1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
# == title
# Subset a Heatmap
#
# == param
# -x A `Heatmap-class` object.
# -i Row indices.
# -j Column indices.
#
# == details
# This functionality is quite experimental. It should be applied before the layout is initialized.
#
# == example
# m = matrix(rnorm(100), nrow = 10)
# rownames(m) = letters[1:10]
# colnames(m) = LETTERS[1:10]
# ht = Heatmap(m)
# ht[1:5, ]
# ht[1:5]
# ht[, 1:5]
# ht[1:5, 1:5]
"[.Heatmap" = function(x, i, j) {
if(x@layout$initialized) {
stop_wrap("Subsetting is only allowed on a heatmap where layout is not initialized.")
}
if(nargs() == 2) {
subset_heatmap_by_row(x, i)
} else {
if(missing(i)) {
subset_heatmap_by_column(x, j)
} else if(missing(j)) {
subset_heatmap_by_row(x, i)
} else {
x = subset_heatmap_by_row(x, i)
subset_heatmap_by_column(x, j)
}
}
}
subset_heatmap_by_row = function(ht, ind) {
if(is.logical(ind)) ind = which(ind)
if(is.character(ind)) stop_wrap("Indices can only be numeric or logical.")
ht@row_order = order(intersect(ht@row_order, ind))
if(!is.null(ht@row_dend_param$obj)) {
stop_wrap("row dend is specified as a clustering object, cannot do subsetting.")
}
ht@matrix = ht@matrix[ind, , drop = FALSE]
if(!is.null(ht@row_names_param$labels)) {
ht@row_names_param$labels = ht@row_names_param$labels[ind]
ht@row_names_param$anno = ht@row_names_param$anno[ind]
}
ht@row_names_param$gp = subset_gp(ht@row_names_param$gp, ind)
if(!is.null(ht@matrix_param$row_split)) {
ht@matrix_param$row_split = ht@matrix_param$row_split[ind, , drop = FALSE]
}
if(length(ht@left_annotation)) {
ht@left_annotation = ht@left_annotation[ind]
}
if(length(ht@right_annotation)) {
ht@right_annotation = ht@right_annotation[ind]
}
return(ht)
}
subset_heatmap_by_column = function(ht, ind) {
if(is.logical(ind)) ind = which(ind)
if(is.character(ind)) stop_wrap("Indices can only be numeric or logical.")
ht@column_order = order(intersect(ht@column_order, ind))
if(!is.null(ht@column_dend_param$obj)) {
stop_wrap("column dend is specified as a clustering object, cannot do subsetting.")
}
ht@matrix = ht@matrix[, ind, drop = FALSE]
if(!is.null(ht@column_names_param$labels)) {
ht@column_names_param$labels = ht@column_names_param$labels[ind]
ht@column_names_param$anno = ht@column_names_param$anno[ind]
}
ht@column_names_param$gp = subset_gp(ht@column_names_param$gp, ind)
if(!is.null(ht@matrix_param$column_split)) {
ht@matrix_param$column_split = ht@matrix_param$column_split[, ind, drop = FALSE]
}
if(length(ht@top_annotation)) {
ht@top_annotation = ht@top_annotation[ind]
}
if(length(ht@bottom_annotation)) {
ht@bottom_annotation = ht@bottom_annotation[ind]
}
return(ht)
}
# == title
# Dimension of the Heatmap
#
# == param
# -x A `Heatmap-class` object.
#
dim.Heatmap = function(x) {
dim(x@matrix)
}
# == title
# Number of Rows in the Heatmap
#
# == param
# -x A `Heatmap-class` object.
#
nrow.Heatmap = function(x) {
nrow(x@matrix)
}
# == title
# Number of Columns in the Heatmap
#
# == param
# -x A `Heatmap-class` object.
#
ncol.Heatmap = function(x) {
ncol(x@matrix)
