1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
|
################################################################################
#' Build and return an instance of the biom-class.
#'
#' This is for instantiating a biom object within R (\code{\link{biom-class}}),
#' and assumes relevant data is already available in R.
#' This is different than reading a biom file into R.
#' If you are instead interested in importing a biom file into R,
#' you should use the \code{\link{read_biom}} function.
#' This function is made available (exported) so that
#' advanced-users/developers
#' can easily represent analogous data in this structure if needed.
#' However, most users are expected to instead rely on the
#' \code{\link{read_biom}} function for data import, followed by
#' accessor functions that extract R-friendly
#' subsets of the data stored in the biom-format derived list.
#'
#' \code{biom()} is a constructor method. This is the main method
#' suggested for constructing an experiment-level (\code{\link{biom-class}})
#' object from its component data.
#'
#' @param x (REQUIRED). A named list conforming to conventions arising from
#' the \code{\link{fromJSON}} function reading a biom-format file with
#' default settings. See \code{\link{read_biom}} for more details about
#' data import and
#' \code{\link{biom-class}} for more details about accessor functions
#' that extract R-friendly
#' subsets of the data and metadata stored in \code{x}.
#'
#' @return An instance of the \code{\link{biom-class}}.
#'
#' @seealso
#'
#' Function to create a biom object from R data,
#' \code{\link{make_biom}}.
#'
#' Definition of the
#' \code{\link{biom-class}}.
#'
#' The \code{\link{read_biom}} import function.
#'
#' Function to write a biom format file from a biom object,
#' \code{\link{write_biom}}
#'
#' Accessor functions like \code{\link{header}}.
#'
#' @rdname biom-methods
#' @export
#' @examples #
#' # import with default parameters, specify a file
#' biom_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' x = read_biom(biom_file)
#' show(x)
#' print(x)
#' header(x)
#' biom_data(x)
#' biom_shape(x)
#' nrow(x)
#' ncol(x)
#' observation_metadata(x)
#' sample_metadata(x)
setGeneric("biom", function(x) standardGeneric("biom"))
#' @rdname biom-methods
setMethod("biom", c("list"), function(x){
# Some instantiation checks chould go here,
# or wrap them in validity methods.
# Depends on how strict the check should be.
biom = new("biom", x)
return(biom)
})
################################################################################
#' Create a \code{\link{biom-class}}
#' from \code{\link{matrix-class}}
#' or \code{\link{data.frame}}.
#'
#' This function creates a valid instance of the \code{\link{biom-class}}
#' from standard base-R objects like
#' \code{\link{matrix-class}} or \code{\link{data.frame}}.
#' This makes it possible to export any contingency table data
#' represented in R to
#' \href{http://biom-format.org/documentation/biom_format.html}{the biom-format},
#' regardless of its source.
#' The object returned by this function is appropriate for writing to
#' a \code{.biom} file using the \code{\link{write_biom}} function.
#' The sparse biom-format is not (yet) supported.
#'
#' The BIOM file format (canonically pronounced biome) is designed to be
#' a general-use format for representing biological sample by observation
#' contingency tables. BIOM is a recognized standard for the
#' \href{http://www.earthmicrobiome.org/}{Earth Microbiome Project}
#' and is a \href{http://gensc.org/}{Genomics Standards Consortium}
#' candidate project. Please see
#' \href{http://biom-format.org/}{the biom-format home page}
#' for more details.
#'
#' @param data (Required).
#' \code{\link{matrix-class}} or \code{\link{data.frame}}.
#' A contingency table.
#' Observations / features / OTUs / species are rows,
#' samples / sites / libraries are columns.
#'
#' @param sample_metadata (Optional).
#' A \code{\link{matrix-class}} or \code{\link{data.frame}}
#' with the number of rows equal to the number of samples in \code{data}.
#' Sample covariates associated with the count data.
#' This should look like the table returned by
#' \code{\link{sample_metadata}} on a valid instance
#' of the \code{\link{biom-class}}.
#'
#' @param observation_metadata (Optional).
