72.78 1.4
Ohio Ohio 10735 4561 0.8 70.82 7.4
Oklahoma Oklahoma 2715 3983 1.1 71.42 6.4
Oregon Oregon 2284 4660 0.6 72.13 4.2
Pennsylvania Pennsylvania 11860 4449 1.0 70.43 6.1
Rhode Island Rhode Island 931 4558 1.3 71.90 2.4
South Carolina South Carolina 2816 3635 2.3 67.96 11.6
South Dakota South Dakota 681 4167 0.5 72.08 1.7
Tennessee Tennessee 4173 3821 1.7 70.11 11.0
Texas Texas 12237 4188 2.2 70.90 12.2
Utah Utah 1203 4022 0.6 72.90 4.5
Vermont Vermont 472 3907 0.6 71.64 5.5
Virginia Virginia 4981 4701 1.4 70.08 9.5
Washington Washington 3559 4864 0.6 71.72 4.3
West Virginia West Virginia 1799 3617 1.4 69.48 6.7
Wisconsin Wisconsin 4589 4468 0.7 72.48 3.0
Wyoming Wyoming 376 4566 0.6 70.29 6.9
HS Grad Frost Area
Alabama 41.3 20 50708
Alaska 66.7 152 566432
Arizona 58.1 15 113417
Arkansas 39.9 65 51945
California 62.6 20 156361
Colorado 63.9 166 103766
Connecticut 56.0 139 4862
Delaware 54.6 103 1982
Florida 52.6 11 54090
Georgia 40.6 60 58073
Hawaii 61.9 0 6425
Idaho 59.5 126 82677
Illinois 52.6 127 55748
Indiana 52.9 122 36097
Iowa 59.0 140 55941
Kansas 59.9 114 81787
Kentucky 38.5 95 39650
Louisiana 42.2 12 44930
Maine 54.7 161 30920
Maryland 52.3 101 9891
Massachusetts 58.5 103 7826
Michigan 52.8 125 56817
Minnesota 57.6 160 79289
Mississippi 41.0 50 47296
Missouri 48.8 108 68995
Montana 59.2 155 145587
Nebraska 59.3 139 76483
Nevada 65.2 188 109889
New Hampshire 57.6 174 9027
New Jersey 52.5 115 7521
New Mexico 55.2 120 121412
New York 52.7 82 47831
North Carolina 38.5 80 48798
North Dakota 50.3 186 69273
Ohio 53.2 124 40975
Oklahoma 51.6 82 68782
Oregon 60.0 44 96184
Pennsylvania 50.2 126 44966
Rhode Island 46.4 127 1049
South Carolina 37.8 65 30225
South Dakota 53.3 172 75955
Tennessee 41.8 70 41328
Texas 47.4 35 262134
Utah 67.3 137 82096
Vermont 57.1 168 9267
Virginia 47.8 85 39780
Washington 63.5 32 66570
West Virginia 41.6 100 24070
Wisconsin 54.5 149 54464
Wyoming 62.9 173 97203
>
> ## multiple id variables
> df3 <- data.frame(school = rep(1:3, each = 4), class = rep(9:10, 6),
+ time = rep(c(1,1,2,2), 3), score = rnorm(12))
> wide <- reshape(df3, idvar = c("school","class"), direction = "wide")
> wide
school class score.1 score.2
1 1 9 0.48742905 0.57578135
2 1 10 0.73832471 -0.30538839
5 2 9 1.51178117 -0.62124058
6 2 10 0.38984324 -2.21469989
9 3 9 1.12493092 -0.01619026
10 3 10 -0.04493361 0.94383621
> ## transform back
> reshape(wide)
school class time score.1
1.9.1 1 9 1 0.48742905
1.10.1 1 10 1 0.73832471
2.9.1 2 9 1 1.51178117
2.10.1 2 10 1 0.38984324
3.9.1 3 9 1 1.12493092
3.10.1 3 10 1 -0.04493361
1.9.2 1 9 2 0.57578135
1.10.2 1 10 2 -0.30538839
2.9.2 2 9 2 -0.62124058
2.10.2 2 10 2 -2.21469989
3.9.2 3 9 2 -0.01619026
3.10.2 3 10 2 0.94383621
>
>
>
>
> cleanEx()
> nameEx("runmed")
> ### * runmed
>
> flush(stderr()); flush(stdout())
>
> ### Name: runmed
> ### Title: Running Medians - Robust Scatter Plot Smoothing
> ### Aliases: runmed
> ### Keywords: smooth robust
>
> ### ** Examples
>
> require(graphics)
>
> utils::example(nhtemp)
nhtemp> require(stats); require(graphics)
nhtemp> plot(nhtemp, main = "nhtemp data",
nhtemp+ ylab = "Mean annual temperature in New Haven, CT (deg. F)")
> myNHT <- as.vector(nhtemp)
> myNHT[20] <- 2 * nhtemp[20]
> plot(myNHT, type = "b", ylim = c(48, 60), main = "Running Medians Example")
> lines(runmed(myNHT, 7), col = "red")
>
> ## special: multiple y values for one x
> plot(cars, main = "'cars' data and runmed(dist, 3)")
> lines(cars, col = "light gray", type = "c")
> with(cars, lines(speed, runmed(dist, k = 3), col = 2))
>
> ## nice quadratic with a few outliers
> y <- ys <- (-20:20)^2
> y [c(1,10,21,41)] <- c(150, 30, 400, 450)
> all(y == runmed(y, 1)) # 1-neighbourhood <==> interpolation
[1] TRUE
> plot(y) ## lines(y, lwd = .1, col = "light gray")
> lines(lowess(seq(y), y, f = 0.3), col = "brown")
> lines(runmed(y, 7), lwd = 2, col = "blue")
> lines(runmed(y, 11), lwd = 2, col = "red")
>
> ## Lowess is not robust
> y <- ys ; y[21] <- 6666 ; x <- seq(y)
> col <- c("black", "brown","blue")
> plot(y, col = col[1])
> lines(lowess(x, y, f = 0.3), col = col[2])
> lines(runmed(y, 7), lwd = 2, col = col[3])
> legend(length(y),max(y), c("data", "lowess(y, f = 0.3)", "runmed(y, 7)"),
+ xjust = 1, col = col, lty = c(0, 1, 1), pch = c(1,NA,NA))
>
>
>
> cleanEx()
> nameEx("scatter.smooth")
> ### * scatter.smooth
>
> flush(stderr()); flush(stdout())
>
> ### Name: scatter.smooth
> ### Title: Scatter Plot with Smooth Curve Fitted by Loess
> ### Aliases: scatter.smooth loess.smooth
> ### Keywords: smooth
>
> ### ** Examples
>
> require(graphics)
>
> with(cars, scatter.smooth(speed, dist))
> ## or with dotted thick smoothed line results :
> with(cars, scatter.smooth(speed, dist, lpars =
+ list(col = "red", lwd = 3, lty = 3)))
>
>
>
> cleanEx()
> nameEx("screeplot")
> ### * screeplot
>
> flush(stderr()); flush(stdout())
>
> ### Name: screeplot
> ### Title: Screeplots
> ### Aliases: screeplot screeplot.default
> ### Keywords: multivariate
>
> ### ** Examples
>
> require(graphics)
>
> ## The variances of the variables in the
> ## USArrests data vary by orders of magnitude, so scaling is appropriate
> (pc.cr <- princomp(USArrests, cor = TRUE)) # inappropriate
Call:
princomp(x = USArrests, cor = TRUE)
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
1.5748783 0.9948694 0.5971291 0.4164494
4 variables and 50 observations.
> screeplot(pc.cr)
>
> fit <- princomp(covmat = Harman74.cor)
> screeplot(fit)
> screeplot(fit, npcs = 24, type = "lines")
>
>
>
> cleanEx()
> nameEx("sd")
> ### * sd
>
> flush(stderr()); flush(stdout())
>
> ### Name: sd
> ### Title: Standard Deviation
> ### Aliases: sd
> ### Keywords: univar
>
> ### ** Examples
>
> sd(1:2) ^ 2
[1] 0.5
>
>
>
> cleanEx()
> nameEx("se.contrast")
> ### * se.contrast
>
> flush(stderr()); flush(stdout())
>
> ### Name: se.contrast
> ### Title: Standard Errors for Contrasts in Model Terms
> ### Aliases: se.contrast se.contrast.aov se.contrast.aovlist
> ### Keywords: models
>
> ### ** Examples
>
> ## From Venables and Ripley (2002) p.165.
> N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
> P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
> K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
> yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
+ 55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)
>
> npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),
+ K = factor(K), yield = yield)
> ## Set suitable contrasts.
> options(contrasts = c("contr.helmert", "contr.poly"))
> npk.aov1 <- aov(yield ~ block + N + K, data = npk)
> se.contrast(npk.aov1, list(N == "0", N == "1"), data = npk)
[1] 1.609175
> # or via a matrix
> cont <- matrix(c(-1,1), 2, 1, dimnames = list(NULL, "N"))
> se.contrast(npk.aov1, cont[N, , drop = FALSE]/12, data = npk)
N
1.609175
>
> ## test a multi-stratum model
> npk.aov2 <- aov(yield ~ N + K + Error(block/(N + K)), data = npk)
> se.contrast(npk.aov2, list(N == "0", N == "1"))
[1] 1.812166
>
>
> ## an example looking at an interaction contrast
> ## Dataset from R.E. Kirk (1995)
> ## 'Experimental Design: procedures for the behavioral sciences'
> score <- c(12, 8,10, 6, 8, 4,10,12, 8, 6,10,14, 9, 7, 9, 5,11,12,
+ 7,13, 9, 9, 5,11, 8, 7, 3, 8,12,10,13,14,19, 9,16,14)
> A <- gl(2, 18, labels = c("a1", "a2"))
> B <- rep(gl(3, 6, labels = c("b1", "b2", "b3")), 2)
> fit <- aov(score ~ A*B)
> cont <- c(1, -1)[A] * c(1, -1, 0)[B]
> sum(cont) # 0
[1] 0
> sum(cont*score) # value of the contrast
[1] -18
> se.contrast(fit, as.matrix(cont))
Contrast 1
14.24547
> (t.stat <- sum(cont*score)/se.contrast(fit, as.matrix(cont)))
Contrast 1
-1.26356
> summary(fit, split = list(B = 1:2), expand.split = TRUE)
Df Sum Sq Mean Sq F value Pr(>F)
A 1 18.78 18.78 2.221 0.14661
B 2 62.00 31.00 3.666 0.03763 *
B: C1 1 1.50 1.50 0.177 0.67662
B: C2 1 60.50 60.50 7.155 0.01199 *
A:B 2 81.56 40.78 4.823 0.01527 *
A:B: C1 1 13.50 13.50 1.597 0.21612
A:B: C2 1 68.06 68.06 8.049 0.00809 **
Residuals 30 253.67 8.46
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> ## t.stat^2 is the F value on the A:B: C1 line (with Helmert contrasts)
> ## Now look at all three interaction contrasts
> cont <- c(1, -1)[A] * cbind(c(1, -1, 0), c(1, 0, -1), c(0, 1, -1))[B,]
> se.contrast(fit, cont) # same, due to balance.
