File: userguide.Rmd

package info (click to toggle)
r-bioc-alabaster.matrix 1.6.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 484 kB
  • sloc: cpp: 89; makefile: 2
file content (83 lines) | stat: -rw-r--r-- 2,560 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
title: Saving arrays to artifacts and back again
author:
- name: Aaron Lun
  email: infinite.monkeys.with.keyboards@gmail.com
package: alabaster.matrix
date: "Revised: November 28, 2023"
output:
  BiocStyle::html_document
vignette: >
  %\VignetteIndexEntry{Saving and loading arrays}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

```{r, echo=FALSE}
library(BiocStyle)
self <- Githubpkg("ArtifactDB/alabaster.matrix")
knitr::opts_chunk$set(error=FALSE, warning=FALSE, message=FALSE)
```

# Overview 

The `r self` package implements methods to save matrix-like objects to file artifacts and load them back into R.
Check out the `r Githubpkg("ArtifactDB/alabaster.base")` for more details on the motivation and the **alabaster** framework.

# Quick start

Given an array-like object, we can use `saveObject()` to save it inside a staging directory:

```{r}
library(Matrix)
y <- rsparsematrix(1000, 100, density=0.05)

library(alabaster.matrix)
tmp <- tempfile()
saveObject(y, tmp)

list.files(tmp, recursive=TRUE)
```

We then load it back into our R session with `loadObject()`.
This creates a HDF5-backed S4 array that can be easily coerced into the desired format, e.g., a `dgCMatrix`.

```{r}
roundtrip <- readObject(tmp)
class(roundtrip)
```

This process is supported for all base arrays, `r CRANpkg("Matrix")` objects and `r Biocpkg("DelayedArray")` objects.

# Saving delayed operations

🚧🚧🚧 Oops. Yet to migrate the delayed operations to the new `saveObject`/`readObject` world - stay tuned. 🚧🚧🚧

<!--
For `DelayedArray`s, we may instead choose to save the delayed operations themselves to file, using the `r Githubpkg("LTLA/chihaya")` package.
This creates a HDF5 file following the [**chihaya**](https://ltla.github.io/chihaya) format, containing the delayed operations rather than the results of their evaluation.

```{r, eval=FALSE}
library(DelayedArray)
y <- DelayedArray(rsparsematrix(1000, 100, 0.05))
y <- log1p(abs(y) / 1:100) # adding some delayed ops.

preserveDelayedOperations(TRUE)
meta <- stageObject(y, tmp, "delayed")
.writeMetadata(meta, tmp)

meta <- acquireMetadata(tmp, "delayed/delayed.h5")
roundtrip <- loadObject(meta, tmp)
class(roundtrip)
```

However, it is probably best to avoid preserving delayed operations for file-backed `DelayedArray`s if you want the artifacts to be re-usable on different filesystems.
For example, `HDF5Array`s will be saved with a reference to an absolute file path, which will not be portable.
-->

# Session information {-}

```{r}
sessionInfo()
```