#' A \code{\link{matrix-class}} or \code{\link{data.frame}}
#' with the number of rows equal to the number of
#' features / species / OTUs / genes in \code{data}.
#' This should look like the table returned by
#' \code{\link{observation_metadata}} on a valid instance
#' of the \code{\link{biom-class}}.
#'
#' @param id (Optional). Character string. Identifier for the project.
#'
#' @param matrix_element_type (Optional). Character string. Either 'int' or 'float'
#'
#' @return An object of \code{\link{biom-class}}.
#'
#' @references \url{http://biom-format.org/}
#'
#' @seealso
#'
#' \code{\link{write_biom}}
#'
#' \code{\link{biom-class}}
#'
#' \code{\link{read_biom}}
#'
#' @importFrom plyr alply
#'
#' @export
#'
#' @examples
#' # import with default parameters, specify a file
#' biomfile = system.file("extdata", "rich_dense_otu_table.biom", package = "biomformat")
#' x = read_biom(biomfile)
#' data = biom_data(x)
#' data
#' smd = sample_metadata(x)
#' smd
#' omd = observation_metadata(x)
#' omd
#' # Make a new biom object from component data
#' y = make_biom(data, smd, omd)
#' # Won't be identical to x because of header info.
#' identical(x, y)
#' # The data components should be, though.
#' identical(observation_metadata(x), observation_metadata(y))
#' identical(sample_metadata(x), sample_metadata(y))
#' identical(biom_data(x), biom_data(y))
#' ## Quickly show that writing and reading still identical.
#' # Define a temporary directory to write .biom files
#' tempdir = tempdir()
#' write_biom(x, biom_file=file.path(tempdir, "x.biom"))
#' write_biom(y, biom_file=file.path(tempdir, "y.biom"))
#' x1 = read_biom(file.path(tempdir, "x.biom"))
#' y1 = read_biom(file.path(tempdir, "y.biom"))
#' identical(observation_metadata(x1), observation_metadata(y1))
#' identical(sample_metadata(x1), sample_metadata(y1))
#' identical(biom_data(x1), biom_data(y1))
make_biom <- function(data, sample_metadata=NULL, observation_metadata=NULL, id=NULL, matrix_element_type="int"){
# The observations / features / OTUs / rows "meta" data table
if(!is.null(observation_metadata)){
rows = mapply(list, SIMPLIFY=FALSE, id=as.list(rownames(data)),
metadata=alply(as.matrix(observation_metadata), 1, .expand=FALSE, .dims=TRUE))
} else {
rows = mapply(list, id=as.list(rownames(data)), metadata=NA, SIMPLIFY=FALSE)
}
# The samples / sites / columns "meta" data table
if(!is.null(sample_metadata)){
columns = mapply(list, SIMPLIFY=FALSE, id=as.list(colnames(data)),
metadata=alply(as.matrix(sample_metadata), 1, .expand=FALSE, .dims=TRUE))
} else {
columns = mapply(list, id=as.list(colnames(data)), metadata=NA, SIMPLIFY=FALSE)
}
# Convert the contingency table to a list
datalist = as.list(as.data.frame(as(t(data), "matrix")))
names(datalist) <- NULL
# Define the list, instantiate as biom-format, and return
# (Might eventually expose some of these list elements as function arguments)
format_url = "http://biom-format.org"
return(biom(list(id=id,
format = "Biological Observation Matrix 1.0.0",
format_url = format_url,
type = "OTU table",
generated_by = sprintf("biomformat %s", packageVersion("biomformat")),
date = as.character(Sys.time()),
matrix_type = "dense",
matrix_element_type = matrix_element_type,
shape = dim(data),
rows = rows,
columns = columns,
data = datalist)
))
}
################################################################################
#' Method extensions to show for biom objects.
#'
#' See the general documentation of \code{\link[methods]{show}} method for
#' expected behavior.
