File: Random_Numbers.Rmd

package info (click to toggle)
r-bioc-biocparallel 1.40.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,768 kB
  • sloc: cpp: 139; sh: 14; makefile: 8
file content (344 lines) | stat: -rw-r--r-- 10,025 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
---
title: "Random Numbers in _BiocParallel_"
author:
- name: Martin Morgan
  affiliation: Roswell Park Comprehensive Cancer Center, Buffalo, NY
  email: Martin.Morgan@RoswellPark.org
date: "Edited:  7 September, 2021; Compiled: `r format(Sys.time(), '%B %d, %Y')`"
vignette: >
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteIndexEntry{4. Random Numbers in BiocParallel}
  %\VignetteEncoding{UTF-8}
output:
  BiocStyle::html_document:
    number_sections: yes
    toc: yes
    toc_depth: 4
---

[RPCI]: https://www.roswellpark.org/martin-morgan

# Scope 

`r Biocpkg("BiocParallel")` enables use of random number streams in a
reproducible manner. This document applies to the following
`*Param()`:

* `SerialParam()`: sequential evaluation in a single R process.
* `SnowParam()`: parallel evaluation in multiple independent R
  processes.
* `MulticoreParam())`: parallel evaluation in R sessions running in
  forked threads. Not available on Windows.

The `*Param()` can be used for evaluation with:

* `bplapply()`: `lapply()`-like application of a user-supplied
  function `FUN` to a vector or list of elements `X`.
* `bpiterate()`: apply a user-supplied function `FUN` to an unknown
  number of elements resulting from successive calls to a
  user-supplied function `ITER.`

The reproducible random number implementation also supports:

* `bptry()` and the `BPREDO=` argument, for re-evaluation of elements
  that fail (e.g., because of a bug in `FUN`).

# Essentials

## Use of `bplapply()` and `RNGseed=`

Attach `r Biocpkg("BiocParallel")` and ensure that the version is
greater than 1.27.5

```{r}
library(BiocParallel)
stopifnot(
    packageVersion("BiocParallel") > "1.27.5"
)
```

For reproducible calculation, use the `RNGseed=` argument in any of the 
`*Param()`constructors.

```{r}
result1 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 100))
result1
```

Repeating the calculation with the same value for `RNGseed=` results
in the same result; a different random number seed results in
different results.

```{r}
result2 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 100))
stopifnot(
    identical(result1, result2)
)

result3 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 200))
result3

stopifnot(
    !identical(result1, result3)
)
```

Results are invariant across `*Param()`

```{r}
result4 <- bplapply(1:3, runif, BPPARAM = SnowParam(RNGseed = 100))
stopifnot(
    identical(result1, result4)
)

if (!identical(.Platform$OS.type, "windows")) {
    result5 <- bplapply(1:3, runif, BPPARAM = MulticoreParam(RNGseed = 100))
    stopifnot(
        identical(result1, result5)
    )
}
```

Parallel backends can adjust the number of `workers` (processes
performing the evaluation) and `tasks` (how elements of `X` are
distributed between workers).  Results are invariant to these
parameters. This is illustrated with `SnowParam()`, but applies also
to `MulticoreParam()`.

```{r}
result6 <- bplapply(1:3, runif, BPPARAM = SnowParam(workers = 2, RNGseed = 100))
result7 <- bplapply(1:3, runif, BPPARAM = SnowParam(workers = 3, RNGseed = 100))
result8 <- bplapply(
    1:3, runif,
    BPPARAM = SnowParam(workers = 2, tasks = 3, RNGseed = 100)
)
stopifnot(
    identical(result1, result6),
    identical(result1, result7),
    identical(result1, result8)
)
```

Subsequent sections illustrate results with `SerialParam()`, but identical 
results are obtained with `SnowParam()` and `MulticoreParam()`.

## Use with `bpiterate()`

`bpiterate()` allows parallel processing of a ’stream’ of data as a
series of tasks, with a task consisting of a portion of the overall
data. It is useful when the data size is not known or easily
partitioned into elements of a vector or list. A real use case might
involve iterating through a BAM file, where a task represents
successive records (perhaps 100,000 per task) in the file. Here we
illustrate with a simple example – iterating through a vector `x =
1:3`

```{r}
ITER_FUN_FACTORY <- function() {
    x <- 1:3
    i <- 0L
    function() {
        i <<- i + 1L
        if (i > length(x))
            return(NULL)
        x[[i]]
    }
}
```

`ITER_FUN_FACTORY()` is used to create a function that, on each invocation, 
returns the next task (here, an element of `x`; in a real example, perhaps 
100000 records from a BAM file). When there are no more tasks, the function 
returns `NULL`

```{r, collapse = TRUE}
ITER <- ITER_FUN_FACTORY()
ITER()

ITER()

ITER()

ITER()
```

In our simple example, `bpiterate()` is performing the same
computations as `bplapply()` so the results, including the random
number streams used by each task in `bpiterate()`, are the same

```{r}
result9 <- bpiterate(
    ITER_FUN_FACTORY(), runif,
    BPPARAM = SerialParam(RNGseed = 100)
)
stopifnot(
    identical(result1, result9)
)
```

