1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Manager loop used by SOCK, MPI and FORK
## collect the results from the workers
.collect_result <-
function(manager, reducer, progress, BPPARAM)
{
data_list <- .manager_recv(manager)
success <- rep(TRUE, length(data_list))
for(i in seq_along(data_list)){
## each result is a list containing the element value passed
## in `.send` and possibly other elements used by the backend
d <- data_list[[i]]
value <- d$value$value
njob <- d$value$tag
## reduce
.reducer_add(reducer, njob, value)
.manager_log(BPPARAM, njob, d)
.manager_result_save(BPPARAM, njob, reducer$value())
## progress
progress$step(length(value))
## whether the result is ok, or to treat the failure as success
success[i] <- !bpstopOnError(BPPARAM) || d$value$success
}
success
}
## These functions are used by all cluster types (SOCK, MPI, FORK) and
## run on the master. Both enable logging, writing logs/results to
## files and 'stop on error'.
.clear_cluster <-
function(manager, running, reducer, progress, BPPARAM)
{
tryCatch({
setTimeLimit(30, 30, TRUE)
on.exit(setTimeLimit(Inf, Inf, FALSE))
while (running) {
success <- .collect_result(manager, reducer, progress, BPPARAM)
running <- running - length(success)
}
}, error=function(e) {
message("Stop worker failed with the error: ", conditionMessage(e))
})
reducer
}
.manager_log <-
function(BPPARAM, njob, d)
{
if (bplog(BPPARAM)) {
con <- NULL
if (!is.na(bplogdir(BPPARAM))) {
fname <- paste0(bpjobname(BPPARAM), ".task", njob, ".log")
lfile <- file.path(bplogdir(BPPARAM), fname)
con <- file(lfile, open="a")
on.exit(close(con))
}
.bpwriteLog(con, d)
} else if (length(d$value$sout)) {
message(paste(d$value$sout, collapse="\n"))
}
}
.manager_result_save <-
function(BPPARAM, njob, value)
{
if (is.na(bpresultdir(BPPARAM)))
return(NULL)
fname <- paste0(bpjobname(BPPARAM), ".task", njob, ".Rda")
rfile <- file.path(bpresultdir(BPPARAM), fname)
save(value, file=rfile)
}
## A dummy iterator for bploop.lapply
.bploop_lapply_iter <-
function(X, redo_index, elements_per_task)
{
redo_n <- length(redo_index)
redo_i <- 1L
x_n <- length(X)
x_i <- 1L
function() {
if (redo_i <= redo_n && x_i <= x_n) {
redo <- redo_index[redo_i] == x_i
if (redo) {
## Maximize `len` such that
## - 1. all elements in X[x_i:(x_i + len)] should be redone
## - 2. the number of elements in the task must be
## limited by `elements_per_task`
len <- 1L
while (redo_i + len <= redo_n &&
redo_index[redo_i + len] == x_i + len &&
len < elements_per_task) {
len <- len + 1L
}
redo_i <<- redo_i + len
value <- X[seq.int(x_i, length.out = len)]
} else {
len <- redo_index[redo_i] - x_i
value <- .bploop_rng_iter(len)
}
x_i <<- x_i + len
## Do not return the last seed iterator
## if no more redo element
if (x_i > x_n && !redo) {
list(NULL)
} else {
value
}
} else {
list(NULL)
}
}
}
## An iterator for bpiterate to handle BPREDO
.bploop_iterate_iter <-
function(ITER, reducer)
{
errors <- sort(.redo_index_iterate(reducer))
len <- reducer$total
if(is.null(len)) len <- 0L
i <- 0L
function(){
if (i < len) {
i <<- i + 1L
value <- ITER()
if (i%in%errors)
list(value)
else
.bploop_rng_iter(1L)
} else {
list(ITER())
}
}
}
## This class object can force bploop.iterator to iterate
## the seed stream n times
.bploop_rng_iter <- function(n) {
structure(as.integer(n), class = c(".bploop_rng_iter"))
}
## Accessor for the elements in the BPREDO argument
## Return NULL if not exists
.redo_env <-
function(x)
{
attr(x, "REDOENV")
}
.redo_reducer <-
function(x)
{
.redo_env(x)$reducer
}
.redo_seed <-
function(x)
{
.redo_env(x)$rng_seed
}
`.redo_env<-` <-
function(x, value)
{
attr(x, "REDOENV") <- value
x
}
