1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
\name{BitSeq-package}
\alias{BitSeq-package}
\alias{BitSeq}
\docType{package}
\title{Bayesian Inference of Transcripts from Sequencing data}
\description{
The BitSeq package is targeted for transcript expression analysis and differential expression analysis of RNA-seq data in two stage process.
In the first stage it uses Bayesian inference methodology to infer expression of individual transcripts from individual RNA-seq experiments.
The second stage of BitSeq embraces the differential expression analysis of transcript expression.
Providing expression estimates from replicates of multiple conditions, Log-Normal model of the estimates is used for inferring the condition mean transcript expression and ranking the transcripts based on the likelihood of differential expression.
}
\author{
Peter Glaus, Antti Honkela and Magnus Rattray
Maintainer: Peter Glaus <glaus@cs.man.ac.uk>
}
\references{
Glaus, P., Honkela, A. and Rattray, M. (2012). Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics, 28(13), 1721-1728.
}
\examples{\dontrun{
## basic use
res1 <- getExpression("data-c0b0.sam","ensSelect1.fasta")
res2 <- getExpression("data-c0b1.sam","ensSelect1.fasta")
res3 <- getExpression("data-c1b0.sam","ensSelect1.fasta")
res4 <- getExpression("data-c1b1.sam","ensSelect1.fasta")
deRes <- getDE( list(c(res1$fn, res2$fn),
c(res3$fn, res4$fn)) )
## top 10 differentially expressed
head(deRes$pplr[ order(abs(0.5-deRes$pplr$pplr), decreasing=TRUE ), ], 10)
## advanced use, keeping the intermediate files
parseAlignment( "data-c0b0.sam",
outFile = "data-c0b0.prob",
trSeqFile = "ensSelect1.fasta",
trInfoFile = "data.tr",
uniform = TRUE,
verbose = TRUE )
estimateExpression( "data-c0b0.prob",
outFile = "data-c0b0",
outputType = "RPKM",
trInfoFile = "data.tr",
MCMC_burnIn = 200,
MCMC_samplesN = 200,
MCMC_samplesSave = 100,
MCMC_scaleReduction = 1.1,
MCMC_chainsN = 2 )
cond1Files = c("data-c0b0.rpkm","data-c0b1.rpkm")
cond2Files = c("data-c1b1.rpkm","data-c1b1.rpkm")
allConditions = list(cond1Files, cond2Files)
getMeanVariance( allConditions,
outFile = "data.means",
log = TRUE )
estimateHyperPar( allConditions,
outFile = "data.par",
meanFile = "data.means",
verbose = TRUE )
estimateDE( allConditions,
outFile = "data",
parFile = "data.par" )
}}
\keyword{ package }
%\seealso{%%~~ \code{\link[<pkg>:<pkg>-package]{<pkg>}} ~~%%}
|