#'
#' @seealso \code{\link[methods]{show}}
#'
#' @param object biom-class object
#'
#' @export
#'
#' @rdname show-methods
#'
#' @examples
#' # # # import with default parameters, specify a file
#' biom_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' (x = read_biom(biom_file) )
#' show(x)
setMethod("show", "biom", function(object){
cat("biom object. \n")
cat("type:", object$type, "\n")
cat("matrix_type:", object$matrix_type, "\n")
cat(biom_shape(object)[1], "rows and", biom_shape(object)[2], "columns \n")
})
################################################################################
#' Extract the header from a \code{\link{biom-class}} object as a list.
#'
#' @param x (Required). An instance of the \code{\link{biom-class}}.
#'
#' @return A list containing the header data.
#' That is, all the required elements that are not
#' the main data or index metadata.
#'
#' @docType methods
#' @rdname header-methods
#' @export
#' @examples
#' biom_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' x = read_biom(biom_file)
#' header(x)
setGeneric("header", function(x) standardGeneric("header"))
#' @rdname header-methods
setMethod("header", c("biom"), function(x){
biomheadkeys = c("id", "format", "format_url", "type", "generated_by", "date",
"matrix_type", "matrix_element_type", "shape")
return(x[biomheadkeys])
})
################################################################################
#' The matrix dimensions
#' of a \code{\link{biom-class}} object.
#'
#' @param x (Required). An instance of the \code{\link{biom-class}}.
#'
#' @return A length two \code{\link{integer-class}} vector
#' indicating the \code{\link{nrow}} and \code{\link{ncol}}
#' of the main data matrix stored in \code{x}.
#'
#' @seealso
#'
#' \code{\link{biom-class}}
#'
#' @export
#' @docType methods
#' @rdname biom_shape-methods
#' @examples
#' # # # import with default parameters, specify a file
#' biom_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' (x = read_biom(biom_file) )
#' biom_shape(x)
setGeneric("biom_shape", function(x) standardGeneric("biom_shape"))
#' @rdname biom_shape-methods
setMethod("biom_shape", c("biom"), function(x){
return(as(c(nrow=x$shape[1], ncol=x$shape[2]), "integer"))
})
################################################################################
#' Access class of data in the matrix elements
#' of a \code{\link{biom-class}} object
#'
#' @param x (Required). An instance of the \code{\link{biom-class}}.
#'
#' @return A \code{\link{character-class}} string indicating
#' the class of the data stored in the main observation matrix of \code{x},
#' with expected values \code{"int"}, \code{"float"}, \code{"unicode"}.
#'
#' @seealso
#'
#' \code{\link{biom-class}}
#'
#' @export
#' @docType methods
#' @rdname matrix_element_type-methods
#' @examples
#' # # # import with default parameters, specify a file
#' biom_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' (x = read_biom(biom_file) )
#' matrix_element_type(x)
setGeneric("matrix_element_type", function(x) standardGeneric("matrix_element_type"))
#' @rdname matrix_element_type-methods
setMethod("matrix_element_type", c("biom"), function(x){
return(x$matrix_element_type)
})
################################################################################
#' Method extensions to \code{\link[base]{nrow}}
#' for \code{\link{biom-class}} objects.
#'
#' See the general documentation of \code{\link[base]{nrow}} method for
#' expected behavior.
#'
#' @param x (Required). An instance of the \code{\link{biom-class}}.
#'
#' @return The number of rows in \code{x}.
#' A length 1 \code{\link{integer-class}}.
#'
#' @seealso
#'
#' \code{\link{ncol}}
#'
#' \code{\link[base]{nrow}}
#'
#' \code{\link{biom_shape}}
#'
#' @export
#' @docType methods
#' @rdname nrow-methods
#' @examples
#' # # # import with default parameters, specify a file
#' biom_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' (x = read_biom(biom_file) )
#' nrow(x)
setMethod("nrow", c("biom"), function(x){
return( biom_shape(x)["nrow"] )
})
################################################################################
#' Method extensions to \code{\link[base]{ncol}}
#' for \code{\link{biom-class}} objects.
#'
#' See the general documentation of \code{\link[base]{ncol}} method for
#' expected behavior.
