File: genomic_ranges.hpp

package info (click to toggle)
r-bioc-alabaster.base 1.6.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,652 kB
  • sloc: cpp: 11,377; sh: 29; makefile: 2
file content (221 lines) | stat: -rw-r--r-- 9,464 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#ifndef TAKANE_GENOMIC_RANGES_HPP
#define TAKANE_GENOMIC_RANGES_HPP

#include "H5Cpp.h"
#include "ritsuko/ritsuko.hpp"
#include "ritsuko/hdf5/hdf5.hpp"

#include <string>
#include <filesystem>
#include <stdexcept>
#include <cstdint>
#include <type_traits>
#include <limits>

#include "utils_string.hpp"
#include "utils_public.hpp"
#include "utils_other.hpp"
#include "utils_json.hpp"

/**
 * @file genomic_ranges.hpp
 * @brief Validation for genomic ranges.
 */

namespace takane {

/**
 * @cond
 */
void validate(const std::filesystem::path&, const ObjectMetadata&, Options& options);
bool derived_from(const std::string&, const std::string&, const Options& options);
/**
 * @endcond
 */

/**
 * @namespace takane::genomic_ranges
 * @brief Definitions for genomic ranges.
 */
namespace genomic_ranges {

/**
 * @cond
 */
namespace internal {

struct SequenceLimits {
    SequenceLimits(size_t n) : has_circular(n), circular(n), has_seqlen(n), seqlen(n) {}
    std::vector<unsigned char> has_circular, circular, has_seqlen;
    std::vector<uint64_t> seqlen;
};

inline SequenceLimits find_sequence_limits(const std::filesystem::path& path, Options& options) {
    auto smeta = read_object_metadata(path);
    if (!derived_from(smeta.type, "sequence_information", options)) {
        throw std::runtime_error("'sequence_information' directory should contain a 'sequence_information' object");
    }
    ::takane::validate(path, smeta, options);

    auto handle = ritsuko::hdf5::open_file(path / "info.h5");
    auto ghandle = handle.openGroup("sequence_information");

    auto lhandle = ghandle.openDataSet("length");
    auto num_seq = ritsuko::hdf5::get_1d_length(lhandle.getSpace(), false);
    ritsuko::hdf5::Stream1dNumericDataset<uint64_t> lstream(&lhandle, num_seq, options.hdf5_buffer_size);
    auto lmissing = ritsuko::hdf5::open_and_load_optional_numeric_missing_placeholder<uint64_t>(lhandle, "missing-value-placeholder");

    auto chandle = ghandle.openDataSet("circular");
    ritsuko::hdf5::Stream1dNumericDataset<int32_t> cstream(&chandle, num_seq, options.hdf5_buffer_size);
    auto cmissing = ritsuko::hdf5::open_and_load_optional_numeric_missing_placeholder<int32_t>(chandle, "missing-value-placeholder");

    SequenceLimits output(num_seq);
    for (size_t i = 0; i < num_seq; ++i, lstream.next(), cstream.next()) {
        auto slen = lstream.get();
        auto circ = cstream.get();
        output.has_seqlen[i] = !(lmissing.first && lmissing.second == slen);
        output.seqlen[i] = slen;
        output.has_circular[i] = !(cmissing.first && cmissing.second == circ);
        output.circular[i] = circ;
    }

    return output;
}

}
/**
 * @endcond
 */

/**
 * @param path Path to the directory containing the genomic ranges.
 * @param metadata Metadata for the object, typically read from its `OBJECT` file.
 * @param options Validation options.
 */
inline void validate(const std::filesystem::path& path, const ObjectMetadata& metadata, Options& options) {
    const auto& vstring = internal_json::extract_version_for_type(metadata.other, "genomic_ranges");
    auto version = ritsuko::parse_version_string(vstring.c_str(), vstring.size(), /* skip_patch = */ true);
    if (version.major != 1) {
        throw std::runtime_error("unsupported version string '" + vstring + "'");
    }

    // Figuring out the sequence length constraints.
    auto limits = internal::find_sequence_limits(path / "sequence_information", options);
    size_t num_sequences = limits.seqlen.size();

    // Now loading all three components.
    auto handle = ritsuko::hdf5::open_file(path / "ranges.h5");
    auto ghandle = ritsuko::hdf5::open_group(handle, "genomic_ranges");
    auto id_handle = ritsuko::hdf5::open_dataset(ghandle, "sequence");
    auto num_ranges = ritsuko::hdf5::get_1d_length(id_handle, false);
    if (ritsuko::hdf5::exceeds_integer_limit(id_handle, 64, false)) {
        throw std::runtime_error("expected 'sequence' to have a datatype that fits into a 64-bit unsigned integer");
    }
    ritsuko::hdf5::Stream1dNumericDataset<uint64_t> id_stream(&id_handle, num_ranges, options.hdf5_buffer_size);

