1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
library(Biobase)
set.seed(1)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Consistency checks
# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# rowMedians() by rowQ()
rowMedians2 <- function(imat) {
nr <- ncol(imat)
half <- (nr + 1)/2
if (nr%%2 == 1) {
return(rowQ(imat, half))
} else {
return((rowQ(imat, half) + rowQ(imat, half+1))/2)
}
}
cat("Consistency checks:\n")
set.seed(1)
for (kk in 1:20) {
cat("Random test #", kk, "\n", sep="")
# Simulate data in a matrix of any shape
nrow <- sample(2000, size=1)
ncol <- sample(2000, size=1)
x <- rnorm(nrow*ncol)
dim(x) <- c(nrow, ncol)
# Add NAs?
nas <- sample(c(TRUE,FALSE), size=1)
if (nas) {
nna <- sample(nrow*ncol, size=1)
x[sample(length(x), size=nna)] <- NA
}
na.rm <- nas
t1 <- system.time({
y1 <- rowMedians(x, na.rm=na.rm)
})
t2 <- system.time({
y2 <- apply(x, MARGIN=1, FUN=median, na.rm=na.rm)
})
# When all values of 'y2' are NA, 'y2' is logical
if (is.logical(y2)) y2 <- as.double(y2)
stopifnot(all.equal(y1,y2))
cat(sprintf("rowMedians()/apply(): %.3g\n", (t1/t2)[3]))
if (!nas) {
t3 <- system.time({
y3 <- rowMedians2(x)
})
stopifnot(all.equal(y1,y3))
cat(sprintf("rowMedians()/rowMedians2(): %.3g\n", (t1/t3)[3]))
}
}
# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Benchmarking
# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
cat("Benchmarking:\n")
# Simulate data in a matrix of any shape
nrow <- 1000
ncol <- 1000
x <- rnorm(nrow*ncol)
dim(x) <- c(nrow, ncol)
gc()
t0 <- system.time({
for (rr in 1:20)
y0 <- apply(x, MARGIN=1, FUN=median, na.rm=FALSE)
})
gc()
t1 <- system.time({
for (rr in 1:20)
y1 <- rowMedians(x, na.rm=FALSE)
})
gc()
stopifnot(all.equal(y0,y1))
cat(sprintf("rowMedians()/apply(): %.3g\n", (t1/t0)[3]))
# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Consistency checks
# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
cat("Consistency checks without NAs:\n")
for (kk in 1:20) {
cat("Random test #", kk, "\n", sep="")
# Simulate data in a matrix of any shape
nrow <- sample(1000, size=1)
ncol <- sample(1000, size=1)
x <- rnorm(nrow*ncol)
dim(x) <- c(nrow, ncol)
t0 <- system.time({
y0 <- apply(x, MARGIN=1, FUN=median, na.rm=FALSE)
})
t1 <- system.time({
y1 <- rowMedians(x, na.rm=FALSE)
})
stopifnot(all.equal(y0,y1))
} # for (kk in ...)
cat("Consistency checks with NAs:\n")
for (kk in 1:20) {
cat("Random test #", kk, "\n", sep="")
# Simulate data in a matrix of any shape
nrow <- sample(1000, size=1)
ncol <- sample(1000, size=1)
x <- rnorm(nrow*ncol)
dim(x) <- c(nrow, ncol)
# Add NAs
nna <- sample(nrow*ncol-1, size=1)
x[sample(length(x), size=nna)] <- NA
t0 <- system.time({
y0 <- apply(x, MARGIN=1, FUN=median, na.rm=TRUE)
y0[is.na(y0)] <- NA
})
t1 <- system.time({
y1 <- rowMedians(x, na.rm=TRUE)
})
stopifnot(all.equal(y0,y1))
} # for (kk in ...)
|