#'
#' @param x (Required). An instance of the \code{\link{biom-class}}.
#'
#' @return The number of columns in \code{x}.
#' A length 1 \code{\link{integer-class}}.
#'
#' @seealso
#'
#' \code{\link{nrow}}
#'
#' \code{\link[base]{ncol}}
#'
#' \code{\link{biom_shape}}
#'
#' @export
#' @docType methods
#' @rdname ncol-methods
#' @examples
#' # import with default parameters, specify a file
#' biom_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' (x = read_biom(biom_file) )
#' ncol(x)
setMethod("ncol", c("biom"), function(x){
return( biom_shape(x)["ncol"] )
})
################################################################################
#' Method extensions to \code{\link[base]{rownames}}
#' for \code{\link{biom-class}} objects.
#'
#' See the general documentation of \code{\link[base]{rownames}} method for
#' expected behavior.
#'
#' @param x (Required). An instance of the \code{\link{biom-class}}.
#' @return The number of columns in \code{x}.
#' A length 1 \code{\link{integer-class}}.
#'
#' @seealso
#'
#' \code{\link{nrow}}
#'
#' \code{\link[base]{rownames}}
#'
#' \code{\link{biom_shape}}
#'
#' @export
#' @docType methods
#' @rdname rownames-methods
#' @examples
#' # # # import with default parameters, specify a file
#' biom_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' (x = read_biom(biom_file) )
#' rownames(x)
setMethod("rownames", c("biom"), function(x){
sapply(x$rows, function(i) i$id)
})
################################################################################
#' Method extensions to \code{\link[base]{colnames}}
#' for \code{\link{biom-class}} objects.
#'
#' See the general documentation of \code{\link[base]{colnames}} method for
#' expected behavior.
#'
#' @param x (Required). An instance of the \code{\link{biom-class}}.
#' @return The number of columns in \code{x}.
#' A length 1 \code{\link{integer-class}}.
#'
#' @seealso
#'
#' \code{\link{nrow}}
#'
#' \code{\link[base]{colnames}}
#'
#' \code{\link{biom_shape}}
#'
#' @export
#' @docType methods
#' @rdname colnames-methods
#' @examples
#' # # # import with default parameters, specify a file
#' biom_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' (x = read_biom(biom_file) )
#' colnames(x)
setMethod("colnames", c("biom"), function(x){
sapply(x$columns, function(i) i$id)
})
################################################################################
#' Access main data observation matrix data from \code{\link{biom-class}}.
#'
#' Retrieve and organize main data from \code{\link{biom-class}},
#' represented as a matrix with index names.
#'
#' @param x (Required). An instance of the \code{\link{biom-class}}.
#' @param rows (Optional). The subset of row indices described in the
#' returned object. For large datasets, specifying the row subset here,
#' rather than after creating the whole matrix first,
#' can improve speed/efficiency.
#' Can be vector of index numbers (\code{\link{numeric-class}}) or
#' index names (\code{\link{character-class}}).
#' @param columns (Optional). The subset of column indices described in the
#' returned object. For large datasets, specifying the column subset here,
#' rather than after creating the whole matrix first,
#' can improve speed/efficiency.
#' Can be vector of index numbers (\code{\link{numeric-class}}) or
#' index names (\code{\link{character-class}}).
#' @param parallel (Optional). Logical. Whether to perform the accession parsing
#' using a parallel-computing backend supported by the \code{\link{plyr-package}}
#' via the \code{\link[foreach]{foreach-package}}. Note: At the moment, the header
#' accessor does not need nor does it support parallel-computed parsing.
#'
#' @return A matrix containing the main observation data, with index names.
#' The type of data (numeric or character)
#' will depend on the results of \code{\link{matrix_element_type}(x)}.
#' The class of the matrix returned will depend on the sparsity of the data,
#' and whether it has numeric or character data.
#' For now, only numeric data can be stored in a \code{\link{Matrix-class}},
#' which will be stored sparsely, if possible.
#' Character data will be returned as a vanilla \code{\link{matrix-class}}.
