1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
GHEATMAP_ENV = new.env()
# == title
# Bin the genome
#
# == param
# -species Abbreviation of the genome, pass to `circlize::read.chromInfo`.
# -bins Number of bins. The final number of bins is approximately equal to it.
# -bin_size Size of the bins. If ``bin_size`` is set, ``bins`` is ignored.
# -... All pass to `circlize::read.chromInfo`. E.g. you can set a subset of chromosomes there.
#
# == value
# A `GenomicRanges::GRanges` object of the genomic bins.
#
bin_genome = function(species = "hg19", bins = 2000, bin_size = NULL, ...) {
lt = circlize::read.chromInfo(species = species, ...)
chr_df = lt$df
chr_gr = GenomicRanges::GRanges(seqnames = chr_df[, 1], ranges = IRanges::IRanges(chr_df[, 2] + 1, chr_df[, 3]))
if(is.null(bin_size)) {
bin_size = round(sum(lt$chr.len)/bins)
bin_size = max(bin_size, 1)
}
chr_window = EnrichedHeatmap::makeWindows(chr_gr, w = bin_size)
GenomicRanges::mcols(chr_window) = NULL
GHEATMAP_ENV$chr_window = chr_window
invisible(chr_window)
}
# == title
# Overlap genomic signals to the genomic bins
#
# == param
# -gr A `GenomicRanges::GRanges` object.
# -value The corresponding signals corresponding to ``gr``.
# -value_column If ``value`` is not set and the values are in the meta-columns in ``gr``, you can specify the column
# indices for these value columns, better to use name indices.
# -method One of "weighted", "w0" and "absolute". For the three different methods, please refer to https://bioconductor.org/packages/release/bioc/vignettes/EnrichedHeatmap/inst/doc/EnrichedHeatmap.html#toc_7 .
# -empty_value The value for the bins where no signal is overlapped.
# -window The genomic bins generated from `bin_genome`.
#
# == details
# The genomic bins should be generated by `bin_genome` in advance. The genomic bins are saved internally, so that multiple
# uses of `bin_genome` ensure they all return the matrices with the same rows.
#
# It supports following values.
#
# - When neither ``value`` nor ``value_column`` is set, it simply overlap ``gr`` to the genomic bins and returns a one-column logical
# matrix which represents whether the current genomic bin overlaps to any signal.
# - When the signals are numeric, ``value`` can be a numeric vector or a matrix, or ``value_column`` can contain multiple columns.
# The function returns a numeric matrix where the values are properly averaged depending on what ``method`` was used.
# - When the signals are character, ``value`` can only be a vector or ``value_column`` can only contain one single column.
# The function returns a one-column character matrix.
#
# == value
# A matrix with the same row as the genomic bins.
#
# == examples
# \dontrun{
# require(circlize)
# require(GenomicRanges)
#
# chr_window = bin_genome("hg19")
#
# #### the first is a numeric matrix #######
# bed1 = generateRandomBed(nr = 1000, nc = 10)
# gr1 = GRanges(seqnames = bed1[, 1], ranges = IRanges(bed1[, 2], bed1[, 3]))
#
# num_mat = normalize_genomic_signals_to_bins(gr1, bed1[, -(1:3)])
#
# #### the second is a character matrix ######
# bed_list = lapply(1:10, function(i) {
# generateRandomBed(nr = 1000, nc = 1,
# fun = function(n) sample(c("gain", "loss"), n, replace = TRUE))
# })
# char_mat = NULL
# for(i in 1:10) {
# bed = bed_list[[i]]
# bed = bed[sample(nrow(bed), 20), , drop = FALSE]
# gr_cnv = GRanges(seqnames = bed[, 1], ranges = IRanges(bed[, 2], bed[, 3]))
#
# char_mat = cbind(char_mat, normalize_genomic_signals_to_bins(gr_cnv, bed[, 4]))
# }
#
# #### two numeric columns ##########
# bed2 = generateRandomBed(nr = 100, nc = 2)
# gr2 = GRanges(seqnames = bed2[, 1], ranges = IRanges(bed2[, 2], bed2[, 3]))
#
# v = normalize_genomic_signals_to_bins(gr2, bed2[, 4:5])
#
# ##### a list of genes need to be highlighted
# bed3 = generateRandomBed(nr = 40, nc = 0)
# gr3 = GRanges(seqnames = bed3[, 1], ranges = IRanges(bed3[, 2], bed3[, 2]))
# gr3$gene = paste0("gene_", 1:length(gr3))
#
# mtch = as.matrix(findOverlaps(chr_window, gr3))
# at = mtch[, 1]
# labels = mcols(gr3)[mtch[, 2], 1]
#
# ##### order of the chromosomes ########
# chr = as.vector(seqnames(chr_window))
# chr_level = paste0("chr", c(1:22, "X", "Y"))
# chr = factor(chr, levels = chr_level)
#
# #### make the heatmap #######
# subgroup = rep(c("A", "B"), each = 5)
#
# ht_opt$TITLE_PADDING = unit(c(4, 4), "points")
# ht_list = Heatmap(num_mat, name = "mat", col = colorRamp2(c(-1, 0, 1), c("green", "white", "red")),
# row_split = chr, cluster_rows = FALSE, show_column_dend = FALSE,
# column_split = subgroup, cluster_column_slices = FALSE,
# column_title = "numeric matrix",