Contrast 1 Contrast 2 Contrast 3
14.24547 14.24547 14.24547
> rm(A, B, score)
>
>
> ## multi-stratum example where efficiencies play a role
> utils::example(eff.aovlist)
eff.vl> ## An example from Yates (1932),
eff.vl> ## a 2^3 design in 2 blocks replicated 4 times
eff.vl>
eff.vl> Block <- gl(8, 4)
eff.vl> A <- factor(c(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,
eff.vl+ 0,1,0,1,0,1,0,1,0,1,0,1))
eff.vl> B <- factor(c(0,0,1,1,0,0,1,1,0,1,0,1,1,0,1,0,0,0,1,1,
eff.vl+ 0,0,1,1,0,0,1,1,0,0,1,1))
eff.vl> C <- factor(c(0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,1,0,1,
eff.vl+ 1,0,1,0,0,0,1,1,1,1,0,0))
eff.vl> Yield <- c(101, 373, 398, 291, 312, 106, 265, 450, 106, 306, 324, 449,
eff.vl+ 272, 89, 407, 338, 87, 324, 279, 471, 323, 128, 423, 334,
eff.vl+ 131, 103, 445, 437, 324, 361, 302, 272)
eff.vl> aovdat <- data.frame(Block, A, B, C, Yield)
eff.vl> old <- getOption("contrasts")
eff.vl> options(contrasts = c("contr.helmert", "contr.poly"))
eff.vl> (fit <- aov(Yield ~ A*B*C + Error(Block), data = aovdat))
Call:
aov(formula = Yield ~ A * B * C + Error(Block), data = aovdat)
Grand Mean: 291.5938
Stratum 1: Block
Terms:
A:B A:C B:C A:B:C Residuals
Sum of Squares 780.1250 276.1250 2556.1250 112.5000 774.0938
Deg. of Freedom 1 1 1 1 3
Residual standard error: 16.06335
Estimated effects are balanced
Stratum 2: Within
Terms:
A B C A:B A:C B:C
Sum of Squares 3465.28 161170.03 278817.78 28.17 1802.67 11528.17
Deg. of Freedom 1 1 1 1 1 1
A:B:C Residuals
Sum of Squares 45.37 5423.28
Deg. of Freedom 1 17
Residual standard error: 17.86103
Estimated effects are balanced
eff.vl> eff.aovlist(fit)
A B C A:B A:C B:C A:B:C
Block 0 0 0 0.25 0.25 0.25 0.25
Within 1 1 1 0.75 0.75 0.75 0.75
eff.vl> options(contrasts = old)
> fit <- aov(Yield ~ A + B * C + Error(Block), data = aovdat)
> cont1 <- c(-1, 1)[A]/32 # Helmert contrasts
> cont2 <- c(-1, 1)[B] * c(-1, 1)[C]/32
> cont <- cbind(A = cont1, BC = cont2)
> colSums(cont*Yield) # values of the contrasts
A BC
10.40625 -20.90625
> se.contrast(fit, as.matrix(cont))
A BC
3.377196 3.899650
>
>
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> cleanEx()
> nameEx("selfStart")
> ### * selfStart
>
> flush(stderr()); flush(stdout())
>
> ### Name: selfStart
> ### Title: Construct Self-starting Nonlinear Models
> ### Aliases: selfStart selfStart.default selfStart.formula
> ### Keywords: models
>
> ### ** Examples
>
> ## self-starting logistic model
>
> SSlogis <- selfStart(~ Asym/(1 + exp((xmid - x)/scal)),
+ function(mCall, data, LHS)
+ {
+ xy <- sortedXyData(mCall[["x"]], LHS, data)
+ if(nrow(xy) < 4) {
+ stop("Too few distinct x values to fit a logistic")
+ }
+ z <- xy[["y"]]
+ if (min(z) <= 0) { z <- z + 0.05 * max(z) } # avoid zeroes
+ z <- z/(1.05 * max(z)) # scale to within unit height
+ xy[["z"]] <- log(z/(1 - z)) # logit transformation
+ aux <- coef(lm(x ~ z, xy))
+ parameters(xy) <- list(xmid = aux[1], scal = aux[2])
+ pars <- as.vector(coef(nls(y ~ 1/(1 + exp((xmid - x)/scal)),
+ data = xy, algorithm = "plinear")))
+ setNames(c(pars[3], pars[1], pars[2]),
+ mCall[c("Asym", "xmid", "scal")])
+ }, c("Asym", "xmid", "scal"))
>
> # 'first.order.log.model' is a function object defining a first order
> # compartment model
> # 'first.order.log.initial' is a function object which calculates initial
> # values for the parameters in 'first.order.log.model'
>
> # self-starting first order compartment model
> ## Not run:
> ##D SSfol <- selfStart(first.order.log.model, first.order.log.initial)
> ## End(Not run)
>
> ## Explore the self-starting models already available in R's "stats":
> pos.st <- which("package:stats" == search())
> mSS <- apropos("^SS..", where = TRUE, ignore.case = FALSE)
> (mSS <- unname(mSS[names(mSS) == pos.st]))
[1] "SSasymp" "SSasympOff" "SSasympOrig" "SSbiexp" "SSfol"
[6] "SSfpl" "SSgompertz" "SSlogis" "SSmicmen" "SSweibull"
> fSS <- sapply(mSS, get, pos = pos.st, mode = "function")
> all(sapply(fSS, inherits, "selfStart")) # -> TRUE
[1] TRUE
>
> ## Show the argument list of each self-starting function:
> str(fSS, give.attr = FALSE)
List of 10
$ SSasymp :function (input, Asym, R0, lrc)
$ SSasympOff :function (input, Asym, lrc, c0)
$ SSasympOrig:function (input, Asym, lrc)
$ SSbiexp :function (input, A1, lrc1, A2, lrc2)
$ SSfol :function (Dose, input, lKe, lKa, lCl)
$ SSfpl :function (input, A, B, xmid, scal)
$ SSgompertz :function (x, Asym, b2, b3)
$ SSlogis :function (input, Asym, xmid, scal)
$ SSmicmen :function (input, Vm, K)
$ SSweibull :function (x, Asym, Drop, lrc, pwr)
>
>
>
> cleanEx()
> nameEx("setNames")
> ### * setNames
>
> flush(stderr()); flush(stdout())
>
> ### Name: setNames
> ### Title: Set the Names in an Object
> ### Aliases: setNames
> ### Keywords: list
>
> ### ** Examples
>
> setNames( 1:3, c("foo", "bar", "baz") )
foo bar baz
1 2 3
> # this is just a short form of
> tmp <- 1:3
> names(tmp) <- c("foo", "bar", "baz")
> tmp
foo bar baz
1 2 3
>
> ## special case of character vector, using default
> setNames(nm = c("First", "2nd"))
First 2nd
"First" "2nd"
>
>
>
> cleanEx()
> nameEx("shapiro.test")
> ### * shapiro.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: shapiro.test
> ### Title: Shapiro-Wilk Normality Test
> ### Aliases: shapiro.test
> ### Keywords: htest
>
> ### ** Examples
>
> shapiro.test(rnorm(100, mean = 5, sd = 3))
Shapiro-Wilk normality test
data: rnorm(100, mean = 5, sd = 3)
W = 0.9956, p-value = 0.9876
> shapiro.test(runif(100, min = 2, max = 4))
Shapiro-Wilk normality test
data: runif(100, min = 2, max = 4)
W = 0.9309, p-value = 5.616e-05
>
>
>
> cleanEx()
> nameEx("simulate")
> ### * simulate
>
> flush(stderr()); flush(stdout())
>
> ### Name: simulate
> ### Title: Simulate Responses
> ### Aliases: simulate
> ### Keywords: models datagen
>
> ### ** Examples
>
> x <- 1:5
> mod1 <- lm(c(1:3, 7, 6) ~ x)
> S1 <- simulate(mod1, nsim = 4)
> ## repeat the simulation:
> .Random.seed <- attr(S1, "seed")
> identical(S1, simulate(mod1, nsim = 4))
[1] TRUE
>
> S2 <- simulate(mod1, nsim = 200, seed = 101)
> rowMeans(S2) # should be about the same as
1 2 3 4 5
0.6885691 2.2329771 3.7790352 5.2775859 6.8131451
> fitted(mod1)
1 2 3 4 5
0.8 2.3 3.8 5.3 6.8
>
> ## repeat identically:
> (sseed <- attr(S2, "seed")) # seed; RNGkind as attribute
[1] 101
attr(,"kind")
attr(,"kind")[[1]]
[1] "Mersenne-Twister"
attr(,"kind")[[2]]
[1] "Inversion"
> stopifnot(identical(S2, simulate(mod1, nsim = 200, seed = sseed)))
>
> ## To be sure about the proper RNGkind, e.g., after
> RNGversion("2.7.0")
> ## first set the RNG kind, then simulate
> do.call(RNGkind, attr(sseed, "kind"))
> identical(S2, simulate(mod1, nsim = 200, seed = sseed))
[1] TRUE
>
> ## Binomial GLM examples
> yb1 <- matrix(c(4, 4, 5, 7, 8, 6, 6, 5, 3, 2), ncol = 2)
> modb1 <- glm(yb1 ~ x, family = binomial)
> S3 <- simulate(modb1, nsim = 4)
> # each column of S3 is a two-column matrix.
>
> x2 <- sort(runif(100))
> yb2 <- rbinom(100, prob = plogis(2*(x2-1)), size = 1)
> yb2 <- factor(1 + yb2, labels = c("failure", "success"))
> modb2 <- glm(yb2 ~ x2, family = binomial)
> S4 <- simulate(modb2, nsim = 4)
> # each column of S4 is a factor
>
>
>
> cleanEx()
> nameEx("smooth")
> ### * smooth
>
> flush(stderr()); flush(stdout())
>
> ### Name: smooth
> ### Title: Tukey's (Running Median) Smoothing
> ### Aliases: smooth
> ### Keywords: robust smooth
>
> ### ** Examples
>
> require(graphics)
>
> ## see also demo(smooth) !
>
> x1 <- c(4, 1, 3, 6, 6, 4, 1, 6, 2, 4, 2) # very artificial
> (x3R <- smooth(x1, "3R")) # 2 iterations of "3"
3R Tukey smoother resulting from smooth(x = x1, kind = "3R")
used 2 iterations
[1] 3 3 3 6 6 4 4 4 2 2 2
> smooth(x3R, kind = "S")
S Tukey smoother resulting from smooth(x = x3R, kind = "S")
changed
[1] 3 3 3 3 4 4 4 4 2 2 2
>
> sm.3RS <- function(x, ...)
+ smooth(smooth(x, "3R", ...), "S", ...)
>
> y <- c(1, 1, 19:1)
> plot(y, main = "misbehaviour of \"3RSR\"", col.main = 3)
> lines(sm.3RS(y))
> lines(smooth(y))
> lines(smooth(y, "3RSR"), col = 3, lwd = 2) # the horror
>
> x <- c(8:10, 10, 0, 0, 9, 9)
> plot(x, main = "breakdown of 3R and S and hence 3RSS")
> matlines(cbind(smooth(x, "3R"), smooth(x, "S"), smooth(x, "3RSS"), smooth(x)))
>
> presidents[is.na(presidents)] <- 0 # silly
> summary(sm3 <- smooth(presidents, "3R"))
3R Tukey smoother resulting from
smooth(x = presidents, kind = "3R") ; n = 120
used 4 iterations
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 44.0 57.0 54.2 71.0 82.0
> summary(sm2 <- smooth(presidents,"3RSS"))
3RSS Tukey smoother resulting from
smooth(x = presidents, kind = "3RSS") ; n = 120
used 5 iterations
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 44.00 57.00 55.45 69.00 82.00
> summary(sm <- smooth(presidents))
3RS3R Tukey smoother resulting from
smooth(x = presidents) ; n = 120
used 7 iterations
Min. 1st Qu. Median Mean 3rd Qu. Max.
24.00 44.00 57.00 55.88 69.00 82.00
>
> all.equal(c(sm2), c(smooth(smooth(sm3, "S"), "S"))) # 3RSS === 3R S S
[1] TRUE
> all.equal(c(sm), c(smooth(smooth(sm3, "S"), "3R"))) # 3RS3R === 3R S 3R
[1] TRUE
>
> plot(presidents, main = "smooth(presidents0, *) : 3R and default 3RS3R")
> lines(sm3, col = 3, lwd = 1.5)
> lines(sm, col = 2, lwd = 1.25)
>
>
>
> cleanEx()
> nameEx("smooth.spline")
> ### * smooth.spline
>
> flush(stderr()); flush(stdout())
>
> ### Name: smooth.spline
> ### Title: Fit a Smoothing Spline
> ### Aliases: smooth.spline .nknots.smspl
> ### Keywords: smooth
>
> ### ** Examples
>
> require(graphics)
>
> attach(cars)
> plot(speed, dist, main = "data(cars) & smoothing splines")
> cars.spl <- smooth.spline(speed, dist)
> (cars.spl)
Call:
smooth.spline(x = speed, y = dist)
Smoothing Parameter spar= 0.7801305 lambda= 0.1112206 (11 iterations)
Equivalent Degrees of Freedom (Df): 2.635278
Penalized Criterion: 4187.776
GCV: 244.1044
> ## This example has duplicate points, so avoid cv = TRUE
> ## Don't show:
> stopifnot(cars.spl $ w == table(speed)) # weights = multiplicities
> utils::str(cars.spl, digits = 5, vec.len = 6)
List of 15
$ x : num [1:19] 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
$ y : num [1:19] 1.6578 11.6829 15.0644 18.4823 21.9471 25.4656 29.0505 32.7076 ...
$ w : num [1:19] 2 2 1 1 3 2 4 4 4 3 2 3 4 3 5 ...
$ yin : num [1:19] 6 13 16 10 26 22.5 21.5 35 ...
$ data :List of 3
..$ x: num [1:50] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 ...
..$ y: num [1:50] 2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 ...
..$ w: num [1:50] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
$ lev : num [1:19] 0.399342 0.179105 0.069771 0.055561 0.136721 0.077539 0.137252 0.126354 ...
$ cv.crit : num 244.1
$ pen.crit: num 4187.8
$ crit : num 244.1
$ df : num 2.6353
$ spar : num 0.78013
$ lambda : num 0.11122
$ iparms : Named int [1:3] 1 0 11
..- attr(*, "names")= chr [1:3] "icrit" "ispar" "iter"
$ fit :List of 5
..$ knot : num [1:25] 0 0 0 0 0.14286 0.19048 0.2381 0.28571 ...
..$ nk : int 21
..$ min : num 4
..$ range: num 21
..$ coef : num [1:21] 1.6578 4.9869 9.4256 15.0584 18.4743 21.9384 25.4544 29.0377 ...
..- attr(*, "class")= chr "smooth.spline.fit"
$ call : language smooth.spline(x = speed, y = dist)
- attr(*, "class")= chr "smooth.spline"
> cars.spl$fit
$knot
[1] 0.0000000 0.0000000 0.0000000 0.0000000 0.1428571 0.1904762 0.2380952
[8] 0.2857143 0.3333333 0.3809524 0.4285714 0.4761905 0.5238095 0.5714286
[15] 0.6190476 0.6666667 0.7142857 0.7619048 0.8571429 0.9047619 0.9523810
[22] 1.0000000 1.0000000 1.0000000 1.0000000
$nk
[1] 21
$min
[1] 4
$range
[1] 21
$coef
[1] 1.657809 4.986889 9.425578 15.058364 18.474307 21.938439 25.454405
[8] 29.037679 32.697985 36.415692 40.180057 44.035086 48.004725 52.097325
[15] 56.299736 62.096055 68.215320 74.524063 79.313459 82.506943 84.103688
attr(,"class")
[1] "smooth.spline.fit"
> ## End Don't show
> lines(cars.spl, col = "blue")
> lines(smooth.spline(speed, dist, df = 10), lty = 2, col = "red")
> legend(5,120,c(paste("default [C.V.] => df =",round(cars.spl$df,1)),
+ "s( * , df = 10)"), col = c("blue","red"), lty = 1:2,
+ bg = 'bisque')
> detach()
>
>
> ## Residual (Tukey Anscombe) plot:
> plot(residuals(cars.spl) ~ fitted(cars.spl))
> abline(h = 0, col = "gray")
>
> ## consistency check:
> stopifnot(all.equal(cars$dist,
+ fitted(cars.spl) + residuals(cars.spl)))
>
> ## Visualize the behavior of .nknots.smspl()
> nKnots <- Vectorize(.nknots.smspl) ; c.. <- adjustcolor("gray20",.5)
> curve(nKnots, 1, 250, n=250)
> abline(0,1, lty=2, col=c..); text(90,90,"y = x", col=c.., adj=-.25)
> abline(h=100,lty=2); abline(v=200, lty=2)
>
> n <- c(1:799, seq(800, 3490, by=10), seq(3500, 10000, by = 50))
> plot(n, nKnots(n), type="l", main = "Vectorize(.nknots.smspl) (n)")
> abline(0,1, lty=2, col=c..); text(180,180,"y = x", col=c..)