#'
#' @rdname biom_data-methods
#' @export
#' @examples
#' min_dense_file = system.file("extdata", "min_dense_otu_table.biom", package = "biomformat")
#' min_sparse_file = system.file("extdata", "min_sparse_otu_table.biom", package = "biomformat")
#' rich_dense_file = system.file("extdata", "rich_dense_otu_table.biom", package = "biomformat")
#' rich_sparse_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' min_dense_file = system.file("extdata", "min_dense_otu_table.biom", package = "biomformat")
#' rich_dense_char = system.file("extdata", "rich_dense_char.biom", package = "biomformat")
#' rich_sparse_char = system.file("extdata", "rich_sparse_char.biom", package = "biomformat")
#' # Read the biom-format files
#' x1 = read_biom(min_dense_file)
#' x2 = read_biom(min_sparse_file)
#' x3 = read_biom(rich_dense_file)
#' x4 = read_biom(rich_sparse_file)
#' x5 = read_biom(rich_dense_char)
#' x6 = read_biom(rich_sparse_char)
#' # Extract the data matrices
#' biom_data(x1)
#' biom_data(x2)
#' biom_data(x3)
#' biom_data(x4)
#' biom_data(x5)
#' biom_data(x6)
setGeneric("biom_data", function(x, rows, columns, parallel=FALSE){
standardGeneric("biom_data")
})
# All methods funnel toward signature biom,numeric,numeric
#' @rdname biom_data-methods
setMethod("biom_data", c("biom", "missing", "missing"), function(x, rows, columns, parallel){
# Dispatch with full rows and cols
biom_data(x, 1:nrow(x), 1:ncol(x), parallel)
})
#' @rdname biom_data-methods
setMethod("biom_data", c("biom", "character", "ANY"), function(x, rows, columns, parallel){
rows = which(rownames(x) %in% rows)
# Dispatch with specified numeric rows and pass cols
biom_data(x, rows, columns)
})
#' @rdname biom_data-methods
setMethod("biom_data", c("biom", "ANY", "character"), function(x, rows, columns, parallel){
columns = which(colnames(x) %in% columns)
# Dispatch with specified numeric columns and pass rows
biom_data(x, rows, columns)
})
#' @rdname biom_data-methods
setMethod("biom_data", c("biom", "numeric", "missing"), function(x, rows, columns, parallel){
# Dispatch with specified rows and full cols
biom_data(x, rows, 1:ncol(x), parallel)
})
#' @rdname biom_data-methods
setMethod("biom_data", c("biom", "missing", "numeric"), function(x, rows, columns, parallel){
# Dispatch with full rows and specified cols
biom_data(x, 1:nrow(x), columns, parallel)
})
#' @rdname biom_data-methods
#' @import Matrix
#' @importFrom plyr d_ply
#' @importFrom plyr ldply
#' @importFrom plyr laply
setMethod("biom_data", c("biom", "numeric", "numeric"), function(x, rows, columns, parallel){
if( identical(length(rows), 0) ){
stop("argument `rows` must have non-zero length.")
}
if( identical(length(columns), 0) ){
stop("argument `columns` must have non-zero length.")
}
# Begin matrix section
if( identical(x$matrix_type, "dense") ){
# Begin dense section
# If matrix is stored as dense, create "vanilla" R matrix, m
m = laply(x$data[rows], function(i) i[columns], .parallel=parallel)
if( length(rows) > 1L &
length(columns) > 1L &
matrix_element_type(x) %in% c("int", "float")
){
# If either dimension is length-one, don't call coerce to "Matrix"
# Note that laply() does still work in this case.
# If both dimension lengths > 1 & data is numeric,
# attempt to coerce to Matrix-inherited class,
# Mainly because it might still be sparse and this is a good way
# to handle it in R.
m = Matrix(m)
}
} else {
# Begin sparse section
## Initialize sparse matrix as either Matrix or matrix, depending on data class
biom_shape = biom_shape(x)
if(matrix_element_type(x) %in% c("int", "float")){
# If data is numeric, initialize with Matrix (numeric data only)
m = Matrix(0, nrow=nrow(x), ncol=ncol(x), sparse=TRUE)
# Create an assignment data.frame
adf = ldply(x$data)
