1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
R version 3.1.1 RC (2014-07-04 r66081) -- "Sock it to Me"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-unknown-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> pkgname <- "stats4"
> source(file.path(R.home("share"), "R", "examples-header.R"))
> options(warn = 1)
> library('stats4')
>
> base::assign(".oldSearch", base::search(), pos = 'CheckExEnv')
> cleanEx()
> nameEx("mle")
> ### * mle
>
> flush(stderr()); flush(stdout())
>
> ### Name: mle
> ### Title: Maximum Likelihood Estimation
> ### Aliases: mle
> ### Keywords: models
>
> ### ** Examples
>
> ## Avoid printing to unwarranted accuracy
> od <- options(digits = 5)
> x <- 0:10
> y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
>
> ## Easy one-dimensional MLE:
> nLL <- function(lambda) -sum(stats::dpois(y, lambda, log = TRUE))
> fit0 <- mle(nLL, start = list(lambda = 5), nobs = NROW(y))
> # For 1D, this is preferable:
> fit1 <- mle(nLL, start = list(lambda = 5), nobs = NROW(y),
+ method = "Brent", lower = 1, upper = 20)
> stopifnot(nobs(fit0) == length(y))
>
> ## This needs a constrained parameter space: most methods will accept NA
> ll <- function(ymax = 15, xhalf = 6) {
+ if(ymax > 0 && xhalf > 0)
+ -sum(stats::dpois(y, lambda = ymax/(1+x/xhalf), log = TRUE))
+ else NA
+ }
> (fit <- mle(ll, nobs = length(y)))
Call:
mle(minuslogl = ll, nobs = length(y))
Coefficients:
ymax xhalf
24.9931 3.0571
> mle(ll, fixed = list(xhalf = 6))
Call:
mle(minuslogl = ll, fixed = list(xhalf = 6))
Coefficients:
ymax xhalf
19.288 6.000
> ## alternative using bounds on optimization
> ll2 <- function(ymax = 15, xhalf = 6)
+ -sum(stats::dpois(y, lambda = ymax/(1+x/xhalf), log = TRUE))
> mle(ll2, method = "L-BFGS-B", lower = rep(0, 2))
Call:
mle(minuslogl = ll2, method = "L-BFGS-B", lower = rep(0, 2))
Coefficients:
ymax xhalf
24.9994 3.0558
>
> AIC(fit)
[1] 61.208
> BIC(fit)
[1] 62.004
>
> summary(fit)
Maximum likelihood estimation
Call:
mle(minuslogl = ll, nobs = length(y))
Coefficients:
Estimate Std. Error
ymax 24.9931 4.2244
xhalf 3.0571 1.0348
-2 log L: 57.208
> logLik(fit)
'log Lik.' -28.604 (df=2)
> vcov(fit)
ymax xhalf
ymax 17.8459 -3.7206
xhalf -3.7206 1.0708
> plot(profile(fit), absVal = FALSE)
> confint(fit)
Profiling...
2.5 % 97.5 %
ymax 17.8845 34.6194
xhalf 1.6616 6.4792
>
> ## Use bounded optimization
> ## The lower bounds are really > 0,
> ## but we use >=0 to stress-test profiling
> (fit2 <- mle(ll, method = "L-BFGS-B", lower = c(0, 0)))
Call:
mle(minuslogl = ll, method = "L-BFGS-B", lower = c(0, 0))
Coefficients:
ymax xhalf
24.9994 3.0558
> plot(profile(fit2), absVal = FALSE)
>
> ## a better parametrization:
> ll3 <- function(lymax = log(15), lxhalf = log(6))
+ -sum(stats::dpois(y, lambda = exp(lymax)/(1+x/exp(lxhalf)), log = TRUE))
> (fit3 <- mle(ll3))
Call:
mle(minuslogl = ll3)
Coefficients:
lymax lxhalf
3.2189 1.1170
> plot(profile(fit3), absVal = FALSE)
> exp(confint(fit3))
Profiling...
2.5 % 97.5 %
lymax 17.8815 34.6186
lxhalf 1.6615 6.4794
>
> options(od)
>
>
>
> cleanEx()
> nameEx("update-methods")
> ### * update-methods
>
> flush(stderr()); flush(stdout())
>
> ### Name: update-methods
> ### Title: Methods for Function 'update' in Package 'stats4'
> ### Aliases: update-methods update,ANY-method update,mle-method
> ### Keywords: methods
>
> ### ** Examples
>
> x <- 0:10
> y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
> ll <- function(ymax = 15, xhalf = 6)
+ -sum(stats::dpois(y, lambda = ymax/(1+x/xhalf), log = TRUE))
> fit <- mle(ll)
Warning in stats::dpois(y, lambda = ymax/(1 + x/xhalf), log = TRUE) :
NaNs produced
> ## note the recorded call contains ..1, a problem with S4 dispatch
> update(fit, fixed = list(xhalf = 3))
Call:
mle(minuslogl = ll, fixed = ..1)
Coefficients:
ymax xhalf
25.19609 3.00000
>
>
>
> ### * <FOOTER>
> ###
> options(digits = 7L)
> base::cat("Time elapsed: ", proc.time() - base::get("ptime", pos = 'CheckExEnv'),"\n")
Time elapsed: 0.484 0.003 0.49 0 0
> grDevices::dev.off()
null device
1
> ###
> ### Local variables: ***
> ### mode: outline-minor ***
> ### outline-regexp: "\\(> \\)?### [*]+" ***
> ### End: ***
> quit('no')
|