> n0 <- c(50, 200, 800, 3200); c0 <- adjustcolor("blue3", .5)
> lines(n0, nKnots(n0), type="h", col=c0)
> axis(1, at=n0, line=-2, col.ticks=c0, col=NA, col.axis=c0)
> axis(4, at=.nknots.smspl(10000), line=-.5, col=c..,col.axis=c.., las=1)
>
> ##-- artificial example
> y18 <- c(1:3, 5, 4, 7:3, 2*(2:5), rep(10, 4))
> xx <- seq(1, length(y18), len = 201)
> (s2 <- smooth.spline(y18)) # GCV
Call:
smooth.spline(x = y18)
Smoothing Parameter spar= 0.3928105 lambda= 9.672776e-05 (13 iterations)
Equivalent Degrees of Freedom (Df): 8.494168
Penalized Criterion: 3.59204
GCV: 0.7155391
> (s02 <- smooth.spline(y18, spar = 0.2))
Call:
smooth.spline(x = y18, spar = 0.2)
Smoothing Parameter spar= 0.2 lambda= 3.911187e-06
Equivalent Degrees of Freedom (Df): 15.259
Penalized Criterion: 0.4973656
GCV: 1.191602
> (s02. <- smooth.spline(y18, spar = 0.2, cv = NA))
Call:
smooth.spline(x = y18, spar = 0.2, cv = NA)
Smoothing Parameter spar= 0.2 lambda= 3.911187e-06
Equivalent Degrees of Freedom (Df): NA
Penalized Criterion: 0.4973656
> plot(y18, main = deparse(s2$call), col.main = 2)
> lines(s2, col = "gray"); lines(predict(s2, xx), col = 2)
> lines(predict(s02, xx), col = 3); mtext(deparse(s02$call), col = 3)
>
> ## Don't show:
> stopifnot(all.equal(predict(s02, xx),
+ predict(s02., xx), tolerance = 1e-15))
> ## End Don't show
>
>
> cleanEx()
> nameEx("smoothEnds")
> ### * smoothEnds
>
> flush(stderr()); flush(stdout())
>
> ### Name: smoothEnds
> ### Title: End Points Smoothing (for Running Medians)
> ### Aliases: smoothEnds
> ### Keywords: smooth robust
>
> ### ** Examples
>
> require(graphics)
>
> y <- ys <- (-20:20)^2
> y [c(1,10,21,41)] <- c(100, 30, 400, 470)
> s7k <- runmed(y, 7, endrule = "keep")
> s7. <- runmed(y, 7, endrule = "const")
> s7m <- runmed(y, 7)
> col3 <- c("midnightblue","blue","steelblue")
> plot(y, main = "Running Medians -- runmed(*, k=7, end.rule = X)")
> lines(ys, col = "light gray")
> matlines(cbind(s7k, s7.,s7m), lwd = 1.5, lty = 1, col = col3)
> legend(1, 470, paste("endrule", c("keep","constant","median"), sep = " = "),
+ col = col3, lwd = 1.5, lty = 1)
>
> stopifnot(identical(s7m, smoothEnds(s7k, 7)))
>
>
>
> cleanEx()
> nameEx("sortedXyData")
> ### * sortedXyData
>
> flush(stderr()); flush(stdout())
>
> ### Name: sortedXyData
> ### Title: Create a 'sortedXyData' Object
> ### Aliases: sortedXyData sortedXyData.default
> ### Keywords: manip
>
> ### ** Examples
>
> DNase.2 <- DNase[ DNase$Run == "2", ]
> sortedXyData( expression(log(conc)), expression(density), DNase.2 )
x y
1 -3.0194489 0.0475
2 -1.6331544 0.1300
3 -0.9400073 0.2160
4 -0.2468601 0.3920
5 0.4462871 0.6765
6 1.1394343 1.0970
7 1.8325815 1.5400
8 2.5257286 1.9230
>
>
>
> cleanEx()
> nameEx("spec.ar")
> ### * spec.ar
>
> flush(stderr()); flush(stdout())
>
> ### Name: spec.ar
> ### Title: Estimate Spectral Density of a Time Series from AR Fit
> ### Aliases: spec.ar
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> spec.ar(lh)
>
> spec.ar(ldeaths)
> spec.ar(ldeaths, method = "burg")
>
> spec.ar(log(lynx))
> spec.ar(log(lynx), method = "burg", add = TRUE, col = "purple")
> spec.ar(log(lynx), method = "mle", add = TRUE, col = "forest green")
> spec.ar(log(lynx), method = "ols", add = TRUE, col = "blue")
>
>
>
> cleanEx()
> nameEx("spec.pgram")
> ### * spec.pgram
>
> flush(stderr()); flush(stdout())
>
> ### Name: spec.pgram
> ### Title: Estimate Spectral Density of a Time Series by a Smoothed
> ### Periodogram
> ### Aliases: spec.pgram
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> ## Examples from Venables & Ripley
> spectrum(ldeaths)
> spectrum(ldeaths, spans = c(3,5))
> spectrum(ldeaths, spans = c(5,7))
> spectrum(mdeaths, spans = c(3,3))
> spectrum(fdeaths, spans = c(3,3))
>
> ## bivariate example
> mfdeaths.spc <- spec.pgram(ts.union(mdeaths, fdeaths), spans = c(3,3))
> # plots marginal spectra: now plot coherency and phase
> plot(mfdeaths.spc, plot.type = "coherency")
> plot(mfdeaths.spc, plot.type = "phase")
>
> ## now impose a lack of alignment
> mfdeaths.spc <- spec.pgram(ts.intersect(mdeaths, lag(fdeaths, 4)),
+ spans = c(3,3), plot = FALSE)
> plot(mfdeaths.spc, plot.type = "coherency")
> plot(mfdeaths.spc, plot.type = "phase")
>
> stocks.spc <- spectrum(EuStockMarkets, kernel("daniell", c(30,50)),
+ plot = FALSE)
> plot(stocks.spc, plot.type = "marginal") # the default type
> plot(stocks.spc, plot.type = "coherency")
> plot(stocks.spc, plot.type = "phase")
>
> sales.spc <- spectrum(ts.union(BJsales, BJsales.lead),
+ kernel("modified.daniell", c(5,7)))
> plot(sales.spc, plot.type = "coherency")
> plot(sales.spc, plot.type = "phase")
>
>
>
> cleanEx()
> nameEx("spectrum")
> ### * spectrum
>
> flush(stderr()); flush(stdout())
>
> ### Name: spectrum
> ### Title: Spectral Density Estimation
> ### Aliases: spectrum spec
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> ## Examples from Venables & Ripley
> ## spec.pgram
> par(mfrow = c(2,2))
> spectrum(lh)
> spectrum(lh, spans = 3)
> spectrum(lh, spans = c(3,3))
> spectrum(lh, spans = c(3,5))
>
> spectrum(ldeaths)
> spectrum(ldeaths, spans = c(3,3))
> spectrum(ldeaths, spans = c(3,5))
> spectrum(ldeaths, spans = c(5,7))
> spectrum(ldeaths, spans = c(5,7), log = "dB", ci = 0.8)
>
> # for multivariate examples see the help for spec.pgram
>
> ## spec.ar
> spectrum(lh, method = "ar")
> spectrum(ldeaths, method = "ar")
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("splinefun")
> ### * splinefun
>
> flush(stderr()); flush(stdout())
>
> ### Name: splinefun
> ### Title: Interpolating Splines
> ### Aliases: spline splinefun splinefunH
> ### Keywords: math dplot
>
> ### ** Examples
>
> require(graphics)
>
> op <- par(mfrow = c(2,1), mgp = c(2,.8,0), mar = 0.1+c(3,3,3,1))
> n <- 9
> x <- 1:n
> y <- rnorm(n)
> plot(x, y, main = paste("spline[fun](.) through", n, "points"))
> lines(spline(x, y))
> lines(spline(x, y, n = 201), col = 2)
>
> y <- (x-6)^2
> plot(x, y, main = "spline(.) -- 3 methods")
> lines(spline(x, y, n = 201), col = 2)
> lines(spline(x, y, n = 201, method = "natural"), col = 3)
> lines(spline(x, y, n = 201, method = "periodic"), col = 4)
Warning in spline(x, y, n = 201, method = "periodic") :
spline: first and last y values differ - using y[1] for both
> legend(6, 25, c("fmm","natural","periodic"), col = 2:4, lty = 1)
>
> y <- sin((x-0.5)*pi)
> f <- splinefun(x, y)
> ls(envir = environment(f))
[1] "z"
> splinecoef <- get("z", envir = environment(f))
> curve(f(x), 1, 10, col = "green", lwd = 1.5)
> points(splinecoef, col = "purple", cex = 2)
> curve(f(x, deriv = 1), 1, 10, col = 2, lwd = 1.5)
> curve(f(x, deriv = 2), 1, 10, col = 2, lwd = 1.5, n = 401)
> curve(f(x, deriv = 3), 1, 10, col = 2, lwd = 1.5, n = 401)
> par(op)
>
> ## Manual spline evaluation --- demo the coefficients :
> .x <- splinecoef$x
> u <- seq(3, 6, by = 0.25)
> (ii <- findInterval(u, .x))
[1] 3 3 3 3 4 4 4 4 5 5 5 5 6
> dx <- u - .x[ii]
> f.u <- with(splinecoef,
+ y[ii] + dx*(b[ii] + dx*(c[ii] + dx* d[ii])))
> stopifnot(all.equal(f(u), f.u))
>
> ## An example with ties (non-unique x values):
> set.seed(1); x <- round(rnorm(30), 1); y <- sin(pi * x) + rnorm(30)/10
> plot(x, y, main = "spline(x,y) when x has ties")
> lines(spline(x, y, n = 201), col = 2)
> ## visualizes the non-unique ones:
> tx <- table(x); mx <- as.numeric(names(tx[tx > 1]))
> ry <- matrix(unlist(tapply(y, match(x, mx), range, simplify = FALSE)),
+ ncol = 2, byrow = TRUE)
> segments(mx, ry[, 1], mx, ry[, 2], col = "blue", lwd = 2)
>
> ## An example of monotone interpolation
> n <- 20
> set.seed(11)
> x. <- sort(runif(n)) ; y. <- cumsum(abs(rnorm(n)))
> plot(x., y.)
> curve(splinefun(x., y.)(x), add = TRUE, col = 2, n = 1001)
> curve(splinefun(x., y., method = "monoH.FC")(x), add = TRUE, col = 3, n = 1001)
> curve(splinefun(x., y., method = "hyman") (x), add = TRUE, col = 4, n = 1001)
> legend("topleft",
+ paste0("splinefun( \"", c("fmm", "monoH.FC", "hyman"), "\" )"),
+ col = 2:4, lty = 1, bty = "n")
>
> ## and one from Fritsch and Carlson (1980), Dougherty et al (1989)
> x. <- c(7.09, 8.09, 8.19, 8.7, 9.2, 10, 12, 15, 20)
> f <- c(0, 2.76429e-5, 4.37498e-2, 0.169183, 0.469428, 0.943740,
+ 0.998636, 0.999919, 0.999994)
> s0 <- splinefun(x., f)
> s1 <- splinefun(x., f, method = "monoH.FC")
> s2 <- splinefun(x., f, method = "hyman")
> plot(x., f, ylim = c(-0.2, 1.2))
> curve(s0(x), add = TRUE, col = 2, n = 1001) -> m0
> curve(s1(x), add = TRUE, col = 3, n = 1001)
> curve(s2(x), add = TRUE, col = 4, n = 1001)
> legend("right",
+ paste0("splinefun( \"", c("fmm", "monoH.FC", "hyman"), "\" )"),
+ col = 2:4, lty = 1, bty = "n")
>
> ## they seem identical, but are not quite:
> xx <- m0$x
> plot(xx, s1(xx) - s2(xx), type = "l", col = 2, lwd = 2,
+ main = "Difference monoH.FC - hyman"); abline(h = 0, lty = 3)
>
> x <- xx[xx < 10.2] ## full range: x <- xx .. does not show enough
> ccol <- adjustcolor(2:4, 0.8)
> matplot(x, cbind(s0(x, deriv = 2), s1(x, deriv = 2), s2(x, deriv = 2))^2,
+ lwd = 2, col = ccol, type = "l", ylab = quote({{f*second}(x)}^2),
+ main = expression({{f*second}(x)}^2 ~" for the three 'splines'"))
> legend("topright",
+ paste0("splinefun( \"", c("fmm", "monoH.FC", "hyman"), "\" )"),
+ lwd = 2, col = ccol, lty = 1:3, bty = "n")
> ## --> "hyman" has slightly smaller Integral f''(x)^2 dx than "FC",
> ## here, and both are 'much worse' than the regular fmm spline.