} else {
# Else, matrix_element_type must be "unicode" for a unicode string.
# Use a standard R character matrix
m = matrix(NA_character_, nrow(x), ncol(x))
# Create an assignment data.frame.
# Is slightly more complicated for sparse JSON w/ character values
adf = ldply(x$data, function(x){
data.frame(r=x[[1]], c=x[[2]], data=x[[3]], stringsAsFactors=FALSE)
})
}
colnames(adf) <- c("r", "c", "data")
# indices start at 0 in biom sparse format,
# and are first two columns
adf[, c("r", "c")] <- cbind(r = as.integer(adf$r) + 1L,
c = as.integer(adf$c) + 1L)
# Subset to just indices that are in both arguments `rows` and `columns`
adf <- adf[(adf$r %in% rows & adf$c %in% columns), ]
# Fill in data values in matrix, m.
# Vectorized for speed using matrix indexing.
# See help("Extract") for details about matrix indexing. Diff than 2-vec index.
m[as(adf[, 1:2], "matrix")] <- adf$data
# Subset this biggest-size m to just `rows` and `columns`
m = m[rows, columns]
# End sparse section
}
# Add row and column names
if( identical(length(rows), 1L) | identical(length(columns), 1L) ){
# If either dimension is length-one
# Try naming by colnames first, then rownames
if( identical(length(rows), 1L) ){
names(m) <- sapply(x$columns[columns], function(i) i$id )
} else {
names(m) <- sapply(x$rows[rows], function(i) i$id )
}
} else {
# Else, both dimensions are longer than 1,
# can assume is a matrix and assign names to both dimensions
rownames(m) <- sapply(x$rows[rows], function(i) i$id )
colnames(m) <- sapply(x$columns[columns], function(i) i$id )
}
return(m)
})
################################################################################
#' Access meta data from \code{\link{biom-class}}.
#'
#' Retrieve and organize meta data from \code{\link{biom-class}},
#' represented as a \code{\link{data.frame}} (if possible, or a list)
#' with proper index names.
#'
#' @param x (Required). An instance of the \code{\link{biom-class}}.
#'
#' @param columns (Optional). The subset of column indices described in the
#' returned object. For large datasets, specifying the column subset here,
#' rather than after creating the whole matrix first,
#' can improve speed/efficiency.
#' Can be vector of index numbers (\code{\link{numeric-class}}) or
#' index names (\code{\link{character-class}}).
#'
#' @param parallel (Optional). Logical. Whether to perform the accession parsing
#' using a parallel-computing backend supported by the \code{\link{plyr-package}}
#' via the \code{\link[foreach]{foreach-package}}.
#'
#' @return A \code{\link{data.frame}} or \code{\link{list}} containing
#' the meta data, with index names. The precise form of the object returned
#' depends on the metadata stored in \code{x}. A \code{data.frame} is
#' created if possible.