## Use with `bptry()`

`bptry()` in conjunction with the `BPREDO=` argument to `bplapply()`
or `bpiterate()` allows for graceful recovery from errors. Here a
buggy `FUN1()` produces an error for the second element. `bptry()`
allows evaluation to continue for other elements of `X`, despite the
error. This is shown in the result.

```{r}
FUN1 <- function(i) {
    if (identical(i, 2L)) {
        ## error when evaluating the second element
        stop("i == 2")
    } else runif(i)
}
result10 <- bptry(bplapply(
    1:3, FUN1,
    BPPARAM = SerialParam(RNGseed = 100, stop.on.error = FALSE)
))
result10
```

`FUN2()` illustrates the flexibility of `bptry()` by fixing the bug
when `i == 2`, but also generating incorrect results if invoked for
previously correct values. The identity of the result to the original
computation shows that only the error task is re-computed, and that
the random number stream used by the task is identical to the original
stream.

```{r}
FUN2 <- function(i) {
    if (identical(i, 2L)) {
        ## the random number stream should be in the same state as the
        ## first time through the loop, and rnorm(i) should return
        ## same result as FUN
        runif(i)
    } else {
        ## if this branch is used, then we are incorrectly updating
        ## already calculated elements -- '0' in the output would
        ## indicate this error
        0
    }
}
result11 <- bplapply(
    1:3, FUN2,
    BPREDO = result10,
    BPPARAM = SerialParam(RNGseed = 100, stop.on.error = FALSE)
)
stopifnot(
    identical(result1, result11)
)
```

## Relationship between` RNGseed=` and `set.seed()`

The global random number stream (influenced by `set.seed()`) is
ignored by `r Biocpkg("BiocParallel")`, and `r Biocpkg("BiocParallel")` does 
NOT increment the global stream.

```{r}
set.seed(200)
value <- runif(1)

set.seed(200)
result12 <- bplapply(1:3, runif, BPPARAM = SerialParam(RNGseed = 100))
stopifnot(
    identical(result1, result12),
    identical(value, runif(1))
)
```

When `RNGseed=` is not used, an internal stream (not accessible to the
user) is used and `r Biocpkg("BiocParallel")` does NOT increment the
global stream.

```{r}
set.seed(100)
value <- runif(1)

set.seed(100)
result13 <- bplapply(1:3, runif, BPPARAM = SerialParam())
stopifnot(
    !identical(result1, result13),
    identical(value, runif(1))
)
```

## `bpstart()` and random number streams

In all of the examples so far `*Param()` objects are passed to
`bplapply()` or `bpiterate()` in the ’stopped’ state. Internally,
`bplapply()` and `bpiterate()` invoke `bpstart()` to establish the
computational environment (e.g., starting workers for
`SnowParam()`). `bpstart()` can be called explicitly, e.g., to allow
workers to be used across calls to `bplapply()`.

The cluster random number stream is initiated with `bpstart()`. Thus

```{r}
param <- bpstart(SerialParam(RNGseed = 100))
result16 <- bplapply(1:3, runif, BPPARAM = param)
bpstop(param)
stopifnot(
    identical(result1, result16)
)
```

This allows a second call to `bplapply` to represent a continuation of
a random number computation – the second call to `bplapply()` results
in different random number streams for each element of `X`.

```{r}
param <- bpstart(SerialParam(RNGseed = 100))
result16 <- bplapply(1:3, runif, BPPARAM = param)
result17 <- bplapply(1:3, runif, BPPARAM = param)
bpstop(param)
stopifnot(
    identical(result1, result16),
    !identical(result1, result17)
)
```

The results from `bplapply()` are different from the results from
`lapply()`, even with the same random number seed. This is because
correctly implemented parallel random streams require use of a
particular random number generator invoked in specific ways for each
element of `X`, as outlined in the Implementation notes section.

## Relationship between `bplapply()` and `lapply()`

The results from `bplapply()` are different from the results from
`lapply()`, even with the same random number seed. This is because
correctly implemented parallel random streams require use of a
particular random number generator invoked in specific ways for each
element of `X`, as outlined in the Implementation notes section.

```{r}
set.seed(100)
result20 <- lapply(1:3, runif)
stopifnot(
    !identical(result1, result20)
)
```

# Implementation notes

The implementation uses the L’Ecuyer-CMRG random number generator (see
`?RNGkind` and `?parallel::clusterSetRNGStream` for additional
details). This random number generates independent streams and
substreams of random numbers. In `r Biocpkg("BiocParallel")`, each
call to `bp start()` creates a new stream from the L’Ecuyer-CMRG
generator.  Each element in `bplap` `ply()` or `bpiterate()` creates a
new substream. Each application of `FUN` is therefore using the
L’Ecuyer-CMRG random number generator, with a substream that is
independent of the substreams of all other elements.

Within the user-supplied `FUN` of `bplapply()` or `bpiterate()`, it is
a mistake to use `RNGkind()` to set a different random number
generator, or to use `set.seed()`. This would in principle compromise
the independence of the streams across elements.

# `sessionInfo()`

```{r, echo = FALSE}
sessionInfo()
```