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("stat.anova")
> ### * stat.anova
>
> flush(stderr()); flush(stdout())
>
> ### Name: stat.anova
> ### Title: GLM Anova Statistics
> ### Aliases: stat.anova
> ### Keywords: regression models
>
> ### ** Examples
>
> ##-- Continued from '?glm':
> ## Don't show:
> utils::example("glm", echo = FALSE)
treatment outcome counts
1 1 1 18
2 1 2 17
3 1 3 15
4 2 1 20
5 2 2 10
6 2 3 20
7 3 1 25
8 3 2 13
9 3 3 12
> ## End Don't show
> print(ag <- anova(glm.D93))
Analysis of Deviance Table
Model: poisson, link: log
Response: counts
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev
NULL 8 10.5814
outcome 2 5.4523 6 5.1291
treatment 2 0.0000 4 5.1291
> stat.anova(ag$table, test = "Cp",
+ scale = sum(resid(glm.D93, "pearson")^2)/4,
+ df.scale = 4, n = 9)
table Cp
>
>
>
> cleanEx()
> nameEx("step")
> ### * step
>
> flush(stderr()); flush(stdout())
>
> ### Name: step
> ### Title: Choose a model by AIC in a Stepwise Algorithm
> ### Aliases: step
> ### Keywords: models
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("stepfun")
> ### * stepfun
>
> flush(stderr()); flush(stdout())
>
> ### Name: stepfun
> ### Title: Step Function Class
> ### Aliases: stepfun is.stepfun as.stepfun print.stepfun summary.stepfun
> ### knots
> ### Keywords: dplot
>
> ### ** Examples
>
> y0 <- c(1., 2., 4., 3.)
> sfun0 <- stepfun(1:3, y0, f = 0)
> sfun.2 <- stepfun(1:3, y0, f = 0.2)
> sfun1 <- stepfun(1:3, y0, f = 1)
> sfun1c <- stepfun(1:3, y0, right = TRUE) # hence f=1
> sfun0
Step function
Call: stepfun(1:3, y0, f = 0)
x[1:3] = 1, 2, 3
4 plateau levels = 1, 2, 4, 3
> summary(sfun0)
Step function with continuity 'f'= 0 , 3 knots at
[1] 1 2 3
and 4 plateau levels (y) at
[1] 1 2 4 3
> summary(sfun.2)
Step function with continuity 'f'= 0.2 , 3 knots at
[1] 1 2 3
and 4 plateau levels (y) at
[1] 1 2 4 3
>
> ## look at the internal structure:
> unclass(sfun0)
function (v)
.approxfun(x, y, v, method, yleft, yright, f)
<bytecode: 0xfeafd8>
<environment: 0x3f35f68>
attr(,"call")
stepfun(1:3, y0, f = 0)
> ls(envir = environment(sfun0))
[1] "f" "method" "x" "y" "yleft" "yright"
>
> x0 <- seq(0.5, 3.5, by = 0.25)
> rbind(x = x0, f.f0 = sfun0(x0), f.f02 = sfun.2(x0),
+ f.f1 = sfun1(x0), f.f1c = sfun1c(x0))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
x 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
f.f0 1.0 1.00 2 2.00 2.0 2.00 4 4.00 4.0 4.00 3 3.00 3.0
f.f02 1.0 1.00 2 2.40 2.4 2.40 4 3.80 3.8 3.80 3 3.00 3.0
f.f1 1.0 1.00 2 4.00 4.0 4.00 4 3.00 3.0 3.00 3 3.00 3.0
f.f1c 1.0 1.00 1 2.00 2.0 2.00 2 4.00 4.0 4.00 4 3.00 3.0
> ## Identities :
> stopifnot(identical(y0[-1], sfun0 (1:3)), # right = FALSE
+ identical(y0[-4], sfun1c(1:3))) # right = TRUE
>
>
>
> cleanEx()
> nameEx("stl")
> ### * stl
>
> flush(stderr()); flush(stdout())
>
> ### Name: stl
> ### Title: Seasonal Decomposition of Time Series by Loess
> ### Aliases: stl
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> plot(stl(nottem, "per"))
> plot(stl(nottem, s.window = 4, t.window = 50, t.jump = 1))
>
> plot(stllc <- stl(log(co2), s.window = 21))
> summary(stllc)
Call:
stl(x = log(co2), s.window = 21)
Time.series components:
seasonal trend remainder
Min. :-0.009939103 Min. :5.753541 Min. :-0.0022554051
1st Qu.:-0.004536535 1st Qu.:5.778556 1st Qu.:-0.0004586796
Median : 0.000877761 Median :5.815125 Median :-0.0000088674
Mean :-0.000001304 Mean :5.819267 Mean :-0.0000019655
3rd Qu.: 0.004997747 3rd Qu.:5.859806 3rd Qu.: 0.0004023465
Max. : 0.009114691 Max. :5.898750 Max. : 0.0019396260
IQR:
STL.seasonal STL.trend STL.remainder data
0.009534 0.081250 0.000861 0.079370
% 12.0 102.4 1.1 100.0
Weights: all == 1
Other components: List of 5
$ win : Named num [1:3] 21 21 13
$ deg : Named int [1:3] 0 1 1
$ jump : Named num [1:3] 3 3 2
$ inner: int 2
$ outer: int 0
> ## linear trend, strict period.
> plot(stl(log(co2), s.window = "per", t.window = 1000))
>
> ## Two STL plotted side by side :
> stmd <- stl(mdeaths, s.window = "per") # non-robust
> summary(stmR <- stl(mdeaths, s.window = "per", robust = TRUE))
Call:
stl(x = mdeaths, s.window = "per", robust = TRUE)
Time.series components:
seasonal trend remainder
Min. :-446.8302 Min. :1318.650 Min. :-314.5835
1st Qu.:-301.5726 1st Qu.:1432.208 1st Qu.: -32.5392
Median : -79.0561 Median :1448.891 Median : 5.7943
Mean : 0.0000 Mean :1472.880 Mean : 23.0646
3rd Qu.: 304.5673 3rd Qu.:1548.974 3rd Qu.: 47.5134
Max. : 544.7904 Max. :1615.535 Max. : 872.1992
IQR:
STL.seasonal STL.trend STL.remainder data
606.14 116.77 80.05 707.75
% 85.6 16.5 11.3 100.0
Weights:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000000 0.5594126 0.9451991 0.7312186 0.9853375 1.0000000
Other components: List of 5
$ win : Named num [1:3] 721 19 13
$ deg : Named int [1:3] 0 1 1
$ jump : Named num [1:3] 73 2 2
$ inner: int 1
$ outer: int 15
> op <- par(mar = c(0, 4, 0, 3), oma = c(5, 0, 4, 0), mfcol = c(4, 2))
> plot(stmd, set.pars = NULL, labels = NULL,
+ main = "stl(mdeaths, s.w = \"per\", robust = FALSE / TRUE )")
> plot(stmR, set.pars = NULL)
> # mark the 'outliers' :
> (iO <- which(stmR $ weights < 1e-8)) # 10 were considered outliers
[1] 24 26 27 28 36 37 50 52 59 61
> sts <- stmR$time.series
> points(time(sts)[iO], 0.8* sts[,"remainder"][iO], pch = 4, col = "red")
> par(op) # reset
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
> nameEx("summary.aov")
> ### * summary.aov
>
> flush(stderr()); flush(stdout())
>
> ### Name: summary.aov
> ### Title: Summarize an Analysis of Variance Model
> ### Aliases: summary.aov summary.aovlist print.summary.aov
> ### print.summary.aovlist
> ### Keywords: models regression
>
> ### ** Examples
>
> ## For a simple example see example(aov)
>
> # Cochran and Cox (1957, p.164)
> # 3x3 factorial with ordered factors, each is average of 12.
> CC <- data.frame(
+ y = c(449, 413, 326, 409, 358, 291, 341, 278, 312)/12,
+ P = ordered(gl(3, 3)), N = ordered(gl(3, 1, 9))
+ )
> CC.aov <- aov(y ~ N * P, data = CC , weights = rep(12, 9))
> summary(CC.aov)
Df Sum Sq Mean Sq
N 2 1016.7 508.3
P 2 917.4 458.7
N:P 4 399.3 99.8
>
> # Split both main effects into linear and quadratic parts.
> summary(CC.aov, split = list(N = list(L = 1, Q = 2),
+ P = list(L = 1, Q = 2)))
Df Sum Sq Mean Sq
N 2 1016.7 508.3
N: L 1 1012.5 1012.5
N: Q 1 4.2 4.2
P 2 917.4 458.7
P: L 1 917.3 917.3
P: Q 1 0.0 0.0
N:P 4 399.3 99.8
N:P: L.L 1 184.1 184.1
N:P: Q.L 1 152.1 152.1
N:P: L.Q 1 49.0 49.0
N:P: Q.Q 1 14.1 14.1
>
> # Split only the interaction
> summary(CC.aov, split = list("N:P" = list(L.L = 1, Q = 2:4)))
Df Sum Sq Mean Sq
N 2 1016.7 508.3
P 2 917.4 458.7
N:P 4 399.3 99.8
N:P: L.L 1 184.1 184.1
N:P: Q 3 215.2 71.7
>
> # split on just one var
> summary(CC.aov, split = list(P = list(lin = 1, quad = 2)))
Df Sum Sq Mean Sq
N 2 1016.7 508.3
P 2 917.4 458.7
P: lin 1 917.3 917.3
P: quad 1 0.0 0.0
N:P 4 399.3 99.8
N:P: lin 2 336.2 168.1
N:P: quad 2 63.1 31.5
> summary(CC.aov, split = list(P = list(lin = 1, quad = 2)),
+ expand.split = FALSE)
Df Sum Sq Mean Sq
N 2 1016.7 508.3
P 2 917.4 458.7
P: lin 1 917.3 917.3
P: quad 1 0.0 0.0
N:P 4 399.3 99.8
>
>
> cleanEx()
> nameEx("summary.glm")
> ### * summary.glm
>
> flush(stderr()); flush(stdout())
>
> ### Name: summary.glm
> ### Title: Summarizing Generalized Linear Model Fits
> ### Aliases: summary.glm print.summary.glm
> ### Keywords: models regression
>
> ### ** Examples
>
> ## For examples see example(glm)
>
>
>
> cleanEx()
> nameEx("summary.lm")
> ### * summary.lm
>
> flush(stderr()); flush(stdout())
>
> ### Name: summary.lm
> ### Title: Summarizing Linear Model Fits
> ### Aliases: summary.lm summary.mlm print.summary.lm
> ### Keywords: regression models
>
> ### ** Examples
>
> ## Don't show:
> utils::example("lm", echo = FALSE)
> ## End Don't show
> ##-- Continuing the lm(.) example:
> coef(lm.D90) # the bare coefficients
groupCtl groupTrt
5.032 4.661
> sld90 <- summary(lm.D90 <- lm(weight ~ group -1)) # omitting intercept
> sld90
Call:
lm(formula = weight ~ group - 1)
Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4938 0.0685 0.2462 1.3690
Coefficients:
Estimate Std. Error t value Pr(>|t|)
groupCtl 5.0320 0.2202 22.85 9.55e-15 ***
groupTrt 4.6610 0.2202 21.16 3.62e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.9818, Adjusted R-squared: 0.9798
F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16
> coef(sld90) # much more
Estimate Std. Error t value Pr(>|t|)
groupCtl 5.032 0.2202177 22.85012 9.547128e-15
groupTrt 4.661 0.2202177 21.16542 3.615345e-14
>
> ## model with *aliased* coefficient:
> lm.D9. <- lm(weight ~ group + I(group != "Ctl"))
> Sm.D9. <- summary(lm.D9.)
> Sm.D9. # shows the NA NA NA NA line
Call:
lm(formula = weight ~ group + I(group != "Ctl"))
Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4938 0.0685 0.2462 1.3690
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0320 0.2202 22.850 9.55e-15 ***
groupTrt -0.3710 0.3114 -1.191 0.249
I(group != "Ctl")TRUE NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.07308, Adjusted R-squared: 0.02158
F-statistic: 1.419 on 1 and 18 DF, p-value: 0.249
> stopifnot(length(cc <- coef(lm.D9.)) == 3, is.na(cc[3]),
+ dim(coef(Sm.D9.)) == c(2,4), Sm.D9.$df == c(2, 18, 3))
>
>
>
> cleanEx()
> nameEx("summary.manova")
> ### * summary.manova
>
> flush(stderr()); flush(stdout())
>
> ### Name: summary.manova
> ### Title: Summary Method for Multivariate Analysis of Variance
> ### Aliases: summary.manova print.summary.manova
> ### Keywords: models
>
> ### ** Examples
>
>
> cleanEx()
> nameEx("summary.princomp")
> ### * summary.princomp
>
> flush(stderr()); flush(stdout())
>
> ### Name: summary.princomp
> ### Title: Summary method for Principal Components Analysis
> ### Aliases: summary.princomp print.summary.princomp
> ### Keywords: multivariate
>
> ### ** Examples
>
> summary(pc.cr <- princomp(USArrests, cor = TRUE))
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.5748783 0.9948694 0.5971291 0.41644938
Proportion of Variance 0.6200604 0.2474413 0.0891408 0.04335752
Cumulative Proportion 0.6200604 0.8675017 0.9566425 1.00000000
> ## The signs of the loading columns are arbitrary
> print(summary(princomp(USArrests, cor = TRUE),
+ loadings = TRUE, cutoff = 0.2), digits = 2)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.5748783 0.9948694 0.5971291 0.41644938
Proportion of Variance 0.6200604 0.2474413 0.0891408 0.04335752
Cumulative Proportion 0.6200604 0.8675017 0.9566425 1.00000000
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
Murder -0.54 0.42 -0.34 0.65
Assault -0.58 -0.27 -0.74
UrbanPop -0.28 -0.87 -0.38
Rape -0.54 0.82
>
>
>
> cleanEx()
> nameEx("supsmu")
> ### * supsmu
>
> flush(stderr()); flush(stdout())
>
> ### Name: supsmu
> ### Title: Friedman's SuperSmoother
> ### Aliases: supsmu
> ### Keywords: smooth
>
> ### ** Examples
>
> require(graphics)
>
> with(cars, {
+ plot(speed, dist)
+ lines(supsmu(speed, dist))
+ lines(supsmu(speed, dist, bass = 7), lty = 2)
+ })
>
>
>
> cleanEx()
> nameEx("symnum")
> ### * symnum
>
> flush(stderr()); flush(stdout())
>
> ### Name: symnum
> ### Title: Symbolic Number Coding
> ### Aliases: symnum
> ### Keywords: utilities character
>
> ### ** Examples
>
> ii <- setNames(0:8, 0:8)
> symnum(ii, cut = 2*(0:4), sym = c(".", "-", "+", "$"))
0 1 2 3 4 5 6 7 8
. . . - - + + $ $
attr(,"legend")
[1] 0 ‘.’ 2 ‘-’ 4 ‘+’ 6 ‘$’ 8
> symnum(ii, cut = 2*(0:4), sym = c(".", "-", "+", "$"), show.max = TRUE)
0 1 2 3 4 5 6 7 8
. . . - - + + $ 8
attr(,"legend")
[1] 0 ‘.’ 2 ‘-’ 4 ‘+’ 6 ‘$’ 8
>
> symnum(1:12 %% 3 == 0) # --> "|" = TRUE, "." = FALSE for logical
[1] . . | . . | . . | . . |
>
> ## Pascal's Triangle modulo 2 -- odd and even numbers:
> N <- 38
> pascal <- t(sapply(0:N, function(n) round(choose(n, 0:N - (N-n)%/%2))))
> rownames(pascal) <- rep("", 1+N) # <-- to improve "graphic"
> symnum(pascal %% 2, symbols = c(" ", "A"), numeric = FALSE)
A
A A
A A
A A A A
A A
A A A A
A A A A
A A A A A A A A
A A
A A A A
A A A A
A A A A A A A A
A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A A A A A A A A A A
A A
A A A A
A A A A
A A A A A A A A
A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A A A A A A A A A A
A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A A A A A A A A A A
A A A A A A A A
A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A
A A
A A A A
A A A A
A A A A A A A A
A A A A
A A A A A A A A
A A A A A A A A
>
> ##-- Symbolic correlation matrices:
> symnum(cor(attitude), diag = FALSE)
rt cm p l rs cr a
rating
complaints +
privileges . .