}
# == title
# Print the Summary of a Heatmap
#
# == param
# -object A `Heatmap-class` object.
# -... Other arguments.
#
summary.Heatmap = function(object, ...) {
qqcat("a matrix with @{nrow(object@matrix)} rows and @{ncol(object@matrix)} columns\n")
qqcat("name: @{object@name}\n")
qqcat("color mapping is @{object@matrix_color_mapping@type}\n")
if(length(object@column_title)) {
qqcat("has column title\n")
} else {
qqcat("has no column title\n")
}
if(length(object@row_title)) {
qqcat("has row title\n")
} else {
qqcat("has no row title\n")
}
if(length(object@column_names_param$labels)) {
qqcat("has column names\n")
} else {
qqcat("has no column name\n")
}
if(length(object@row_names_param$labels)) {
qqcat("has row names\n")
} else {
qqcat("has no row name\n")
}
if(!is.null(object@column_dend_param$obj)) {
qqcat("column clustering is provided as a clustering object\n")
} else {
if(object@column_dend_param$cluster) {
if(!is.null(object@column_dend_param$fun)) {
qqcat("column clustering is applied with user-defined function\n")
} else if(is.function(object@column_dend_param$distance)) {
qqcat("column clustering is applied with '@{object@column_dend_param$method}' method and user-defined distance function\n")
} else {
qqcat("column clustering is applied with '@{object@column_dend_param$method}' method and '@{object@column_dend_param$distance}' distance\n")
}
} else {
qqcat("no column clustering\n")
}
}
if(object@matrix_param$column_km > 1) {
qqcat("columns are split by k-means with @{object@matrix_param$column_km} groups\n")
}
if(!is.null(object@matrix_param$column_split)) {
qqcat("columns are split by a categorical data frame\n")
}
if(!is.null(object@row_dend_param$obj)) {
qqcat("row clustering is provided as a clustering object\n")
} else {
if(object@row_dend_param$cluster) {
if(!is.null(object@row_dend_param$fun)) {
qqcat("row clustering is applied with user-defined function\n")
} else if(is.function(object@row_dend_param$distance)) {
qqcat("row clustering is applied with '@{object@row_dend_param$method}' method and user-defined distance function\n")
} else {
qqcat("row clustering is applied with '@{object@row_dend_param$method}' method and '@{object@row_dend_param$distance}' distance\n")
}
} else {
qqcat("no row clustering\n")
}
}
if(object@matrix_param$row_km > 1) {
qqcat("rows are split by k-means with @{object@matrix_param$row_km} groups\n")
}
if(!is.null(object@matrix_param$row_split)) {
qqcat("rows are split by a categorical data frame\n")
}
if(length(object@top_annotation)) {
qqcat("has @{length(object@top_annotation)} top annotationa:\n")
qqcat("=======================================\n")
show(object@top_annotation)
qqcat("=======================================\n")
} else {
qqcat("has no top annotation\n")
}
if(length(object@bottom_annotation)) {
qqcat("has @{length(object@bottom_annotation)} bottom annotation:\n")
qqcat("=======================================\n")
show(object@bottom_annotation)
qqcat("=======================================\n")
} else {
qqcat("has no bottom annotation\n")
}
if(length(object@left_annotation)) {
qqcat("has @{length(object@left_annotation)} left annotationa:\n")
qqcat("=======================================\n")
show(object@left_annotation)
qqcat("=======================================\n")
} else {
qqcat("has no left annotation\n")
}
if(length(object@right_annotation)) {
qqcat("has @{length(object@right_annotation)} right annotationa:\n")
qqcat("=======================================\n")
show(object@right_annotation)
qqcat("=======================================\n")
} else {
qqcat("has no right annotation\n")
}
}
validate_anno_names_with_matrix = function(m, ha, which) {
if(!ht_opt$validate_names) {
return(NULL)
}
if(which == "column") {
if(is.null(colnames(m))) {
return(NULL)
}
cn = colnames(m)
for(i in seq_along(ha@anno_list)) {
if(setequal(cn, names(ha@anno_list[[i]]))) {
if(!identical(cn, names(ha@anno_list[[i]]))) {
warning_wrap(qq("Values in column annotation '@{ha@anno_list[[i]]@name}' have a different order of names from the matrix column names. It may lead to wrong conclusion of your data. Please double check."))
}
}
}
}
if(which == "row") {
if(is.null(rownames(m))) {
return(NULL)
}
rn = rownames(m)
for(i in seq_along(ha@anno_list)) {
if(setequal(rn, names(ha@anno_list[[i]]))) {
if(!identical(rn, names(ha@anno_list[[i]]))) {
warning_wrap(qq("Values in row annotation '@{ha@anno_list[[i]]@name}' have a different order of names from the matrix row names. It may lead to wrong conclusion of your data. Please double check."))
}
}
}
}
}
|