#'
#' @rdname sample_metadata-methods
#' @export
#' @examples
#' min_dense_file = system.file("extdata", "min_dense_otu_table.biom", package = "biomformat")
#' min_sparse_file = system.file("extdata", "min_sparse_otu_table.biom", package = "biomformat")
#' rich_dense_file = system.file("extdata", "rich_dense_otu_table.biom", package = "biomformat")
#' rich_sparse_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' min_dense_file = system.file("extdata", "min_dense_otu_table.biom", package = "biomformat")
#' rich_dense_char = system.file("extdata", "rich_dense_char.biom", package = "biomformat")
#' rich_sparse_char = system.file("extdata", "rich_sparse_char.biom", package = "biomformat")
#' # Read the biom-format files
#' x1 = read_biom(min_dense_file)
#' x2 = read_biom(min_sparse_file)
#' x3 = read_biom(rich_dense_file)
#' x4 = read_biom(rich_sparse_file)
#' x5 = read_biom(rich_dense_char)
#' x6 = read_biom(rich_sparse_char)
#' # Extract metadata
#' sample_metadata(x1)
#' sample_metadata(x2)
#' sample_metadata(x3)
#' sample_metadata(x3, 1:4)
#' sample_metadata(x4)
#' sample_metadata(x5)
#' sample_metadata(x6)
setGeneric("sample_metadata", function(x, columns, parallel=FALSE){
standardGeneric("sample_metadata")
})
# All methods funnel toward signature biom,numeric
#' @rdname sample_metadata-methods
setMethod("sample_metadata", c("biom", "missing"), function(x, columns, parallel=FALSE){
# Dispatch with full rows and cols
sample_metadata(x, 1:ncol(x), parallel)
})
#' @rdname sample_metadata-methods
setMethod("sample_metadata", c("biom", "character"), function(x, columns, parallel=FALSE){
columns = which(sapply(x$columns, function(j) j$id) %in% columns)
if( length(columns)==0 ){
stop("The column ID names you provided do not match the column IDs in x")
}
# Dispatch with specified numeric columns
sample_metadata(x, columns, parallel)
})
#' @rdname sample_metadata-methods
setMethod("sample_metadata", c("biom", "numeric"), function(x, columns, parallel=FALSE){
if( any(columns > ncol(x)) ){
warning(paste0("column indices ",
paste0(columns[columns > ncol(x)], collapse=" "),
" are greater than available columns in data. They were ignored."))
columns = columns[columns <= ncol(x)]
}
return(extract_metadata(x, "columns", columns, parallel))
})
################################################################################
#' Access observation (row) meta data from \code{\link{biom-class}}.
#'
#' Retrieve and organize meta data from \code{\link{biom-class}},
#' represented as a \code{\link{data.frame}} (if possible)
#' or a list, with proper index names.
#'
#' @param x (Required). An instance of the \code{\link{biom-class}}.
#'
#' @param rows (Optional). The subset of row indices described in the
#' returned object. For large datasets, specifying the row subset here,
#' -- rather than first creating the complete data object --
#' can improve speed/efficiency.
#' This parameter can be vector of index numbers (\code{\link{numeric-class}}) or
#' index names (\code{\link{character-class}}).
#'
#' @param parallel (Optional). Logical. Whether to perform the accession parsing
#' using a parallel-computing backend supported by the \code{\link{plyr-package}}
#' via the \code{\link[foreach]{foreach-package}}.
#'
#' @return A \code{\link{data.frame}} or \code{\link{list}} containing
#' the meta data, with index names. The precise form of the object returned
#' depends on the metadata stored in \code{x}. A \code{data.frame} is
#' created if possible.
#'
#' @rdname observation_metadata-methods
#' @export
#' @examples
#' min_dense_file = system.file("extdata", "min_dense_otu_table.biom", package = "biomformat")
#' min_sparse_file = system.file("extdata", "min_sparse_otu_table.biom", package = "biomformat")
#' rich_dense_file = system.file("extdata", "rich_dense_otu_table.biom", package = "biomformat")
#' rich_sparse_file = system.file("extdata", "rich_sparse_otu_table.biom", package = "biomformat")
#' min_dense_file = system.file("extdata", "min_dense_otu_table.biom", package = "biomformat")
#' rich_dense_char = system.file("extdata", "rich_dense_char.biom", package = "biomformat")
#' rich_sparse_char = system.file("extdata", "rich_sparse_char.biom", package = "biomformat")
#' # Read the biom-format files
#' x1 = read_biom(min_dense_file)
#' x2 = read_biom(min_sparse_file)
