File: saveDataFrame.R

package info (click to toggle)
r-bioc-alabaster.base 1.6.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,652 kB
  • sloc: cpp: 11,377; sh: 29; makefile: 2
file content (377 lines) | stat: -rw-r--r-- 13,497 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#' Save a DataFrame to disk
#'
#' Stage a DataFrame by saving it to a HDF5 file.
#'
#' @param x A \linkS4class{DataFrame} or data.frame.
#' @inheritParams saveObject
#'
#' @return
#' A named list containing the metadata for \code{x}.
#' \code{x} itself is written to a HDF5 file inside \code{path}.
#' Additional files may also be created inside \code{path} and referenced from the metadata.
#'
#' @details
#' This method creates a \code{basic_columns.h5} file that contains columns for atomic vectors, factors, dates and date-times.
#' Dates and date-times are converted to character vectors and saved as such inside the file.
#' Factors are saved as a HDF5 group with both the codes and the levels as separate datasets.
#'
#' Any non-atomic columns are saved to a \code{other_columns} subdirectory inside \code{path} via \code{\link{saveObject}},
#' named after its zero-based positional index within \code{x}.
#'
#' If \code{\link{metadata}} or \code{\link{mcols}} are present, 
#' they are saved to the \code{other_annotations} and \code{column_annotations} subdirectories, respectively, via \code{\link{saveObject}}.
#'
#' In the on-disk representation, no distinction is made between \linkS4class{DataFrame} and data.frame instances of \code{x}.
#' Calling \code{readDataFrame} will always produce a \linkS4class{DFrame} regardless of the class of \code{x}.
#'
#' @author Aaron Lun
#'
#' @examples
#' library(S4Vectors)
#' df <- DataFrame(A=1:10, B=LETTERS[1:10])
#'
#' tmp <- tempfile()
#' saveObject(df, tmp)
#' list.files(tmp, recursive=TRUE)
#' 
#' @export 
#' @rdname stageDataFrame
#' @aliases stageObject,DataFrame-method
#' @importFrom S4Vectors DataFrame
setMethod("saveObject", "DataFrame", function(x, path, ...) {
    dir.create(path, showWarnings=FALSE)
    .write_hdf5_new(x, path, ...)
    saveMetadata(
        x,
        metadata.path=file.path(path, "other_annotations"),
        mcols.path=file.path(path, "column_annotations"),
        ...
    )
    saveObjectFile(path, "data_frame", list(data_frame=list(version="1.0")))
})

#' @importFrom rhdf5 h5write h5createGroup h5createFile H5Gopen H5Gclose H5Acreate H5Aclose H5Awrite H5Fopen H5Fclose H5Dopen H5Dclose
.write_hdf5_new <- function(x, path, row.names=rownames(x), ...) {
    subpath <- "basic_columns.h5"
    ofile <- paste0(path, "/", subpath)

    fhandle <- H5Fcreate(ofile, "H5F_ACC_TRUNC")
    on.exit(H5Fclose(fhandle), add=TRUE, after=FALSE)
    ghandle <- H5Gcreate(fhandle, "data_frame")
    on.exit(H5Gclose(ghandle), add=TRUE, after=FALSE)
    h5_write_attribute(ghandle, "row-count", nrow(x), scalar=TRUE, type="H5T_NATIVE_UINT32")

    gdhandle <- H5Gcreate(ghandle, "data")
    on.exit(H5Gclose(gdhandle), add=TRUE, after=FALSE)

    collected <- list()
    for (z in seq_len(ncol(x))) {
        col <- x[[z]]
        data.name <- as.character(z - 1L)
        is.other <- FALSE
        sanitized <- NULL
        coltype <- NULL
        colformat <- NULL

        if (is.factor(col)) {
            local({
                colhandle <- H5Gcreate(gdhandle, data.name)
                on.exit(H5Gclose(colhandle), add=TRUE, after=FALSE)
                h5_write_attribute(colhandle, "type", "factor", scalar=TRUE)
                if (is.ordered(col)) {
                    h5_write_attribute(colhandle, "ordered", 1L, scalar=TRUE)
                }
                .simple_save_codes(colhandle, col, save.names=FALSE)
                h5_write_vector(colhandle, "levels", levels(col))
            })

        } else if (.is_datetime(col)) {
            coltype <- "string"
            colformat <- "date-time"
            sanitized <- as.character(as.Rfc3339(col))

        } else if (is(col, "Date")) {
            coltype <- "string"
            colformat <- "date"
            sanitized <- .sanitize_date(col)

        } else if (is.atomic(col)) {
            if (length(dim(col)) > 1) {
                is.other <- TRUE
            } else {
                coerced <- .remap_atomic_type(col)
                coltype <- coerced$type
                sanitized <- coerced$values
            }