learning , . .
raises . , . ,
critical .
advance . . .
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cor(attitude), abbr. = NULL)
rating 1
complaints + 1
privileges . . 1
learning , . . 1
raises . , . , 1
critical . 1
advance . . . 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cor(attitude), abbr. = FALSE)
rating complaints privileges learning raises critical advance
rating 1
complaints + 1
privileges . . 1
learning , . . 1
raises . , . , 1
critical . 1
advance . . . 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cor(attitude), abbr. = 2)
rt cm pr lr rs cr ad
rating 1
complaints + 1
privileges . . 1
learning , . . 1
raises . , . , 1
critical . 1
advance . . . 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
>
> symnum(cor(rbind(1, rnorm(25), rnorm(25)^2)))
[1,] 1
[2,] + 1
[3,] . 1
[4,] . B 1
[5,] + B 1
[6,] . B B 1
[7,] , * . . * 1
[8,] . + . , + . B 1
[9,] . + . , * . B B 1
[10,] . B B B . . . 1
[11,] B B . * . , , B 1
[12,] , B . B B + * . 1
[13,] 1 + . . + . , . . . , 1
[14,] , . * + B * + , 1
[15,] . * B . + , + , * B . , 1
[16,] * B B + , , * * . 1
[17,] * B B + , , * * . B 1
[18,] , , + , , * B * , + , . * . . 1
[19,] . + , , + . B B B , + + . . + , , B 1
[20,] + B B B + * . B + . B B , + 1
[21,] , , + , , * B B , + + . * . . B B , 1
[22,] . , , , + . B B B , + + . . + , , B B + B 1
[23,] B , , . , , . . , . , B + + + , 1
[24,] * , , . , , . , . . * * . , , . B 1
[25,] B + . . + . , . . . , B , * * . + . B B 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cor(matrix(rexp(30, 1), 5, 18))) # <<-- PATTERN ! --
[1,] 1
[2,] . 1
[3,] 1
[4,] . . 1
[5,] , . 1
[6,] , , 1
[7,] 1 . . 1
[8,] . 1 . , , . 1
[9,] 1 . 1
[10,] . . 1 . . 1
[11,] , . 1 , , . 1
[12,] , , 1 , , 1
[13,] 1 . . 1 . . 1
[14,] . 1 . , , . 1 . , , . 1
[15,] 1 . 1 . 1
[16,] . . 1 . . 1 . . 1
[17,] , . 1 , , . 1 , , . 1
[18,] , , 1 , , 1 , , 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cm1 <- cor(matrix(rnorm(90) , 5, 18))) # < White Noise SMALL n
[1,] 1
[2,] . 1
[3,] . . 1
[4,] , , 1
[5,] . , 1
[6,] . * * 1
[7,] , . . . 1
[8,] , . . 1
[9,] . . . . . . 1
[10,] , . . . B . 1
[11,] , + . + + , . 1
[12,] , + + * . . , 1
[13,] . + + , + . 1
[14,] . . . + , , 1
[15,] . . . . . . + 1
[16,] . , . . . . . . 1
[17,] , + , + . . * . . 1
[18,] . . * , . . . , , . . 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cm1, diag = FALSE)
[1,]
[2,] .
[3,] . .
[4,] , ,
[5,] . ,
[6,] . * *
[7,] , . . .
[8,] , . .
[9,] . . . . . .
[10,] , . . . B .
[11,] , + . + + , .
[12,] , + + * . . ,
[13,] . + + , + .
[14,] . . . + , ,
[15,] . . . . . . +
[16,] . , . . . . . .
[17,] , + , + . . * . .
[18,] . . * , . . . , , . .
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cm2 <- cor(matrix(rnorm(900), 50, 18))) # < White Noise "BIG" n
[1,] 1
[2,] 1
[3,] 1
[4,] 1
[5,] 1
[6,] 1
[7,] 1
[8,] 1
[9,] 1
[10,] 1
[11,] 1
[12,] 1
[13,] . . 1
[14,] 1
[15,] 1
[16,] 1
[17,] 1
[18,] 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cm2, lower = FALSE)
[1,] 1
[2,] 1
[3,] 1
[4,] 1
[5,] 1
[6,] 1
[7,] 1
[8,] 1 .
[9,] 1
[10,] 1
[11,] 1 .
[12,] 1
[13,] . . 1
[14,] 1
[15,] 1
[16,] 1
[17,] 1
[18,] 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
>
> ## NA's:
> Cm <- cor(matrix(rnorm(60), 10, 6)); Cm[c(3,6), 2] <- NA
> symnum(Cm, show.max = NULL)
[1,]
[2,]
[3,] . ?
[4,] . ,
[5,] .
[6,] , ?
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1 \t ## NA: ‘?’
>
> ## Graphical P-values (aka "significance stars"):
> pval <- rev(sort(c(outer(1:6, 10^-(1:3)))))
> symp <- symnum(pval, corr = FALSE,
+ cutpoints = c(0, .001,.01,.05, .1, 1),
+ symbols = c("***","**","*","."," "))
> noquote(cbind(P.val = format(pval), Signif = symp))
P.val Signif
[1,] 0.600
[2,] 0.500
[3,] 0.400
[4,] 0.300
[5,] 0.200
[6,] 0.100 .
[7,] 0.060 .
[8,] 0.050 *
[9,] 0.040 *
[10,] 0.030 *
[11,] 0.020 *
[12,] 0.010 **
[13,] 0.006 **
[14,] 0.005 **
[15,] 0.004 **
[16,] 0.003 **
[17,] 0.002 **
[18,] 0.001 ***
>
>
>
> cleanEx()
> nameEx("t.test")
> ### * t.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: t.test
> ### Title: Student's t-Test
> ### Aliases: t.test t.test.default t.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> require(graphics)
>
> t.test(1:10, y = c(7:20)) # P = .00001855
Welch Two Sample t-test
data: 1:10 and c(7:20)
t = -5.4349, df = 21.982, p-value = 1.855e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-11.052802 -4.947198
sample estimates:
mean of x mean of y
5.5 13.5
> t.test(1:10, y = c(7:20, 200)) # P = .1245 -- NOT significant anymore
Welch Two Sample t-test
data: 1:10 and c(7:20, 200)
t = -1.6329, df = 14.165, p-value = 0.1245
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-47.242900 6.376233
sample estimates:
mean of x mean of y
5.50000 25.93333
>
> ## Classical example: Student's sleep data
> plot(extra ~ group, data = sleep)
> ## Traditional interface
> with(sleep, t.test(extra[group == 1], extra[group == 2]))
Welch Two Sample t-test
data: extra[group == 1] and extra[group == 2]
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.3654832 0.2054832
sample estimates:
mean of x mean of y
0.75 2.33
> ## Formula interface
> t.test(extra ~ group, data = sleep)
Welch Two Sample t-test
data: extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.3654832 0.2054832
sample estimates:
mean in group 1 mean in group 2
0.75 2.33
>
>
>
> cleanEx()
> nameEx("termplot")
> ### * termplot
>
> flush(stderr()); flush(stdout())
>
> ### Name: termplot
> ### Title: Plot Regression Terms
> ### Aliases: termplot
> ### Keywords: hplot regression
>
> ### ** Examples
>
> require(graphics)
>
> had.splines <- "package:splines" %in% search()
> if(!had.splines) rs <- require(splines)
Loading required package: splines
> x <- 1:100
> z <- factor(rep(LETTERS[1:4], 25))
> y <- rnorm(100, sin(x/10)+as.numeric(z))
> model <- glm(y ~ ns(x, 6) + z)
>
> par(mfrow = c(2,2)) ## 2 x 2 plots for same model :
> termplot(model, main = paste("termplot( ", deparse(model$call)," ...)"))
> termplot(model, rug = TRUE)
> termplot(model, partial.resid = TRUE, se = TRUE, main = TRUE)
> termplot(model, partial.resid = TRUE, smooth = panel.smooth, span.smth = 1/4)
> if(!had.splines && rs) detach("package:splines")
>
> if (require(MASS)) {
+ hills.lm <- lm(log(time) ~ log(climb)+log(dist), data=hills)
+ termplot(hills.lm, partial.resid = TRUE, smooth = panel.smooth,
+ terms = "log(dist)", main = "Original")
+ termplot(hills.lm, transform.x = TRUE, partial.resid = TRUE,
+ terms = "log(dist)", main = "Transformed",
+ smooth=panel.smooth)
+ }
Loading required package: MASS
>
>
>
> graphics::par(get("par.postscript", pos = 'CheckExEnv'))
> cleanEx()
detaching ‘package:MASS’
> nameEx("terms.object")
> ### * terms.object
>
> flush(stderr()); flush(stdout())
>
> ### Name: terms.object
> ### Title: Description of Terms Objects
> ### Aliases: terms.object
> ### Keywords: models
>
> ### ** Examples
>
> ## use of specials (as used for gam() in packages mgcv and gam)
> (tf <- terms(y ~ x + x:z + s(x), specials = "s"))
y ~ x + x:z + s(x)
attr(,"variables")
list(y, x, z, s(x))
attr(,"factors")
x s(x) x:z
y 0 0 0
x 1 0 2
z 0 0 1
s(x) 0 1 0
attr(,"term.labels")
[1] "x" "s(x)" "x:z"
attr(,"specials")
attr(,"specials")$s
[1] 4
attr(,"order")
[1] 1 1 2
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
> ## Note that the "factors" attribute has variables as row names
> ## and term labels as column names, both as character vectors.
> attr(tf, "specials") # index 's' variable(s)
$s
[1] 4
> rownames(attr(tf, "factors"))[attr(tf, "specials")$s]
[1] "s(x)"
>
> ## we can keep the order by
> terms(y ~ x + x:z + s(x), specials = "s", keep.order = TRUE)
y ~ x + x:z + s(x)
attr(,"variables")
list(y, x, z, s(x))
attr(,"factors")
x x:z s(x)
y 0 0 0
x 1 2 0
z 0 1 0
s(x) 0 0 1
attr(,"term.labels")
[1] "x" "x:z" "s(x)"
attr(,"specials")
attr(,"specials")$s
[1] 4
attr(,"order")
[1] 1 2 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
>
>
>
> cleanEx()
> nameEx("time")
> ### * time
>
> flush(stderr()); flush(stdout())
>
> ### Name: time
> ### Title: Sampling Times of Time Series
> ### Aliases: time cycle frequency deltat time.default
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> cycle(presidents)
Qtr1 Qtr2 Qtr3 Qtr4
1945 1 2 3 4
1946 1 2 3 4
1947 1 2 3 4
1948 1 2 3 4
1949 1 2 3 4
1950 1 2 3 4
1951 1 2 3 4
1952 1 2 3 4
1953 1 2 3 4
1954 1 2 3 4
1955 1 2 3 4
1956 1 2 3 4
1957 1 2 3 4
1958 1 2 3 4
1959 1 2 3 4
1960 1 2 3 4
1961 1 2 3 4
1962 1 2 3 4
1963 1 2 3 4
1964 1 2 3 4
1965 1 2 3 4
1966 1 2 3 4
1967 1 2 3 4
1968 1 2 3 4
1969 1 2 3 4
1970 1 2 3 4
1971 1 2 3 4
1972 1 2 3 4
1973 1 2 3 4
1974 1 2 3 4
> # a simple series plot
> plot(as.vector(time(presidents)), as.vector(presidents), type = "l")
>
>
>
> cleanEx()
> nameEx("toeplitz")
> ### * toeplitz
>
> flush(stderr()); flush(stdout())
>
> ### Name: toeplitz
> ### Title: Form Symmetric Toeplitz Matrix
> ### Aliases: toeplitz
> ### Keywords: ts
>
> ### ** Examples
>
> x <- 1:5
> toeplitz (x)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 2 1 2 3 4
[3,] 3 2 1 2 3
[4,] 4 3 2 1 2
[5,] 5 4 3 2 1
>
>
>
> cleanEx()
> nameEx("ts")
> ### * ts
>
> flush(stderr()); flush(stdout())
>
> ### Name: ts
> ### Title: Time-Series Objects
> ### Aliases: ts as.ts as.ts.default is.ts Ops.ts cbind.ts is.mts [.ts t.ts
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of 1959
Qtr1 Qtr2 Qtr3 Qtr4
1959 1 2 3
1960 4 5 6 7
1961 8 9 10
> print( ts(1:10, frequency = 7, start = c(12, 2)), calendar = TRUE)
p1 p2 p3 p4 p5 p6 p7
12 1 2 3 4 5 6
13 7 8 9 10
> # print.ts(.)
