1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
## ----echo=FALSE---------------------------------------------------------------
library(BiocStyle)
self <- Biocpkg("alabaster.base");
knitr::opts_chunk$set(error=FALSE, warning=FALSE, message=FALSE)
## -----------------------------------------------------------------------------
library(S4Vectors)
df <- DataFrame(X=1:10, Y=letters[1:10])
df
## -----------------------------------------------------------------------------
tmp <- tempfile()
library(alabaster.base)
saveObject(df, tmp)
## -----------------------------------------------------------------------------
readObject(tmp)
## -----------------------------------------------------------------------------
tmp <- tempfile()
saveObject(df, tmp)
list.files(tmp, recursive=TRUE)
## -----------------------------------------------------------------------------
readObject(tmp)
## -----------------------------------------------------------------------------
validateObject(tmp)
## -----------------------------------------------------------------------------
tmp <- tempfile()
saveObject(df, tmp)
tmp2 <- tempfile()
file.rename(tmp, tmp2)
readObject(tmp2)
## -----------------------------------------------------------------------------
# Creating a nested DF to be a little spicy:
df2 <- DataFrame(Z=factor(1:5), AA=I(DataFrame(B=runif(5), C=rnorm(5))))
tmp <- tempfile()
meta2 <- saveObject(df2, tmp)
# Now reading in the nested DF:
list.files(tmp, recursive=TRUE)
readObject(file.path(tmp, "other_columns/1"))
## -----------------------------------------------------------------------------
library(Matrix)
setMethod("saveObject", "dgTMatrix", function(x, path, ...) {
# Create a directory to stash our contents.
dir.create(path)
# Saving a DataFrame with the triplet data.
df <- DataFrame(i = x@i, j = x@j, x = x@x)
write.csv(df, file.path(path, "matrix.csv"), row.names=FALSE)
# Adding some more information.
write(dim(x), file=file.path(path, "dimensions.txt"), ncol=1)
# Creating an object file.
saveObjectFile(path, "triplet_sparse_matrix")
})
## -----------------------------------------------------------------------------
readSparseTripletMatrix <- function(path, metadata, ...) {
df <- read.table(file.path(path, "matrix.csv"), header=TRUE, sep=",")
dims <- readLines(file.path(path, "dimensions.txt"))
sparseMatrix(
i=df$i + 1L,
j=df$j + 1L,
x=df$x,
dims=as.integer(dims),
repr="T"
)
}
registerReadObjectFunction("triplet_sparse_matrix", readSparseTripletMatrix)
validateSparseTripletMatrix <- function(path, metadata) {
df <- read.table(file.path(path, "matrix.csv"), header=TRUE, sep=",")
dims <- as.integer(readLines(file.path(path, "dimensions.txt")))
stopifnot(is.integer(df$i), all(df$i >= 0 & df$i < dims[1]))
stopifnot(is.integer(df$j), all(df$j >= 0 & df$j < dims[2]))
stopifnot(is.numeric(df$x))
}
registerValidateObjectFunction("triplet_sparse_matrix", validateSparseTripletMatrix)
## -----------------------------------------------------------------------------
x <- sparseMatrix(
i=c(1,2,3,5,6),
j=c(3,6,1,3,8),
x=runif(5),
dims=c(10, 10),
repr="T"
)
x
tmp <- tempfile()
saveObject(x, tmp)
list.files(tmp, recursive=TRUE)
readObject(tmp)
## -----------------------------------------------------------------------------
setGeneric("appSaveObject", function(x, path, ...) {
ans <- standardGeneric("appSaveObject")
# File names with leading underscores are reserved for application-specific
# use, so they won't clash with anything produced by saveObject.
metapath <- file.path(path, "_metadata.json")
write(jsonlite::toJSON(ans, auto_unbox=TRUE), file=metapath)
})
setMethod("appSaveObject", "ANY", function(x, path, ...) {
saveObject(x, path, ...) # does the real work
list(authors=I(Sys.info()[["user"]])) # adds the desired metadata
})
# We can specialize the behavior for specific classes like DataFrames.
setMethod("appSaveObject", "DFrame", function(x, path, ...) {
ans <- callNextMethod()
ans$columns <- I(colnames(x))
ans
})
## -----------------------------------------------------------------------------
# Create a friendly user-visible function to handle the generic override; this
# is reversed on function exit to avoid interfering with other applications.
saveForApplication <- function(x, path, ...) {
old <- altSaveObjectFunction(appSaveObject)
on.exit(altSaveObjectFunction(old))
altSaveObject(x, path, ...)
}
# Saving our mocked up DataFrame with our overrides active.
df2 <- DataFrame(Z=factor(1:5), AA=I(DataFrame(B=runif(5), C=rnorm(5))))
tmp <- tempfile()
saveForApplication(df2, tmp)
# Both the parent and child DataFrames have new metadata.
cat(readLines(file.path(tmp, "_metadata.json")), sep="\n")
cat(readLines(file.path(tmp, "other_columns/1/_metadata.json")), sep="\n")
## -----------------------------------------------------------------------------
# Defining the override for altReadObject().
appReadObject <- function(path, metadata=NULL, ...) {
if (is.null(metadata)) {
metadata <- readObjectFile(path)
}
# Print custom message based on the type and application-specific metadata.
appmeta <- jsonlite::fromJSON(file.path(path, "_metadata.json"))
cat("I am a ", metadata$type, " created by ", appmeta$authors[1], ".\n", sep="")
if (metadata$type == "data_frame") {
all.cols <- paste(appmeta$columns, collapse=", ")
cat("I have the following columns: ", all.cols, ".\n", sep="")
}
readObject(path, metadata=metadata, ...)
}
# Creating a user-friendly function to set the override before the read.
readForApplication <- function(path, metadata=NULL, ...) {
old <- altReadObjectFunction(appReadObject)
on.exit(altReadObjectFunction(old))
altReadObject(path, metadata, ...)
}
# This diverts to the override with printing of custom messages.
readForApplication(tmp)
## -----------------------------------------------------------------------------
sessionInfo()
|