1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
#' Read a DataFrame from disk
#'
#' Read a \linkS4class{DataFrame} from its on-disk representation.
#' This is usually not directly called by users, but is instead called by dispatch in \code{\link{readObject}}.
#'
#' @param path String containing a path to the directory, itself created with \code{\link{saveObject}} method for \linkS4class{DataFrame}s.
#' @param metadata Named list containing metadata for the object, see \code{\link{readObjectFile}} for details.
#' @param ... Further arguments, passed to \code{\link{altLoadObject}} for complex nested columns.
#'
#' @return The \linkS4class{DataFrame} represented by \code{path}.
#'
#' @seealso
#' \code{"\link{saveObject,DataFrame-method}"}, for the staging method.
#'
#' @author Aaron Lun
#'
#' @examples
#' library(S4Vectors)
#' df <- DataFrame(A=1:10, B=LETTERS[1:10])
#'
#' tmp <- tempfile()
#' saveObject(df, tmp)
#' readObject(tmp)
#'
#' @export
#' @aliases loadDataFrame
#' @importFrom S4Vectors DataFrame make_zero_col_DFrame
readDataFrame <- function(path, metadata, ...) {
fpath <- file.path(path, "basic_columns.h5")
fhandle <- H5Fopen(fpath, flags="H5F_ACC_RDONLY")
on.exit(H5Fclose(fhandle), add=TRUE, after=FALSE)
host <- "data_frame"
ghandle <- H5Gopen(fhandle, host)
on.exit(H5Gclose(ghandle), add=TRUE, after=FALSE)
nrows <- h5_read_attribute(ghandle, "row-count")
colnames <- h5_read_vector(ghandle, "column_names")
rownames <- NULL
if (h5_object_exists(ghandle, "row_names")) {
rownames <- h5_read_vector(ghandle, "row_names")
}
gdhandle <- H5Gopen(ghandle, "data")
on.exit(H5Gclose(gdhandle), add=TRUE, after=FALSE)
all.children <- h5ls(gdhandle, recursive=FALSE, datasetinfo=FALSE)$name
columns <- vector("list", length(colnames))
for (col in seq_along(colnames)) {
expected <- as.character(col - 1L)
if (expected %in% all.children) {
type <- local({
precolhandle <- H5Oopen(gdhandle, expected)
on.exit(H5Oclose(precolhandle), add=TRUE, after=FALSE)
h5_read_attribute(precolhandle, "type")
})
if (type == "factor") {
columns[[col]] <- local({
colhandle <- H5Gopen(gdhandle, expected)
on.exit(H5Gclose(colhandle), add=TRUE, after=FALSE)
codes <- .simple_read_codes(colhandle)
levels <- h5_read_vector(colhandle, "levels")
ordered <- h5_read_attribute(colhandle, "ordered", check=TRUE, default=NULL)
factor(levels[codes], levels=levels, ordered=isTRUE(ordered > 0L))
})
} else {
columns[[col]] <- local({
colhandle <- H5Dopen(gdhandle, expected)
on.exit(H5Dclose(colhandle), add=TRUE, after=FALSE)
contents <- H5Dread(colhandle, drop=TRUE)
missing.placeholder <- h5_read_attribute(colhandle, missingPlaceholderName, check=TRUE, default=NULL)
contents <- h5_cast(contents, expected.type=type, missing.placeholder=missing.placeholder)
if (type == "string") {
if (H5Aexists(colhandle, "format")) {
format <- h5_read_attribute(colhandle, "format")
if (format == "date") {
contents <- as.Date(contents)
} else if (format == "date-time") {
contents <- as.Rfc3339(contents)
}
}
}
contents
})
}
} else {
columns[[col]] <- S4Vectors::I(altReadObject(file.path(path, "other_columns", expected), ...))
}
}
names(columns) <- colnames
if (length(columns) || !is.null(rownames)) {
output <- DataFrame(columns, check.names=FALSE, row.names=rownames)
} else {
output <- make_zero_col_DFrame(nrow=nrows)
}
readMetadata(
output,
metadata.path=file.path(path, "other_annotations"),
mcols.path=file.path(path, "column_annotations"),
...