> ## Using July 1954 as start date:
> gnp <- ts(cumsum(1 + round(rnorm(100), 2)),
+ start = c(1954, 7), frequency = 12)
> plot(gnp) # using 'plot.ts' for time-series plot
>
> ## Multivariate
> z <- ts(matrix(rnorm(300), 100, 3), start = c(1961, 1), frequency = 12)
> class(z)
[1] "mts" "ts" "matrix"
> head(z) # as "matrix"
Series 1 Series 2 Series 3
[1,] -0.62036668 0.4094018 0.8936737
[2,] 0.04211587 1.6888733 -1.0472981
[3,] -0.91092165 1.5865884 1.9713374
[4,] 0.15802877 -0.3309078 -0.3836321
[5,] -0.65458464 -2.2852355 1.6541453
[6,] 1.76728727 2.4976616 1.5122127
> plot(z)
> plot(z, plot.type = "single", lty = 1:3)
>
> ## A phase plot:
> plot(nhtemp, lag(nhtemp, 1), cex = .8, col = "blue",
+ main = "Lag plot of New Haven temperatures")
>
>
>
> cleanEx()
> nameEx("ts.plot")
> ### * ts.plot
>
> flush(stderr()); flush(stdout())
>
> ### Name: ts.plot
> ### Title: Plot Multiple Time Series
> ### Aliases: ts.plot
> ### Keywords: ts
>
> ### ** Examples
>
> require(graphics)
>
> ts.plot(ldeaths, mdeaths, fdeaths,
+ gpars=list(xlab="year", ylab="deaths", lty=c(1:3)))
>
>
>
> cleanEx()
> nameEx("ts.union")
> ### * ts.union
>
> flush(stderr()); flush(stdout())
>
> ### Name: ts.union
> ### Title: Bind Two or More Time Series
> ### Aliases: ts.union ts.intersect
> ### Keywords: ts
>
> ### ** Examples
>
> ts.union(mdeaths, fdeaths)
mdeaths fdeaths
Jan 1974 2134 901
Feb 1974 1863 689
Mar 1974 1877 827
Apr 1974 1877 677
May 1974 1492 522
Jun 1974 1249 406
Jul 1974 1280 441
Aug 1974 1131 393
Sep 1974 1209 387
Oct 1974 1492 582
Nov 1974 1621 578
Dec 1974 1846 666
Jan 1975 2103 830
Feb 1975 2137 752
Mar 1975 2153 785
Apr 1975 1833 664
May 1975 1403 467
Jun 1975 1288 438
Jul 1975 1186 421
Aug 1975 1133 412
Sep 1975 1053 343
Oct 1975 1347 440
Nov 1975 1545 531
Dec 1975 2066 771
Jan 1976 2020 767
Feb 1976 2750 1141
Mar 1976 2283 896
Apr 1976 1479 532
May 1976 1189 447
Jun 1976 1160 420
Jul 1976 1113 376
Aug 1976 970 330
Sep 1976 999 357
Oct 1976 1208 445
Nov 1976 1467 546
Dec 1976 2059 764
Jan 1977 2240 862
Feb 1977 1634 660
Mar 1977 1722 663
Apr 1977 1801 643
May 1977 1246 502
Jun 1977 1162 392
Jul 1977 1087 411
Aug 1977 1013 348
Sep 1977 959 387
Oct 1977 1179 385
Nov 1977 1229 411
Dec 1977 1655 638
Jan 1978 2019 796
Feb 1978 2284 853
Mar 1978 1942 737
Apr 1978 1423 546
May 1978 1340 530
Jun 1978 1187 446
Jul 1978 1098 431
Aug 1978 1004 362
Sep 1978 970 387
Oct 1978 1140 430
Nov 1978 1110 425
Dec 1978 1812 679
Jan 1979 2263 821
Feb 1979 1820 785
Mar 1979 1846 727
Apr 1979 1531 612
May 1979 1215 478
Jun 1979 1075 429
Jul 1979 1056 405
Aug 1979 975 379
Sep 1979 940 393
Oct 1979 1081 411
Nov 1979 1294 487
Dec 1979 1341 574
> cbind(mdeaths, fdeaths) # same as the previous line
mdeaths fdeaths
Jan 1974 2134 901
Feb 1974 1863 689
Mar 1974 1877 827
Apr 1974 1877 677
May 1974 1492 522
Jun 1974 1249 406
Jul 1974 1280 441
Aug 1974 1131 393
Sep 1974 1209 387
Oct 1974 1492 582
Nov 1974 1621 578
Dec 1974 1846 666
Jan 1975 2103 830
Feb 1975 2137 752
Mar 1975 2153 785
Apr 1975 1833 664
May 1975 1403 467
Jun 1975 1288 438
Jul 1975 1186 421
Aug 1975 1133 412
Sep 1975 1053 343
Oct 1975 1347 440
Nov 1975 1545 531
Dec 1975 2066 771
Jan 1976 2020 767
Feb 1976 2750 1141
Mar 1976 2283 896
Apr 1976 1479 532
May 1976 1189 447
Jun 1976 1160 420
Jul 1976 1113 376
Aug 1976 970 330
Sep 1976 999 357
Oct 1976 1208 445
Nov 1976 1467 546
Dec 1976 2059 764
Jan 1977 2240 862
Feb 1977 1634 660
Mar 1977 1722 663
Apr 1977 1801 643
May 1977 1246 502
Jun 1977 1162 392
Jul 1977 1087 411
Aug 1977 1013 348
Sep 1977 959 387
Oct 1977 1179 385
Nov 1977 1229 411
Dec 1977 1655 638
Jan 1978 2019 796
Feb 1978 2284 853
Mar 1978 1942 737
Apr 1978 1423 546
May 1978 1340 530
Jun 1978 1187 446
Jul 1978 1098 431
Aug 1978 1004 362
Sep 1978 970 387
Oct 1978 1140 430
Nov 1978 1110 425
Dec 1978 1812 679
Jan 1979 2263 821
Feb 1979 1820 785
Mar 1979 1846 727
Apr 1979 1531 612
May 1979 1215 478
Jun 1979 1075 429
Jul 1979 1056 405
Aug 1979 975 379
Sep 1979 940 393
Oct 1979 1081 411
Nov 1979 1294 487
Dec 1979 1341 574
> ts.intersect(window(mdeaths, 1976), window(fdeaths, 1974, 1978))
window(mdeaths, 1976) window(fdeaths, 1974, 1978)
Jan 1976 2020 767
Feb 1976 2750 1141
Mar 1976 2283 896
Apr 1976 1479 532
May 1976 1189 447
Jun 1976 1160 420
Jul 1976 1113 376
Aug 1976 970 330
Sep 1976 999 357
Oct 1976 1208 445
Nov 1976 1467 546
Dec 1976 2059 764
Jan 1977 2240 862
Feb 1977 1634 660
Mar 1977 1722 663
Apr 1977 1801 643
May 1977 1246 502
Jun 1977 1162 392
Jul 1977 1087 411
Aug 1977 1013 348
Sep 1977 959 387
Oct 1977 1179 385
Nov 1977 1229 411
Dec 1977 1655 638
Jan 1978 2019 796
>
> sales1 <- ts.union(BJsales, lead = BJsales.lead)
> ts.intersect(sales1, lead3 = lag(BJsales.lead, -3))
Time Series:
Start = 4
End = 150
Frequency = 1
sales1.BJsales sales1.lead lead3
4 198.9 9.75 10.01
5 199.0 10.33 10.07
6 200.2 10.13 10.32
7 198.6 10.36 9.75
8 200.0 10.32 10.33
9 200.3 10.13 10.13
10 201.2 10.16 10.36
11 201.6 10.58 10.32
12 201.5 10.62 10.13
13 201.5 10.86 10.16
14 203.5 11.20 10.58
15 204.9 10.74 10.62
16 207.1 10.56 10.86
17 210.5 10.48 11.20
18 210.5 10.77 10.74
19 209.8 11.33 10.56
20 208.8 10.96 10.48
21 209.5 11.16 10.77
22 213.2 11.70 11.33
23 213.7 11.39 10.96
24 215.1 11.42 11.16
25 218.7 11.94 11.70
26 219.8 11.24 11.39
27 220.5 11.59 11.42
28 223.8 10.96 11.94
29 222.8 11.40 11.24
30 223.8 11.02 11.59
31 221.7 11.01 10.96
32 222.3 11.23 11.40
33 220.8 11.33 11.02
34 219.4 10.83 11.01
35 220.1 10.84 11.23
36 220.6 11.14 11.33
37 218.9 10.38 10.83
38 217.8 10.90 10.84
39 217.7 11.05 11.14
40 215.0 11.11 10.38
41 215.3 11.01 10.90
42 215.9 11.22 11.05
43 216.7 11.21 11.11
44 216.7 11.91 11.01
45 217.7 11.69 11.22
46 218.7 10.93 11.21
47 222.9 10.99 11.91
48 224.9 11.01 11.69
49 222.2 10.84 10.93
50 220.7 10.76 10.99
51 220.0 10.77 11.01
52 218.7 10.88 10.84
53 217.0 10.49 10.76
54 215.9 10.50 10.77
55 215.8 11.00 10.88
56 214.1 10.98 10.49
57 212.3 10.61 10.50
58 213.9 10.48 11.00
59 214.6 10.53 10.98
60 213.6 11.07 10.61
61 212.1 10.61 10.48
62 211.4 10.86 10.53
63 213.1 10.34 11.07
64 212.9 10.78 10.61
65 213.3 10.80 10.86
66 211.5 10.33 10.34
67 212.3 10.44 10.78
68 213.0 10.50 10.80
69 211.0 10.75 10.33
70 210.7 10.40 10.44
71 210.1 10.40 10.50
72 211.4 10.34 10.75
73 210.0 10.55 10.40
74 209.7 10.46 10.40
75 208.8 10.82 10.34
76 208.8 10.91 10.55
77 208.8 10.87 10.46
78 210.6 10.67 10.82
79 211.9 11.11 10.91
80 212.8 10.88 10.87
81 212.5 11.28 10.67
82 214.8 11.27 11.11
83 215.3 11.44 10.88
84 217.5 11.52 11.28
85 218.8 12.10 11.27
86 220.7 11.83 11.44
87 222.2 12.62 11.52
88 226.7 12.41 12.10
89 228.4 12.43 11.83
90 233.2 12.73 12.62
91 235.7 13.01 12.41
92 237.1 12.74 12.43
93 240.6 12.73 12.73
94 243.8 12.76 13.01
95 245.3 12.92 12.74
96 246.0 12.64 12.73
97 246.3 12.79 12.76
98 247.7 13.05 12.92
99 247.6 12.69 12.64
100 247.8 13.01 12.79
101 249.4 12.90 13.05
102 249.0 13.12 12.69
103 249.9 12.47 13.01
104 250.5 12.47 12.90
105 251.5 12.94 13.12
106 249.0 13.10 12.47
107 247.6 12.91 12.47
108 248.8 13.39 12.94
109 250.4 13.13 13.10
110 250.7 13.34 12.91
111 253.0 13.34 13.39
112 253.7 13.14 13.13
113 255.0 13.49 13.34
114 256.2 13.87 13.34
115 256.0 13.39 13.14
116 257.4 13.59 13.49
117 260.4 13.27 13.87
118 260.0 13.70 13.39
119 261.3 13.20 13.59
120 260.4 13.32 13.27
121 261.6 13.15 13.70
122 260.8 13.30 13.20
123 259.8 12.94 13.32
124 259.0 13.29 13.15
125 258.9 13.26 13.30
126 257.4 13.08 12.94
127 257.7 13.24 13.29
128 257.9 13.31 13.26
129 257.4 13.52 13.08
130 257.3 13.02 13.24
131 257.6 13.25 13.31
132 258.9 13.12 13.52
133 257.8 13.26 13.02
134 257.7 13.11 13.25
135 257.2 13.30 13.12
136 257.5 13.06 13.26
137 256.8 13.32 13.11
138 257.5 13.10 13.30
139 257.0 13.27 13.06
140 257.6 13.64 13.32
141 257.3 13.58 13.10
142 257.5 13.87 13.27
143 259.6 13.53 13.64
144 261.1 13.41 13.58
145 262.9 13.25 13.87
146 263.3 13.50 13.53
147 262.8 13.58 13.41
148 261.8 13.51 13.25
149 262.2 13.77 13.50
150 262.7 13.40 13.58
>
>
>
> cleanEx()
> nameEx("tsdiag")
> ### * tsdiag
>
> flush(stderr()); flush(stdout())
>
> ### Name: tsdiag
> ### Title: Diagnostic Plots for Time-Series Fits
> ### Aliases: tsdiag tsdiag.arima0 tsdiag.Arima tsdiag.StructTS
> ### Keywords: ts
>
> ### ** Examples
>
>
>
> cleanEx()
> nameEx("uniroot")
> ### * uniroot
>
> flush(stderr()); flush(stdout())
>
> ### Name: uniroot
> ### Title: One Dimensional Root (Zero) Finding
> ### Aliases: uniroot
> ### Keywords: optimize
>
> ### ** Examples
>
> ##--- uniroot() with new interval extension + checking features: --------------
>
> f1 <- function(x) (121 - x^2)/(x^2+1)
> f2 <- function(x) exp(-x)*(x - 12)
>
> try(uniroot(f1, c(0,10)))
Error in uniroot(f1, c(0, 10)) :
f() values at end points not of opposite sign
> try(uniroot(f2, c(0, 2)))
Error in uniroot(f2, c(0, 2)) :
f() values at end points not of opposite sign
> ##--> error: f() .. end points not of opposite sign
>
> ## where as 'extendInt="yes"' simply first enlarges the search interval:
> u1 <- uniroot(f1, c(0,10),extendInt="yes", trace=1)
search in [0,10] ... extended to [-1.5e-05, 11.5] in 4 steps
> u2 <- uniroot(f2, c(0,2), extendInt="yes", trace=2)
search in [0,2]
.. modified lower,upper: ( -1e-06, 2.02)
.. modified lower,upper: ( -3e-06, 2.06)
.. modified lower,upper: ( -7e-06, 2.14)
.. modified lower,upper: ( -1.5e-05, 2.3)
.. modified lower,upper: ( -3.1e-05, 2.62)
.. modified lower,upper: ( -6.3e-05, 3.26)
.. modified lower,upper: ( -0.000127, 4.54)
.. modified lower,upper: ( -0.000255, 7.1)
.. modified lower,upper: ( -0.000511, 12.22)
> stopifnot(all.equal(u1$root, 11, tolerance = 1e-5),
+ all.equal(u2$root, 12, tolerance = 6e-6))