    auto start_handle = ritsuko::hdf5::open_dataset(ghandle, "start");
    if (num_ranges != ritsuko::hdf5::get_1d_length(start_handle, false)) {
        throw std::runtime_error("'start' and 'sequence' should have the same length");
    }
    if (ritsuko::hdf5::exceeds_integer_limit(start_handle, 64, true)) {
        throw std::runtime_error("expected 'start' to have a datatype that fits into a 64-bit signed integer");
    }
    ritsuko::hdf5::Stream1dNumericDataset<int64_t> start_stream(&start_handle, num_ranges, options.hdf5_buffer_size);

    auto width_handle = ritsuko::hdf5::open_dataset(ghandle, "width");
    if (num_ranges != ritsuko::hdf5::get_1d_length(width_handle, false)) {
        throw std::runtime_error("'width' and 'sequence' should have the same length");
    }
    if (ritsuko::hdf5::exceeds_integer_limit(width_handle, 64, false)) {
        throw std::runtime_error("expected 'width' to have a datatype that fits into a 64-bit unsigned integer");
    }
    ritsuko::hdf5::Stream1dNumericDataset<uint64_t> width_stream(&width_handle, num_ranges, options.hdf5_buffer_size);

    constexpr uint64_t end_limit = std::numeric_limits<int64_t>::max();
    for (size_t i = 0; i < num_ranges; ++i, id_stream.next(), start_stream.next(), width_stream.next()) {
        auto id = id_stream.get();
        if (id >= num_sequences) {
            throw std::runtime_error("'sequence' must be less than the number of sequences (got " + std::to_string(id) + ")");
        }

        auto start = start_stream.get();
        auto width = width_stream.get();

        // If it's definitely non-circular, the start position should be positive.
        if (limits.has_circular[id] && !limits.circular[id]) {
            if (start < 1) {
                throw std::runtime_error("non-positive start position (" + std::to_string(start) + ") for non-circular sequence");
            }

            if (limits.has_seqlen[id]) {
                // If the sequence length is provided, the end position shouldn't overflow.
                auto spos = static_cast<uint64_t>(start);
                auto limit = limits.seqlen[id];
                if (spos > limit) {
                    throw std::runtime_error("start position beyond sequence length (" + std::to_string(start) + " > " + std::to_string(limit) + ") for non-circular sequence");
                }

                // The LHS should not overflow as 'spos >= 1' so 'limit - spos + 1' should still be no greater than 'limit'.
                if (limit - spos + 1 < width) {
                    throw std::runtime_error("end position beyond sequence length (" + 
                        std::to_string(start) + " + " + std::to_string(width) + " > " + std::to_string(limit) + 
                        ") for non-circular sequence");
                }
            }
        }

        bool exceeded = false;
        if (start > 0) {
            // 'end_limit - start' is always non-negative as 'end_limit' is the largest value of an int64_t and 'start' is also int64_t.
            exceeded = (end_limit - static_cast<uint64_t>(start) < width);
        } else {
            // 'end_limit - start' will not overflow a uint64_t, because 'end_limit' is the largest value of an int64_t and 'start' as also 'int64_t'.
            exceeded = (end_limit + static_cast<uint64_t>(-start) < width);
        }
        if (exceeded) {
            throw std::runtime_error("end position beyond the range of a 64-bit integer (" + std::to_string(start) + " + " + std::to_string(width) + ")");
        }
    }

    {       
        auto strand_handle = ritsuko::hdf5::open_dataset(ghandle, "strand");
        if (num_ranges != ritsuko::hdf5::get_1d_length(strand_handle, false)) {
            throw std::runtime_error("'strand' and 'sequence' should have the same length");
        }
        if (ritsuko::hdf5::exceeds_integer_limit(strand_handle, 32, true)) {
            throw std::runtime_error("expected 'strand' to have a datatype that fits into a 32-bit signed integer");
        }

        ritsuko::hdf5::Stream1dNumericDataset<int32_t> strand_stream(&strand_handle, num_ranges, options.hdf5_buffer_size);
        for (hsize_t i = 0; i < num_ranges; ++i, strand_stream.next()) {
            auto x = strand_stream.get();
            if (x < -1 || x > 1) {
                throw std::runtime_error("values of 'strand' should be one of 0, -1, or 1 (got " + std::to_string(x) + ")");
            }
        }
    }

    internal_other::validate_mcols(path, "range_annotations", num_ranges, options);
    internal_other::validate_metadata(path, "other_annotations", options);

    internal_string::validate_names(ghandle, "name", num_ranges, options.hdf5_buffer_size);
}

/**
 * @param path Path to a directory containing genomic ranges.
 * @param metadata Metadata for the object, typically read from its `OBJECT` file.
 * @param options Validation options.
 * @return The number of ranges.
 */
inline size_t height(const std::filesystem::path& path, [[maybe_unused]] const ObjectMetadata& metadata, [[maybe_unused]] Options& options) {
    auto handle = ritsuko::hdf5::open_file(path / "ranges.h5");
    auto ghandle = handle.openGroup("genomic_ranges");
    auto dhandle = ghandle.openDataSet("sequence");
    return ritsuko::hdf5::get_1d_length(dhandle, false);
}

}

}

#endif