1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
\name{Bimap}
\docType{class}
\alias{Bimap}
% Classes
\alias{Bimap}
\alias{class:Bimap}
\alias{Bimap-class}
\alias{AnnDbBimap}
\alias{class:AnnDbBimap}
\alias{AnnDbBimap-class}
\alias{GoAnnDbBimap}
\alias{class:GoAnnDbBimap}
\alias{GoAnnDbBimap-class}
\alias{Go3AnnDbBimap}
\alias{class:Go3AnnDbBimap}
\alias{Go3AnnDbBimap-class}
\alias{GOTermsAnnDbBimap}
\alias{class:GOTermsAnnDbBimap}
\alias{GOTermsAnnDbBimap-class}
\alias{AnnDbMap}
\alias{class:AnnDbMap}
\alias{AnnDbMap-class}
\alias{IpiAnnDbMap}
\alias{class:IpiAnnDbMap}
\alias{IpiAnnDbMap-class}
\alias{AgiAnnDbMap}
\alias{class:AgiAnnDbMap}
\alias{AgiAnnDbMap-class}
\alias{ProbeAnnDbBimap}
\alias{class:ProbeAnnDbBimap}
\alias{ProbeAnnDbBimap-class}
\alias{ProbeGo3AnnDbBimap}
\alias{class:ProbeGo3AnnDbBimap}
\alias{ProbeGo3AnnDbBimap-class}
\alias{ProbeAnnDbMap}
\alias{class:ProbeAnnDbMap}
\alias{ProbeAnnDbMap-class}
\alias{ProbeIpiAnnDbMap}
\alias{class:ProbeIpiAnnDbMap}
\alias{ProbeIpiAnnDbMap-class}
% Standard generic methods
\alias{show,FlatBimap-method}
\alias{show,AnnDbBimap-method}
\alias{summary,Bimap-method}
\alias{summary,AnnDbBimap-method}
\title{Bimap objects and the Bimap interface}
\description{
What we usually call "annotation maps" are in fact Bimap objects.
In the following sections we present the bimap concept and the
Bimap interface as it is defined in AnnotationDbi.
}
\section{Display methods}{
In the code snippets below,
\code{x} is a Bimap object.
\describe{
\item{}{
\code{show(x)}:
Display minimal information about Bimap object \code{x}.
}
\item{}{
\code{summary(x)}:
Display a little bit more information about Bimap object \code{x}.
}
}
}
\section{The bimap concept}{
A bimap is made of:
\preformatted{
- 2 sets of objects: the left objects and the right objects.
All the objects have a name and this name is unique in
each set (i.e. in the left set and in the right set).
The names of the left (resp. right) objects are called the
left (resp. right) keys or the Lkeys (resp. the Rkeys).
}
\preformatted{
- Any number of links (edges) between the left and right
objects. Note that the links can be tagged. In our model,
for a given bimap, either none or all the links are tagged.
}
In other words, a bimap is a bipartite graph.
Here are some examples:
\preformatted{
1. bimap B1:
4 left objects (Lkeys): "a", "b", "c", "d"
3 objects on the right (Rkeys): "A", "B", "C"
Links (edges):
"a" <--> "A"
"a" <--> "B"
"b" <--> "A"
"d" <--> "C"
Note that:
- There can be any number of links starting from or ending
at a given object.
- The links in this example are untagged.
}
\preformatted{
2. bimap B2:
4 left objects (Lkeys): "a", "b", "c", "d"
3 objects on the right (Rkeys): "A", "B", "C"
Tagged links (edges):
"a" <-"x"-> "A"
"a" <-"y"-> "B"
"b" <-"x"-> "A"
"d" <-"x"-> "C"
"d" <-"y"-> "C"
Note that there are 2 links between objects "d" and "C":
1 with tag "x" and 1 with tag "y".
}
}
\section{Flat representation of a bimap}{
The flat representation of a bimap is a data frame. For
example, for B1, it is:
\preformatted{
left right
a A
a B
b A
d C
}
If in addition the right objects have 1 multivalued attribute,
for example, a numeric vector:
\preformatted{
A <-- c(1.2, 0.9)
B <-- character(0)
C <-- -1:1
}
then the flat representation of B1 becomes:
\preformatted{
left right Rattrib1
a A 1.2
a A 0.9
a B NA
b A 1.2
b A 0.9
d C -1
d C 0
d C 1
}
Note that now the number of rows is greater than the number
of links!
}
\section{AnnDbBimap and FlatBimap objects}{
An AnnDbBimap object is a bimap whose data are stored in a data base.
A FlatBimap object is a bimap whose data (left keys, right keys and
links) are stored in memory (in a data frame for the links).
Conceptually, AnnDbBimap and FlatBimap objects are the same (only
their internal representation differ) so it's natural to try to define
a set of methods that make sense for both (so they can be manipulated
in a similar way). This common interface is the Bimap interface.
Note that both AnnDbBimap and FlatBimap objects have a read-only
semantic: the user can subset them but cannot change their data.
}
\section{The "flatten" generic}{
\preformatted{
flatten(x) converts AnnDbBimap object x into FlatBimap
object y with no loss of information
}
Note that a FlatBimap object can't be converted into an AnnDbBimap
object (well, in theory maybe it could be, but for now the data bases
we use to store the data of the AnnDbBimap objects are treated as
read-only). This conversion from AnnDbBimap to FlatBimap is performed
by the "flatten" generic function (with methods for AnnDbBimap objects
only).
}
\section{Property0}{
The "flatten" generic plays a very useful role when we need to
understand or explain exactly what a given Bimap method f will do when
applied to an AnnDbBimap object. It's generally easier to explain what
it does on a FlatBimap object and then to just say "and it does the
same thing on an AnnDbBimap object". This is exactly what Property0
says:
\preformatted{
for any AnnDbBimap object x, f(x) is expected to be
indentical to f(flatten(x))
}
Of course, this implies that the f method for AnnDbBimap objects
return the same type of object than the f method for FlatBimap objects.
In this sense, the "revmap" and "subset" Bimap methods are particular
because they are expected to return an object of the same class as
their argument x, so f(x) can't be identical to f(flatten(x)). For
these methods, Property0 says:
\preformatted{
for any AnnDbBimap object x, flatten(f(x)) is expected to
be identical to f(flatten(x))
}
Note to the AnnotationDbi maintainers/developpers: the \code{checkProperty0}
function (AnnDbPkg-checker.R file) checks that Property0 is satisfied on all
the AnnDbBimap objects defined in a given package (FIXME: checkProperty0 is
currently broken).
}
\section{The Bimap interface in AnnotationDbi}{
The full documentation for the methods of the Bimap interface is splitted
into 4 man pages: \link{Bimap-direction}, \link{Bimap-keys}
and \link{Bimap-toTable}.
}
\seealso{
\link{Bimap-direction},
\link{Bimap-keys},
\link{Bimap-toTable},
\link{BimapFormatting},
\link{Bimap-envirAPI}
}
\examples{
library(hgu95av2.db)
ls(2)
hgu95av2GO # calls the "show" method
summary(hgu95av2GO)
hgu95av2GO2PROBE # calls the "show" method
summary(hgu95av2GO2PROBE)
}
\keyword{classes}
\keyword{interface}
|