>
> ## The *danger* of interval extension:
> ## No way to find a zero of a positive function, but
> ## numerically, f(-|M|) becomes zero :
> u3 <- uniroot(exp, c(0,2), extendInt="yes", trace=TRUE)
search in [0,2] ... extended to [-1073.74, 2.14748e+07] in 30 steps
>
> ## Nonsense example (must give an error):
> tools::assertCondition( uniroot(function(x) 1, 0:1, extendInt="yes"),
+ "error", verbose=TRUE)
assertCondition: caught “error”
>
> ## Convergence checking :
> sinc <- function(x) ifelse(x == 0, 1, sin(x)/x)
> curve(sinc, -6,18); abline(h=0,v=0, lty=3, col=adjustcolor("gray", 0.8))
> ## Don't show:
> tools::assertWarning(
+ ## End Don't show
+ uniroot(sinc, c(0,5), extendInt="yes", maxiter=4) #-> "just" a warning
+ ## Don't show:
+ , verbose=TRUE)
Asserted warning: _NOT_ converged in 4 iterations
> ## End Don't show
>
> ## now with check.conv=TRUE, must signal a convergence error :
> ## Don't show:
> tools::assertError(
+ ## End Don't show
+ uniroot(sinc, c(0,5), extendInt="yes", maxiter=4, check.conv=TRUE)
+ ## Don't show:
+ , verbose=TRUE)
Asserted error: _NOT_ converged in 4 iterations
> ## End Don't show
>
> ### Weibull cumulative hazard (example origin, Ravi Varadhan):
> cumhaz <- function(t, a, b) b * (t/b)^a
> froot <- function(x, u, a, b) cumhaz(x, a, b) - u
>
> n <- 1000
> u <- -log(runif(n))
> a <- 1/2
> b <- 1
> ## Find failure times
> ru <- sapply(u, function(x)
+ uniroot(froot, u=x, a=a, b=b, interval= c(1.e-14, 1e04),
+ extendInt="yes")$root)
> ru2 <- sapply(u, function(x)
+ uniroot(froot, u=x, a=a, b=b, interval= c(0.01, 10),
+ extendInt="yes")$root)
> stopifnot(all.equal(ru, ru2, tolerance = 6e-6))
>
> r1 <- uniroot(froot, u= 0.99, a=a, b=b, interval= c(0.01, 10),
+ extendInt="up")
> stopifnot(all.equal(0.99, cumhaz(r1$root, a=a, b=b)))
>
> ## An error if 'extendInt' assumes "wrong zero-crossing direction":
> ## Don't show:
> tools::assertError(
+ ## End Don't show
+ uniroot(froot, u= 0.99, a=a, b=b, interval= c(0.1, 10), extendInt="down")
+ ## Don't show:
+ , verbose=TRUE)
Asserted error: no sign change found in 1000 iterations
> ## End Don't show
>
>
>
> cleanEx()
> nameEx("update")
> ### * update
>
> flush(stderr()); flush(stdout())
>
> ### Name: update
> ### Title: Update and Re-fit a Model Call
> ### Aliases: update update.default getCall getCall.default
> ### Keywords: models
>
> ### ** Examples
>
> oldcon <- options(contrasts = c("contr.treatment", "contr.poly"))
> ## Annette Dobson (1990) "An Introduction to Generalized Linear Models".
> ## Page 9: Plant Weight Data.
> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
> group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
> weight <- c(ctl, trt)
> lm.D9 <- lm(weight ~ group)
> lm.D9
Call:
lm(formula = weight ~ group)
Coefficients:
(Intercept) groupTrt
5.032 -0.371
> summary(lm.D90 <- update(lm.D9, . ~ . - 1))
Call:
lm(formula = weight ~ group - 1)
Residuals:
Min 1Q Median 3Q Max
-1.0710 -0.4938 0.0685 0.2462 1.3690
Coefficients:
Estimate Std. Error t value Pr(>|t|)
groupCtl 5.0320 0.2202 22.85 9.55e-15 ***
groupTrt 4.6610 0.2202 21.16 3.62e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.6964 on 18 degrees of freedom
Multiple R-squared: 0.9818, Adjusted R-squared: 0.9798
F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16
> options(contrasts = c("contr.helmert", "contr.poly"))
> update(lm.D9)
Call:
lm(formula = weight ~ group)
Coefficients:
(Intercept) group1
4.8465 -0.1855
> getCall(lm.D90) # "through the origin"
lm(formula = weight ~ group - 1)
>
> options(oldcon)
>
>
>
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> cleanEx()
> nameEx("update.formula")
> ### * update.formula
>
> flush(stderr()); flush(stdout())
>
> ### Name: update.formula
> ### Title: Model Updating
> ### Aliases: update.formula
> ### Keywords: models
>
> ### ** Examples
>
> update(y ~ x, ~ . + x2) #> y ~ x + x2
y ~ x + x2
> update(y ~ x, log(.) ~ . ) #> log(y) ~ x
log(y) ~ x
>
>
>
> cleanEx()
> nameEx("var.test")
> ### * var.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: var.test
> ### Title: F Test to Compare Two Variances
> ### Aliases: var.test var.test.default var.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> x <- rnorm(50, mean = 0, sd = 2)
> y <- rnorm(30, mean = 1, sd = 1)
> var.test(x, y) # Do x and y have the same variance?
F test to compare two variances
data: x and y
F = 2.6522, num df = 49, denom df = 29, p-value = 0.006232
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
1.332510 4.989832
sample estimates:
ratio of variances
2.652168
> var.test(lm(x ~ 1), lm(y ~ 1)) # The same.
F test to compare two variances
data: lm(x ~ 1) and lm(y ~ 1)
F = 2.6522, num df = 49, denom df = 29, p-value = 0.006232
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
1.332510 4.989832
sample estimates:
ratio of variances
2.652168
>
>
>
> cleanEx()
> nameEx("varimax")
> ### * varimax
>
> flush(stderr()); flush(stdout())
>
> ### Name: varimax
> ### Title: Rotation Methods for Factor Analysis
> ### Aliases: promax varimax
> ### Keywords: multivariate
>
> ### ** Examples
>
> ## varimax with normalize = TRUE is the default
> fa <- factanal( ~., 2, data = swiss)
> varimax(loadings(fa), normalize = FALSE)
$loadings
Loadings:
Factor1 Factor2
Fertility -0.650 0.398
Agriculture -0.628 0.337
Examination 0.681 -0.515
Education 0.997
Catholic -0.117 0.962
Infant.Mortality 0.176
Factor1 Factor2
SS loadings 2.297 1.496
Proportion Var 0.383 0.249
Cumulative Var 0.383 0.632
$rotmat
[,1] [,2]
[1,] 0.999973881 -0.007227595
[2,] 0.007227595 0.999973881
> promax(loadings(fa))
$loadings
Loadings:
Factor1 Factor2
Fertility -0.595 0.227
Agriculture -0.599 0.160
Examination 0.577 -0.360
Education 1.192 0.363
Catholic 0.326 1.147
Infant.Mortality 0.180
Factor1 Factor2
SS loadings 2.574 1.686
Proportion Var 0.429 0.281
Cumulative Var 0.429 0.710
$rotmat
[,1] [,2]
[1,] 1.2114045 0.4029296
[2,] 0.4956199 1.2453063
>
>
>
> cleanEx()
> nameEx("weighted.mean")
> ### * weighted.mean
>
> flush(stderr()); flush(stdout())
>
> ### Name: weighted.mean
> ### Title: Weighted Arithmetic Mean
> ### Aliases: weighted.mean weighted.mean.default
> ### Keywords: univar
>
> ### ** Examples
>
> ## GPA from Siegel 1994
> wt <- c(5, 5, 4, 1)/15
> x <- c(3.7,3.3,3.5,2.8)
> xm <- weighted.mean(x, wt)
>
>
>
> cleanEx()
> nameEx("weighted.residuals")
> ### * weighted.residuals
>
> flush(stderr()); flush(stdout())
>
> ### Name: weighted.residuals
> ### Title: Compute Weighted Residuals
> ### Aliases: weighted.residuals
> ### Keywords: regression
>
> ### ** Examples
>
> ## following on from example(lm)
> ## Don't show:
> utils::example("lm", echo = FALSE)
> ## End Don't show
> all.equal(weighted.residuals(lm.D9),
+ residuals(lm.D9))
[1] TRUE
> x <- 1:10
> w <- 0:9
> y <- rnorm(x)
> weighted.residuals(lmxy <- lm(y ~ x, weights = w))
2 3 4 5 6 7
-0.15744267 -1.63534445 2.24282864 0.09895229 -2.41528559 0.60771924
8 9 10
1.37406419 1.06675699 -1.45098819
> weighted.residuals(lmxy, drop0 = FALSE)
1 2 3 4 5 6
0.00000000 -0.15744267 -1.63534445 2.24282864 0.09895229 -2.41528559
7 8 9 10
0.60771924 1.37406419 1.06675699 -1.45098819
>
>
>
> cleanEx()
> nameEx("wilcox.test")
> ### * wilcox.test
>
> flush(stderr()); flush(stdout())
>
> ### Name: wilcox.test
> ### Title: Wilcoxon Rank Sum and Signed Rank Tests
> ### Aliases: wilcox.test wilcox.test.default wilcox.test.formula
> ### Keywords: htest
>
> ### ** Examples
>
> require(graphics)
> ## One-sample test.
> ## Hollander & Wolfe (1973), 29f.
> ## Hamilton depression scale factor measurements in 9 patients with
> ## mixed anxiety and depression, taken at the first (x) and second
> ## (y) visit after initiation of a therapy (administration of a
> ## tranquilizer).
> x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
> y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
> wilcox.test(x, y, paired = TRUE, alternative = "greater")
Wilcoxon signed rank test
data: x and y
V = 40, p-value = 0.01953
alternative hypothesis: true location shift is greater than 0
> wilcox.test(y - x, alternative = "less") # The same.
Wilcoxon signed rank test
data: y - x
V = 5, p-value = 0.01953
alternative hypothesis: true location is less than 0
> wilcox.test(y - x, alternative = "less",
+ exact = FALSE, correct = FALSE) # H&W large sample
Wilcoxon signed rank test
data: y - x
V = 5, p-value = 0.01908
alternative hypothesis: true location is less than 0
> # approximation
>
> ## Two-sample test.
> ## Hollander & Wolfe (1973), 69f.
> ## Permeability constants of the human chorioamnion (a placental
> ## membrane) at term (x) and between 12 to 26 weeks gestational
> ## age (y). The alternative of interest is greater permeability
> ## of the human chorioamnion for the term pregnancy.
> x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
> y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
> wilcox.test(x, y, alternative = "g") # greater
Wilcoxon rank sum test
data: x and y
W = 35, p-value = 0.1272
alternative hypothesis: true location shift is greater than 0
> wilcox.test(x, y, alternative = "greater",
+ exact = FALSE, correct = FALSE) # H&W large sample
Wilcoxon rank sum test
data: x and y
W = 35, p-value = 0.1103
alternative hypothesis: true location shift is greater than 0
> # approximation
>
> wilcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE)
Wilcoxon rank sum test
data: rnorm(10) and rnorm(10, 2)
W = 7, p-value = 0.0004871
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-3.024352 -1.348555
sample estimates:
difference in location
-2.262424
>
> ## Formula interface.