`.redo_reducer<-` <-
function(x, value)
{
.redo_env(x)$reducer <- value
x
}
`.redo_seed<-` <-
function(x, value)
{
.redo_env(x)$rng_seed <- value
x
}
## The core bploop implementation
## Arguments
## - ITER: Return a list where each list element will be passed to FUN
## 1. if nothing to proceed, it should return list(NULL)
## 2. if the task is to iterate the seed stream only, it should return
## an object from .bploop_rng_iter()
## - FUN: A function that will be evaluated in the worker
## - ARGS: the arguments to FUN
.bploop_impl <-
function(ITER, FUN, ARGS, BPPARAM, BPREDO, BPOPTIONS, reducer, progress.length)
{
manager <- .manager(BPPARAM)
on.exit(.manager_cleanup(manager), add = TRUE)
## worker options
OPTIONS <- .workerOptions(
log = bplog(BPPARAM),
threshold = bpthreshold(BPPARAM),
stop.on.error = bpstopOnError(BPPARAM),
timeout = bptimeout(BPPARAM),
exportglobals = bpexportglobals(BPPARAM),
force.GC = bpforceGC(BPPARAM)
)
## prepare the seed stream for the worker
init_seed <- .redo_seed(BPREDO)
if (is.null(init_seed)) {
seed <- .RNGstream(BPPARAM)
on.exit(.RNGstream(BPPARAM) <- seed, add = TRUE)
init_seed <- seed
} else {
seed <- init_seed
}
## Progress bar
progress <- .progress(
active=bpprogressbar(BPPARAM), iterate=missing(progress.length)
)
on.exit(progress$term(), add = TRUE)
progress$init(progress.length)
## detect auto export variables and packages
globalVarNames <- as.character(BPOPTIONS$exports)
packages <- as.character(BPOPTIONS$packages)
if (bpexportvariables(BPPARAM)) {
exports <- .findVariables(FUN)
globalVarNames <- c(globalVarNames, exports$globalvars)
packages <- c(packages, exports$pkgs)
}
globalVars <- lapply(globalVarNames, get, envir = .GlobalEnv)
names(globalVars) <- globalVarNames
## The data that will be sent to the worker
ARGFUN <- function(X, seed)
list(
X=X , FUN=FUN , ARGS = ARGS,
OPTIONS = OPTIONS, BPRNGSEED = seed,
GLOBALS = globalVars,
PACKAGES = packages
)
static.args <- c("FUN", "ARGS", "OPTIONS", "GLOBALS")
total <- 0L
running <- 0L
value <- NULL
## keep the loop when there exists more ITER value or running tasks
while (!identical(value, list(NULL)) || running) {
## send tasks to the workers
while (running < .manager_capacity(manager)) {
value <- ITER()
## If the value is of the class .bploop_rng_iter, we merely iterate
## the seed stream `value` times and obtain the next value.
if (inherits(value, ".bploop_rng_iter")) {
seed <- .rng_iterate_substream(seed, value)
next
}
if (identical(value, list(NULL))) {
if (total == 0L)
warning("first invocation of 'ITER()' returned NULL")
break
}
args <- ARGFUN(value, seed)
task <- .EXEC(
total + 1L, .workerLapply,
args = args,
static.fun = TRUE,
static.args = static.args
)
.manager_send(manager, task)
seed <- .rng_iterate_substream(seed, length(value))
total <- total + 1L
running <- running + 1L
}
.manager_flush(manager)
## If the cluster does not have any worker, waiting for the worker
if (!running)
next
## collect results from the workers
success <- .collect_result(manager, reducer, progress, BPPARAM)
running <- running - length(success)
## stop on error; Let running jobs finish and break
if (!all(success)) {
reducer <- .clear_cluster(
manager, running, reducer, progress, BPPARAM
)
break
}
}
## return results
if (!is.na(bpresultdir(BPPARAM)))
return(NULL)
res <- .reducer_value(reducer)
## Attach the redo information when the error occurs
if(!.reducer_ok(reducer) || !.reducer_complete(reducer)) {
.redo_env(res) <- new.env(parent = emptyenv())
.redo_reducer(res) <- reducer
.redo_seed(res) <- init_seed
}
res
}
##
## bploop.lapply(): derived from snow::dynamicClusterApply.
##
bploop <-
function(manager, ...)