        } else {
            is.other <- TRUE
        }

        if (is.other) {
            other.dir <- file.path(path, "other_columns")
            dir.create(other.dir, showWarnings=FALSE)
            tryCatch({
                altSaveObject(x[[z]], file.path(other.dir, data.name), ...)
            }, error = function(e) stop("failed to stage column '", colnames(x)[z], "'\n  - ", e$message))

        } else if (!is.null(sanitized)) {
            transformed <- transformVectorForHdf5(sanitized)
            current <- transformed$transformed
            missing.placeholder <- transformed$placeholder

            local({
                dhandle <- h5_write_vector(gdhandle, data.name, current, emit=TRUE)
                on.exit(H5Dclose(dhandle), add=TRUE, after=FALSE)
                if (!is.null(missing.placeholder)) {
                    h5_write_attribute(dhandle, missingPlaceholderName, missing.placeholder, scalar=TRUE)
                }

                h5_write_attribute(dhandle, "type", coltype, scalar=TRUE)
                if (!is.null(colformat)) {
                    h5_write_attribute(dhandle, "format", colformat, scalar=TRUE)
                }
            })
        }
    }

    h5_write_vector(ghandle, "column_names", colnames(x))
    if (!is.null(row.names)) {
        h5_write_vector(ghandle, "row_names", row.names)
    }
}

#' @export
#' @rdname stageDataFrame
setMethod("saveObject", "data.frame", function(x, path, ...) {
    dir.create(path, showWarnings=FALSE)
    rn <- attr(x, "row.names")
    if (is.integer(rn)) {
        rn <- NULL
    }
    .write_hdf5_new(x, path, row.names=rn, ...)
    saveObjectFile(path, "data_frame", list(data_frame=list(version="1.0")))
})

#######################################
########### OLD STUFF HERE ############
#######################################

#' @export
#' @importFrom utils write.csv
setMethod("stageObject", "DataFrame", function(x, dir, path, child=FALSE, df.name="simple", mcols.name="mcols", meta.name="other", .version.df=2, .version.hdf5=2) {
    full.path <- file.path(dir, path)
    dir.create(full.path, showWarnings=FALSE)

    true.colnames <- colnames(x)
    if (anyDuplicated(true.colnames)) {
        stop("detected duplicate column names in a ", class(x)[1], " object")
    }
    if (any(true.colnames == "")) {
        stop("detected empty column name in a ", class(x)[1], " object")
    }

    # Saving contents to file.
    format <- .saveDataFrameFormat()
    opath <- paste0(path, "/", df.name)
    extra <- list(list())
    has_row_names = !is.null(rownames(x))

    if (!is.null(format) && format=="hdf5") {
        opath <- paste0(opath, ".h5")
        ofile <- file.path(dir, opath)
        factor.levels <- rep(list(character(0)), ncol(x))

        sanitized <- .sanitize_df_columns(x, dir, path, .version.df)
        meta <- sanitized$metadata
        factor.levels <- sanitized$levels
        .dump_df_to_hdf5(sanitized$x, meta, "contents", ofile, .version.hdf5=.version.hdf5)
        extra[[1]]$version <- min(.version.hdf5, 3)

        schema <- "hdf5_data_frame/v1.json"
        extra[[1]]$group <- "contents"

    } else {
        sanitized <- .sanitize_df_columns(x, dir, path, .version.df)
        meta <- sanitized$metadata
        X <- data.frame(sanitized$x, check.names=FALSE)
        if (has_row_names) {
            # Using the 'row_names' name for back-compatibility.
            X <- cbind(row_names=rownames(sanitized$x), X)
        }
        
        if (!is.null(format) && format=="csv") {
            opath <- paste0(opath, ".csv")
            ofile <- file.path(dir, opath)
            .quickWriteCsv(X, ofile, row.names=FALSE, compression="none", validate=FALSE)
            extra[[1]]$compression <- "none"
        } else {
            opath <- paste0(opath, ".csv.gz")
            ofile <- file.path(dir, opath)
            .quickWriteCsv(X, ofile, row.names=FALSE, compression="gzip", validate=FALSE)
            extra[[1]]$compression <- "gzip"
        }

        schema <- "csv_data_frame/v1.json"
    }

    element_data <- .processMcols(x, dir, path, mcols.name)
    other_data <- .processMetadata(x, dir, path, meta.name)

    meta <- list(
        `$schema`=schema,
        path=opath,
        is_child=child,
        data_frame=list(
            columns=meta,
            row_names=has_row_names,
            column_data=element_data,
            other_data=other_data,
            dimensions=dim(x),
            version=if (.version.df != 1) min(.version.df, 2) else NULL 
        )
    )

    names(extra) <- dirname(schema) 
    c(meta, extra)
})