> boxplot(Ozone ~ Month, data = airquality)
> wilcox.test(Ozone ~ Month, data = airquality,
+ subset = Month %in% c(5, 8))
Warning in wilcox.test.default(x = c(41L, 36L, 12L, 18L, 28L, 23L, 19L, :
cannot compute exact p-value with ties
Wilcoxon rank sum test with continuity correction
data: Ozone by Month
W = 127.5, p-value = 0.0001208
alternative hypothesis: true location shift is not equal to 0
>
>
>
> cleanEx()
> nameEx("window")
> ### * window
>
> flush(stderr()); flush(stdout())
>
> ### Name: window
> ### Title: Time Windows
> ### Aliases: window window.default window.ts window<- window<-.ts
> ### Keywords: ts
>
> ### ** Examples
>
> window(presidents, 1960, c(1969,4)) # values in the 1960's
Qtr1 Qtr2 Qtr3 Qtr4
1960 71 62 61 57
1961 72 83 71 78
1962 79 71 62 74
1963 76 64 62 57
1964 80 73 69 69
1965 71 64 69 62
1966 63 46 56 44
1967 44 52 38 46
1968 36 49 35 44
1969 59 65 65 56
> window(presidents, deltat = 1) # All Qtr1s
Time Series:
Start = 1945
End = 1974
Frequency = 1
[1] NA 63 35 36 69 45 36 25 59 71 71 76 79 60 57 71 72 79 76 80 71 63 44 36 59
[26] 66 51 49 68 28
> window(presidents, start = c(1945,3), deltat = 1) # All Qtr3s
Time Series:
Start = 1945.5
End = 1974.5
Frequency = 1
[1] 82 43 54 NA 57 46 32 NA 75 71 79 67 63 48 61 61 71 62 62 69 69 56 38 35 65
[26] 61 54 NA 40 24
> window(presidents, 1944, c(1979,2), extend = TRUE)
Qtr1 Qtr2 Qtr3 Qtr4
1944 NA NA NA NA
1945 NA 87 82 75
1946 63 50 43 32
1947 35 60 54 55
1948 36 39 NA NA
1949 69 57 57 51
1950 45 37 46 39
1951 36 24 32 23
1952 25 32 NA 32
1953 59 74 75 60
1954 71 61 71 57
1955 71 68 79 73
1956 76 71 67 75
1957 79 62 63 57
1958 60 49 48 52
1959 57 62 61 66
1960 71 62 61 57
1961 72 83 71 78
1962 79 71 62 74
1963 76 64 62 57
1964 80 73 69 69
1965 71 64 69 62
1966 63 46 56 44
1967 44 52 38 46
1968 36 49 35 44
1969 59 65 65 56
1970 66 53 61 52
1971 51 48 54 49
1972 49 61 NA NA
1973 68 44 40 27
1974 28 25 24 24
1975 NA NA NA NA
1976 NA NA NA NA
1977 NA NA NA NA
1978 NA NA NA NA
1979 NA NA
>
> pres <- window(presidents, 1945, c(1949,4)) # values in the 1940's
> window(pres, 1945.25, 1945.50) <- c(60, 70)
> window(pres, 1944, 1944.75) <- 0 # will generate a warning
Warning: extending time series when replacing values
> window(pres, c(1945,4), c(1949,4), frequency = 1) <- 85:89
> pres
Qtr1 Qtr2 Qtr3 Qtr4
1944 0 0 0 0
1945 NA 60 70 85
1946 63 50 43 86
1947 35 60 54 87
1948 36 39 NA 88
1949 69 57 57 89
>
>
>
> cleanEx()
> nameEx("xtabs")
> ### * xtabs
>
> flush(stderr()); flush(stdout())
>
> ### Name: xtabs
> ### Title: Cross Tabulation
> ### Aliases: xtabs print.xtabs
> ### Keywords: category
>
> ### ** Examples
>
> ## 'esoph' has the frequencies of cases and controls for all levels of
> ## the variables 'agegp', 'alcgp', and 'tobgp'.
> xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)
, , tobgp = 0-9g/day, = ncases
alcgp
agegp 0-39g/day 40-79 80-119 120+
25-34 0 0 0 0
35-44 0 0 0 2
45-54 1 6 3 4
55-64 2 9 9 5
65-74 5 17 6 3
75+ 1 2 1 2
, , tobgp = 10-19, = ncases
alcgp
agegp 0-39g/day 40-79 80-119 120+
25-34 0 0 0 1
35-44 1 3 0 0
45-54 0 4 6 3
55-64 3 6 8 6
65-74 4 3 4 1
75+ 2 1 1 1
, , tobgp = 20-29, = ncases
alcgp
agegp 0-39g/day 40-79 80-119 120+
25-34 0 0 0 0
35-44 0 1 0 2
45-54 0 5 1 2
55-64 3 4 3 2
65-74 2 5 2 1
75+ 0 0 0 0
, , tobgp = 30+, = ncases
alcgp
agegp 0-39g/day 40-79 80-119 120+
25-34 0 0 0 0
35-44 0 0 0 0
45-54 0 5 2 4
55-64 4 3 4 5
65-74 0 0 1 1
75+ 1 1 0 0
, , tobgp = 0-9g/day, = ncontrols
alcgp
agegp 0-39g/day 40-79 80-119 120+
25-34 40 27 2 1
35-44 60 35 11 3
45-54 46 38 16 4
55-64 49 40 18 10
65-74 48 34 13 4
75+ 18 5 1 2
, , tobgp = 10-19, = ncontrols
alcgp
agegp 0-39g/day 40-79 80-119 120+
25-34 10 7 1 1
35-44 14 23 6 3
45-54 18 21 14 4
55-64 22 21 15 7
65-74 14 10 12 2
75+ 6 3 1 1
, , tobgp = 20-29, = ncontrols
alcgp
agegp 0-39g/day 40-79 80-119 120+
25-34 6 4 0 1
35-44 7 14 2 4
45-54 10 15 5 3
55-64 12 17 6 3
65-74 7 9 3 1
75+ 0 3 0 0
, , tobgp = 30+, = ncontrols
alcgp
agegp 0-39g/day 40-79 80-119 120+
25-34 5 7 2 2
35-44 8 8 1 0
45-54 4 7 4 4
55-64 6 6 4 6
65-74 2 0 1 1
75+ 3 1 0 0
> ## Output is not really helpful ... flat tables are better:
> ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph))
ncases ncontrols
agegp alcgp tobgp
25-34 0-39g/day 0-9g/day 0 40
10-19 0 10
20-29 0 6
30+ 0 5
40-79 0-9g/day 0 27
10-19 0 7
20-29 0 4
30+ 0 7
80-119 0-9g/day 0 2
10-19 0 1
20-29 0 0
30+ 0 2
120+ 0-9g/day 0 1
10-19 1 1
20-29 0 1
30+ 0 2
35-44 0-39g/day 0-9g/day 0 60
10-19 1 14
20-29 0 7
30+ 0 8
40-79 0-9g/day 0 35
10-19 3 23
20-29 1 14
30+ 0 8
80-119 0-9g/day 0 11
10-19 0 6
20-29 0 2
30+ 0 1
120+ 0-9g/day 2 3
10-19 0 3
20-29 2 4
30+ 0 0
45-54 0-39g/day 0-9g/day 1 46
10-19 0 18
20-29 0 10
30+ 0 4
40-79 0-9g/day 6 38
10-19 4 21
20-29 5 15
30+ 5 7
80-119 0-9g/day 3 16
10-19 6 14
20-29 1 5
30+ 2 4
120+ 0-9g/day 4 4
10-19 3 4
20-29 2 3
30+ 4 4
55-64 0-39g/day 0-9g/day 2 49
10-19 3 22
20-29 3 12
30+ 4 6
40-79 0-9g/day 9 40
10-19 6 21
20-29 4 17
30+ 3 6
80-119 0-9g/day 9 18
10-19 8 15
20-29 3 6
30+ 4 4
120+ 0-9g/day 5 10
10-19 6 7
20-29 2 3
30+ 5 6
65-74 0-39g/day 0-9g/day 5 48
10-19 4 14
20-29 2 7
30+ 0 2
40-79 0-9g/day 17 34
10-19 3 10
20-29 5 9
30+ 0 0
80-119 0-9g/day 6 13
10-19 4 12
20-29 2 3
30+ 1 1
120+ 0-9g/day 3 4
10-19 1 2
20-29 1 1
30+ 1 1
75+ 0-39g/day 0-9g/day 1 18
10-19 2 6
20-29 0 0
30+ 1 3
40-79 0-9g/day 2 5
10-19 1 3
20-29 0 3
30+ 1 1
80-119 0-9g/day 1 1
10-19 1 1
20-29 0 0
30+ 0 0
120+ 0-9g/day 2 2
10-19 1 1
20-29 0 0
30+ 0 0
> ## In particular if we have fewer factors ...
> ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph))
ncases ncontrols
agegp
25-34 1 116
35-44 9 199
45-54 46 213
55-64 76 242
65-74 55 161
75+ 13 44
>
> ## This is already a contingency table in array form.
> DF <- as.data.frame(UCBAdmissions)
> ## Now 'DF' is a data frame with a grid of the factors and the counts
> ## in variable 'Freq'.
> DF
Admit Gender Dept Freq
1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
4 Rejected Female A 19
5 Admitted Male B 353
6 Rejected Male B 207
7 Admitted Female B 17
8 Rejected Female B 8
9 Admitted Male C 120
10 Rejected Male C 205
11 Admitted Female C 202
12 Rejected Female C 391
13 Admitted Male D 138
14 Rejected Male D 279
15 Admitted Female D 131
16 Rejected Female D 244
17 Admitted Male E 53
18 Rejected Male E 138
19 Admitted Female E 94
20 Rejected Female E 299
21 Admitted Male F 22
22 Rejected Male F 351
23 Admitted Female F 24
24 Rejected Female F 317
> ## Nice for taking margins ...
> xtabs(Freq ~ Gender + Admit, DF)
Admit
Gender Admitted Rejected
Male 1198 1493
Female 557 1278
> ## And for testing independence ...
> summary(xtabs(Freq ~ ., DF))
Call: xtabs(formula = Freq ~ ., data = DF)
Number of cases in table: 4526
Number of factors: 3
Test for independence of all factors:
Chisq = 2000.3, df = 16, p-value = 0
>
> ## Create a nice display for the warp break data.
> warpbreaks$replicate <- rep(1:9, len = 54)
> ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))
replicate 1 2 3 4 5 6 7 8 9
wool tension
A L 26 30 54 25 70 52 51 26 67
M 18 21 29 17 12 18 35 30 36
H 36 21 24 18 10 43 28 15 26
B L 27 14 29 19 29 31 41 20 44
M 42 26 19 16 39 28 21 39 29
H 20 21 24 17 13 15 15 16 28
>
> ### ---- Sparse Examples ----
>
>
>
>
> cleanEx()
> nameEx("zC")
> ### * zC
>
> flush(stderr()); flush(stdout())
>
> ### Name: C
> ### Title: Sets Contrasts for a Factor
> ### Aliases: C
> ### Keywords: models
>
> ### ** Examples
>
> ## reset contrasts to defaults
> options(contrasts = c("contr.treatment", "contr.poly"))
> tens <- with(warpbreaks, C(tension, poly, 1))
> ## tension SHOULD be an ordered factor, but as it is not we can use
> aov(breaks ~ wool + tens + tension, data = warpbreaks)
Call:
aov(formula = breaks ~ wool + tens + tension, data = warpbreaks)
Terms:
wool tens tension Residuals
Sum of Squares 450.667 1950.694 83.565 6747.889
Deg. of Freedom 1 1 1 50
Residual standard error: 11.61713
1 out of 5 effects not estimable
Estimated effects may be unbalanced
>
> ## show the use of ... The default contrast is contr.treatment here
> summary(lm(breaks ~ wool + C(tension, base = 2), data = warpbreaks))
Call:
lm(formula = breaks ~ wool + C(tension, base = 2), data = warpbreaks)
Residuals:
Min 1Q Median 3Q Max
-19.500 -8.083 -2.139 6.472 30.722
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 29.278 3.162 9.260 2e-12 ***
woolB -5.778 3.162 -1.827 0.0736 .
C(tension, base = 2)1 10.000 3.872 2.582 0.0128 *
C(tension, base = 2)3 -4.722 3.872 -1.219 0.2284
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 11.62 on 50 degrees of freedom
Multiple R-squared: 0.2691, Adjusted R-squared: 0.2253
F-statistic: 6.138 on 3 and 50 DF, p-value: 0.00123
>
>
> # following on from help(esoph)
> model3 <- glm(cbind(ncases, ncontrols) ~ agegp + C(tobgp, , 1) +
+ C(alcgp, , 1), data = esoph, family = binomial())
> summary(model3)
Call:
glm(formula = cbind(ncases, ncontrols) ~ agegp + C(tobgp, , 1) +
C(alcgp, , 1), family = binomial(), data = esoph)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.7628 -0.6426 -0.2709 0.3043 2.0421
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.72420 0.19582 -8.805 < 2e-16 ***
agegp.L 2.96113 0.65092 4.549 5.39e-06 ***
agegp.Q -1.33735 0.58918 -2.270 0.02322 *
agegp.C 0.15292 0.44792 0.341 0.73281
agegp^4 0.06668 0.30776 0.217 0.82848
agegp^5 -0.20288 0.19523 -1.039 0.29872
C(tobgp, , 1).L 0.58501 0.18331 3.191 0.00142 **
C(alcgp, , 1).L 1.46034 0.18899 7.727 1.10e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 227.241 on 87 degrees of freedom
Residual deviance: 59.277 on 80 degrees of freedom
AIC: 222.76
Number of Fisher Scoring iterations: 6
>
>
>
> base::options(contrasts = c(unordered = "contr.treatment",ordered = "contr.poly"))
> ### * <FOOTER>
> ###
> options(digits = 7L)
> base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
Time elapsed: 6.192 0.147 6.371 0 0
> grDevices::dev.off()
null device
1
> ###
> ### Local variables: ***
> ### mode: outline-minor ***
> ### outline-regexp: "\\(> \\)?### [*]+" ***
> ### End: ***
> quit('no')
|