#' x3 = read_biom(rich_dense_file)
#' x4 = read_biom(rich_sparse_file)
#' x5 = read_biom(rich_dense_char)
#' x6 = read_biom(rich_sparse_char)
#' # Extract metadata
#' observation_metadata(x1)
#' observation_metadata(x2)
#' observation_metadata(x3)
#' observation_metadata(x3, 2:4)
#' observation_metadata(x3, 2)
#' observation_metadata(x3, c("GG_OTU_3", "GG_OTU_4", "whoops"))
#' observation_metadata(x4)
#' observation_metadata(x5)
#' observation_metadata(x6)
setGeneric("observation_metadata", function(x, rows, parallel=FALSE){
standardGeneric("observation_metadata")
})
# All methods funnel toward signature biom,numeric
#' @rdname observation_metadata-methods
setMethod("observation_metadata", c("biom", "missing"), function(x, rows, parallel=FALSE){
# Dispatch with full rows and cols
observation_metadata(x, 1:nrow(x), parallel)
})
#' @rdname observation_metadata-methods
setMethod("observation_metadata", c("biom", "character"), function(x, rows, parallel=FALSE){
rows = which(sapply(x$rows, function(j) j$id) %in% rows)
if( length(rows)==0 ){
stop("The row ID names you provided do not match the row IDs in x")
}
# Dispatch with specified numeric rows
observation_metadata(x, rows, parallel)
})
#' @rdname observation_metadata-methods
setMethod("observation_metadata", c("biom", "numeric"), function(x, rows, parallel=FALSE){
if( any(rows > nrow(x)) ){
warning(paste0("Row indices ",
paste0(rows[rows > nrow(x)], collapse=" "),
" are greater than available rows in data. They were ignored."))
rows = rows[rows <= nrow(x)]
}
return(extract_metadata(x, "rows", rows, parallel))
})
################################################################################
# Generic internal function for extracting metadata from either rows or columns
#' @importFrom plyr ldply
#' @importFrom plyr llply
#' @keywords internal
extract_metadata = function(x, indextype, indices, parallel=FALSE){
# Immediately extract just those index indicated by `index` argument
metalist = x[[indextype]][indices]
# Extract metadata elements as a list, for checking dimensions, NULL, etc.
rx = llply(metalist, function(i) unlist(i$metadata), .parallel=parallel)
if( all(sapply(rx, is.null)) ){
# If there is no metadata (all NULL),
# then set metadata to NULL, representing empty.
metadata = NULL
} else {
# Else, extract names and metadata (both required)
# Extract names
metaids = sapply(metalist, function(i) i$id)
# Test if length of metadata entries is same for all indices.
rxlengths = sapply(rx, length)
if( all( rxlengths == rxlengths[1]) ){
# If so, can parse it as data.frame with ldply
# return a data.frame with colnames
metadata = ldply(rx, .parallel=parallel)
rownames(metadata) <- metaids
} else {
# Else, should keep it as a list. But should name the entries
metadata = rx
names(metadata) <- metaids
}
}
return(metadata)
}
################################################################################
# Generic internal function for generating the count matrix.
#' @keywords internal
generate_matrix <- function(x){
indptr = x$sample$matrix$indptr+1
indices = x$sample$matrix$indices+1
data = x$sample$matrix$data
nr = length(x$observation$ids)
counts = sapply(2:length(indptr),function(i){
x = rep(0,nr)
seq = indptr[i-1]:(indptr[i]-1)
x[indices[seq]] = data[seq]
x
})
rownames(counts) = x$observation$ids
colnames(counts) = x$sample$ids
# I wish this next line wasn't necessary
lapply(1:nrow(counts),function(i){
counts[i,]
})
}
################################################################################
# Generic internal function for generating the metadata.
#' @keywords internal
generate_metadata <- function(x){
metadata = x$metadata
metadata = lapply(1:length(x$ids),function(i){
id_metadata = lapply(metadata,function(j){
if(length(dim(j))>1){ as.vector(j[,i,drop=FALSE]) }
else{ j[i] }
})
list(id = x$ids[i],metadata=id_metadata)
})
return(metadata)
}
################################################################################
# Generic internal function for generating a named list.
#' @keywords internal
namedList <- function(...) {
L <- list(...)
snm <- sapply(substitute(list(...)),deparse)[-1]
if (is.null(nm <- names(L))) nm <- snm
if (any(nonames <- nm=="")) nm[nonames] <- snm[nonames]
setNames(L,nm)
}
################################################################################
|