.sanitize_df_columns <- function(x, dir, path, .version.df) {
    # Fix to ensure that DFs with invalid names are properly saved;
    # otherwise any [[<- will call make.names.
    true.colnames <- colnames(x)
    colnames(x) <- sprintf("V%s", seq_len(ncol(x)))

    meta <- vector("list", ncol(x))
    all.levels <- rep(list(character(0)), ncol(x))

    for (z in seq_along(meta)) {
        col <- x[[z]]
        out <- list(name=true.colnames[z])
        is.other <- FALSE

        if (length(dim(col)) > 1) {
            is.other <- TRUE
        } else if (is.factor(col)) {
            if (.version.df == 1) {
                if (is.ordered(col)) {
                    out$type <- "ordered"
                } else { 
                    out$type <- "factor"
                }

                tryCatch({
                     lev.info <- altStageObject(DataFrame(levels=levels(col)), dir, paste0(path, "/column", z), df.name="levels", child=TRUE)
                     out$levels <- list(resource=writeMetadata(lev.info, dir=dir))
                 }, error = function(e) stop("failed to stage levels of factor column '", out$name, "'\n  - ", e$message))

                x[[z]] <- as.character(col)

            } else {
                out$type <- "factor"
                if (is.ordered(col)) {
                    out$ordered <- TRUE
                }

                tryCatch({
                     lev.info <- altStageObject(levels(col), dir, paste0(path, "/column", z), df.name="levels", child=TRUE)
                     out$levels <- list(resource=writeMetadata(lev.info, dir=dir))
                 }, error = function(e) stop("failed to stage levels of factor column '", out$name, "'\n  - ", e$message))

                x[[z]] <- as.integer(col) - 1L
            }

            all.levels[[z]] <- levels(col)

        } else if (.is_datetime(col)) {
            if (.version.df == 1) {
                out$type <- "date-time"
            } else {
                out$type <- "string"
                out$format <- "date-time"
            }
            x[[z]] <- as.character(as.Rfc3339(col))

        } else if (is(col, "Date")) {
            if (.version.df == 1) {
                out$type <- "date"
            } else {
                out$type <- "string"
                out$format <- "date"
            }
            x[[z]] <- .sanitize_date(col)

        } else if (is.atomic(col)) {
            coerced <- .remap_atomic_type(col)
            out$type <- coerced$type
            x[[z]] <- coerced$values

        } else {
            is.other <- TRUE
        }

        if (is.other) {
            out$type <- "other"

            tryCatch({
                other.info <- altStageObject(x[[z]], dir, paste0(path, "/column", z), child=TRUE)
                out$resource <- writeMetadata(other.info, dir=dir)
            }, error = function(e) stop("failed to stage column '", out$name, "'\n  - ", e$message))

            x[[z]] <- integer(nrow(x))
        }

        meta[[z]] <- out
    }

    # Restoring the true colnames.
    colnames(x) <- true.colnames

    list(x=x, metadata=meta, levels=all.levels)
}

#' @importFrom rhdf5 h5write h5createGroup h5createFile
.dump_df_to_hdf5 <- function(x, column.meta, host, ofile, .version.hdf5) {
    h5createFile(ofile)
    prefix <- function(x) paste0(host, "/", x)
    h5createGroup(ofile, host)
    h5createGroup(ofile, prefix("data"))

    for (i in seq_along(x)) {
        curmeta <- column.meta[[i]]
        if (curmeta$type == "other") {
            next
        }
        current <- x[[i]]

        missing.placeholder <- NULL
        if (.version.hdf5 > 1) {
            transformed <- transformVectorForHdf5(current, .version=.version.hdf5)
            current <- transformed$transformed
            missing.placeholder <- transformed$placeholder
        } else {
            if (is.character(current)) {
                if (anyNA(current)) {
                    missing.placeholder <- chooseMissingPlaceholderForHdf5(current)
                    current[is.na(current)] <- missing.placeholder
                }
            } else if (is.logical(current)) {
                # The logical'ness of this column is preserved in the metadata,
                # so we can always convert it back later.
                current <- as.integer(current) 
            } 
        }

        data.name <- as.character(i - 1L)
        full.data.name <- prefix(paste0("data/", data.name))
        h5write(current, ofile, full.data.name)
        if (!is.null(missing.placeholder)) {
            addMissingPlaceholderAttributeForHdf5(ofile, full.data.name, missing.placeholder)
        }
    }

    h5write(colnames(x), ofile, prefix("column_names"))
    if (!is.null(rownames(x))) {
        h5write(rownames(x), ofile, prefix("row_names"))
    }
}