{
UseMethod("bploop")
}
## X: the loop value after division
## ARGS: The function arguments for `FUN`
bploop.lapply <-
function(manager, X, FUN, ARGS, BPPARAM,
BPOPTIONS = bpoptions(), BPREDO = list(), ...)
{
## which need to be redone?
redo_index <- .redo_index(X, BPREDO)
## How many elements in a task?
ntask <- .ntask(X, bpnworkers(BPPARAM), bptasks(BPPARAM))
elements_per_task <- ceiling(length(redo_index)/ntask)
ITER <- .bploop_lapply_iter(X, redo_index, elements_per_task)
ntotal <- length(X)
reducer <- .lapplyReducer(ntotal, reducer = .redo_reducer(BPREDO))
res <- .bploop_impl(
ITER = ITER,
FUN = FUN,
ARGS = ARGS,
BPPARAM = BPPARAM,
BPOPTIONS = BPOPTIONS,
BPREDO = BPREDO,
reducer = reducer,
progress.length = length(redo_index)
)
if (!is.null(res))
names(res) <- names(X)
res
}
##
## bploop.iterate():
##
## Derived from snow::dynamicClusterApply and parallel::mclapply.
##
## - length of 'X' is unknown (defined by ITER())
## - results not pre-allocated; list grows each iteration if no REDUCE
bploop.iterate <-
function(
manager, ITER, FUN, ARGS, BPPARAM,
BPOPTIONS = bpoptions(), REDUCE, BPREDO,
init, reduce.in.order, ...
)
{
ITER_ <- .bploop_iterate_iter(ITER, reducer = .redo_reducer(BPREDO))
reducer <- .iterateReducer(REDUCE, init, reduce.in.order,
reducer = .redo_reducer(BPREDO))
.bploop_impl(
ITER = ITER_,
FUN = FUN,
ARGS = ARGS,
BPPARAM = BPPARAM,
BPOPTIONS = BPOPTIONS,
BPREDO = BPREDO,
reducer = reducer
)
}
bploop.iterate_batchtools <-
function(manager, ITER, FUN, BPPARAM, REDUCE, init, reduce.in.order, ...)
{
## get number of workers
workers <- bpnworkers(BPPARAM)
## reduce in order
reducer <- .iterateReducer(REDUCE, init, reduce.in.order,
NULL)
## progress bar.
progress <- .progress(active=bpprogressbar(BPPARAM), iterate=TRUE)
on.exit(progress$term(), TRUE)
progress$init()
def.id <- job.id <- 1L
repeat{
value <- ITER()
if (is.null(value)) {
if (job.id == 1L)
warning("first invocation of 'ITER()' returned NULL")
break
}
## save 'value' to registry tempfile
fl <- tempfile(tmpdir = BPPARAM$registry$file.dir)
saveRDS(value, fl)
if (job.id == 1L) {
suppressMessages({
ids <- batchtools::batchMap(
fun = FUN, fl, more.args = list(...),
reg = BPPARAM$registry
)
})
} else {
job.pars <- list(fl)
BPPARAM$registry$defs <-
rbind(BPPARAM$registry$defs, list(def.id, list(job.pars)))
entry <- c(list(job.id, def.id), rep(NA, 10))
BPPARAM$registry$status <- rbind(BPPARAM$registry$status, entry)
}
def.id <- def.id + 1L
job.id <- job.id + 1L
}
## finish updating tables
ids <- data.table::data.table(job.id = seq_len(job.id - 1))
data.table::setkey(BPPARAM$registry$status, "job.id")
ids$chunk = batchtools::chunk(ids$job.id, n.chunks = workers)
## submit and wait for jobs
batchtools::submitJobs(
ids = ids, resources = .bpresources(BPPARAM), reg = BPPARAM$registry
)
batchtools::waitForJobs(
ids = BPPARAM$registry$status$job.id,
reg = BPPARAM$registry, timeout = .batch_bptimeout(BPPARAM),
stop.on.error = bpstopOnError(BPPARAM)
)
## reduce in order
for (job.id in ids$job.id) {
value <- batchtools::loadResult(id = job.id, reg=BPPARAM$registry)
.reducer_add(reducer, job.id, list(value))
}
## return reducer value
.reducer_value(reducer)
}
|