)
}
#######################################
########### OLD STUFF HERE ############
#######################################
#' @export
loadDataFrame <- function(info, project, include.nested=TRUE, parallel=TRUE) {
has.rownames <- isTRUE(info$data_frame$row_names)
col.info <- info$data_frame$columns
has.columns <- length(col.info) > 0
nrows <- as.integer(info$data_frame$dimensions[[1]])
if (!has.rownames && !has.columns) {
return(make_zero_col_DFrame(nrow=nrows))
}
# Reading the file into a data frame.
path <- acquireFile(project, info$path)
if ("hdf5_data_frame" %in% names(info)) {
prefix <- function(x) paste0(info$hdf5_data_frame$group, "/", x)
if (!has.columns) {
df <- make_zero_col_DFrame(nrow=nrows)
} else {
raw <- h5read(path, prefix("data"))
df <- vector("list", length(col.info))
for (i in seq_along(col.info)) {
curinfo <- col.info[[i]]
d <- as.character(i - 1L) # -1 to get back to 0-based indices.
current <- raw[[d]]
if (!is.null(current)) {
attrs <- h5readAttributes(path, prefix(paste0("data/", d)))
current <- h5_cast(current, expected.type=NULL, missing.placeholder=attrs[[missingPlaceholderName]], respect.nan.payload=TRUE)
df[[i]] <- as.vector(current) # remove 1d arrays.
} else {
df[[i]] <- logical(nrows) # placeholders
}
}
names(df) <- as.vector(h5read(path, prefix("column_names")))
df <- DataFrame(df, check.names=FALSE)
}
if (has.rownames) {
rownames(df) <- as.vector(h5read(path, prefix("row_names")))
}
} else {
df <- read.csv3(path, compression=info$csv_data_frame$compression, nrows=nrows)
df <- DataFrame(df)
if (has.rownames) {
rownames(df) <- df[,1]
df <- df[,-1,drop=FALSE]
} else {
rownames(df) <- NULL
}
}
df <- .coerce_df_column_type(df, col.info, project, include.nested=include.nested)
.restoreMetadata(df, mcol.data=info$data_frame$column_data, meta.data=info$data_frame$other_data, project=project)
}
.coerce_df_column_type <- function(df, col.info, project, include.nested) {
stopifnot(length(df) == length(col.info))
true.names <- character(length(col.info))
for (i in seq_along(col.info)) {
current.info <- col.info[[i]]
true.names[i] <- current.info$name
col.type <- current.info$type
col <- df[[i]]
if (col.type=="factor" || col.type=="ordered") {
if (!is.factor(col)) { # we may have already transformed the column to a factor, in which case we can skip this.
level.info <- acquireMetadata(project, current.info$levels$resource$path)
levels <- altLoadObject(level.info, project=project)
if (is(levels, "DataFrame")) { # account for old objects that store levels as a DF.
levels <- levels[,1]
}
if (is.numeric(col)) {
col <- levels[col + 1L]
}
ordered <- col.type == "ordered" || isTRUE(current.info$ordered)
col <- factor(col, levels=levels, ordered=ordered)
}
} else if (col.type=="date") {
col <- as.Date(col)
} else if (col.type=="date-time") {
col <- .cast_datetime(col)
} else if (.is_atomic(col.type)) {
if (col.type == "integer") {
if (is.double(col) && any(col == -2^31, na.rm=TRUE)) {
# Don't cast to an integer if there's the special -2^31 value.
} else {
col <- .cast_atomic(col, col.type)
}
} else if (col.type == "string") {
f <- current.info$format
if (identical(f, "date")) {
col <- as.Date(col)
} else if (identical(f, "date-time")) {
col <- .cast_datetime(col)
}
} else {
col <- .cast_atomic(col, col.type)
}
} else if (col.type == "other") {
current <- acquireMetadata(project, current.info$resource$path)
if (include.nested || !("data_frame" %in% names(current))) {
col <- altLoadObject(current, project=project)
} else {
true.names[i] <- NA_character_
}
} else {
stop("unsupported column type '", col.type, "'")
}
df[[i]] <- col
}
# Removing nested DFs.
if (!all(keep <- !is.na(true.names))) {
df <- df[,keep,drop=FALSE]
true.names <- true.names[keep]
}
colnames(df) <- true.names
df
}
|