# top_annotation = HeatmapAnnotation(subgroup = subgroup, annotation_name_side = "left"),
# row_title_rot = 0, row_title_gp = gpar(fontsize = 10), border = TRUE,
# row_gap = unit(0, "points")) +
# Heatmap(char_mat, name = "CNV", col = c("gain" = "red", "loss" = "blue"),
# border = TRUE, column_title = "character matrix") +
# rowAnnotation(label = anno_mark(at = at, labels = labels)) +
# rowAnnotation(pt = anno_points(v, gp = gpar(col = 4:5), pch = c(1, 16)),
# width = unit(2, "cm")) +
# rowAnnotation(bar = anno_barplot(v[, 1], gp = gpar(col = ifelse(v[ ,1] > 0, 2, 3))),
# width = unit(2, "cm"))
# draw(ht_list, merge_legend = TRUE)
#
# ##### or horizontally ###
# ht_list = Heatmap(t(num_mat), name = "mat", col = colorRamp2(c(-1, 0, 1), c("green", "white", "red")),
# column_split = chr, cluster_columns = FALSE, show_row_dend = FALSE,
# row_split = subgroup, cluster_row_slices = FALSE,
# row_title = "numeric matrix",
# left_annotation = rowAnnotation(subgroup = subgroup, show_annotation_name = FALSE,
# annotation_legend_param = list(
# subgroup = list(direction = "horizontal", title_position = "lefttop", nrow = 1))),
# column_title_gp = gpar(fontsize = 10), border = TRUE,
# column_gap = unit(0, "points"),
# column_title = ifelse(seq_along(chr_level) \%\% 2 == 0, paste0("\n", chr_level), paste0(chr_level, "\n")),
# heatmap_legend_param = list(direction = "horizontal", title_position = "lefttop")) \%v\%
# Heatmap(t(char_mat), name = "CNV", col = c("gain" = "red", "loss" = "blue"),
# border = TRUE, row_title = "character matrix",
# heatmap_legend_param = list(direction = "horizontal", title_position = "lefttop", nrow = 1)) \%v\%
# HeatmapAnnotation(label = anno_mark(at = at, labels = labels, side = "bottom")) \%v\%
# HeatmapAnnotation(pt = anno_points(v, gp = gpar(col = 4:5), pch = c(1, 16)),
# annotation_name_side = "left", height = unit(2, "cm")) \%v\%
# HeatmapAnnotation(bar = anno_barplot(v[, 1], gp = gpar(col = ifelse(v[ ,1] > 0, 2, 3))),
# annotation_name_side = "left", height = unit(2, "cm"))
# draw(ht_list, heatmap_legend_side = "bottom", merge_legend = TRUE)
# }
normalize_genomic_signals_to_bins = function(gr, value, value_column = NULL, method = "weighted",
empty_value = NA, window = GHEATMAP_ENV$chr_window) {
if(is.null(window)) {
stop_wrap("`bin_genome()` should be executed first.")
}
nm = paste0(as.vector(GenomicRanges::seqnames(window)), ":", GenomicRanges::start(window), "-", GenomicRanges::end(window))
if(!inherits(gr, "GRanges")) {
if(is.data.frame(gr)) {
oe = try({
gr <- GenomicRanges::GRanges(GenomicRanges::seqnames(gr[, 1]), ranges = IRanges::IRanges(gr[, 2], gr[, 3]))
if(ncol(gr) > 3) {
GenomicRanges::mcols(gr) = gr[, -(1:3), drop = FALSE]
}
})
if(inherits(oe, "try-error")) {
stop_wrap("Failed to convert `gr` to a `GRanges` object. Please provide `gr` as a `GRanges` object.")
}
} else {
stop_wrap("`gr` must be a `GRanges` object.")
}
}
if(missing(value) && is.null(value_column)) {
mtch = as.matrix(GenomicRanges::findOverlaps(window, gr))
u = matrix(FALSE, nrow = length(window), ncol = 1)
rownames(u) = nm
u[mtch[, 1], 1] = TRUE
return(u)
}
if(is.null(value) && is.null(value_column)) {
mtch = as.matrix(GenomicRanges::findOverlaps(window, gr))
u = matrix(FALSE, nrow = length(window), ncol = 1)
rownames(u) = nm
u[mtch[, 1], 1] = TRUE
return(u)
}
if(!is.null(value_column)) {
value = GenomicRanges::mcols(gr)[, value_column]
value = as.matrix(as.data.frame(value))
}
if(is.atomic(value) && is.vector(value)) value = cbind(value)
value = as.matrix(value)
if(is.character(value) && ncol(value) > 1) {
stop("For character signals, `value` can only be a single character vector or `value_column` can only contain one column.")
}
if(length(empty_value) == 1) {
empty_value = rep(empty_value, ncol(value))
}
u = matrix(rep(empty_value, each = length(window)), nrow = length(window), ncol = ncol(value))
rownames(u) = nm
mtch = as.matrix(GenomicRanges::findOverlaps(window, gr))
intersect = GenomicRanges::pintersect(window[mtch[,1]], gr[mtch[,2]])
w = GenomicRanges::width(intersect)
value = value[mtch[,2], , drop = FALSE]
n = nrow(value)
ind_list = split(seq_len(n), mtch[, 1])
window_index = as.numeric(names(ind_list))
window_w = GenomicRanges::width(window)
if(is.character(value)) {
for(i in seq_along(ind_list)) {
ind = ind_list[[i]]
if(is.function(method)) {
u[window_index[i], ] = method(value[ind], w[ind], window_w[i])
} else {
tb = tapply(w[ind], value[ind], sum)
u[window_index[i], ] = names(tb[which.max(tb)])
}
}
} else {
if(method == "w0") {
gr2 = GenomicRanges::reduce(gr, min.gapwidth = 0)
mtch2 = as.matrix(GenomicRanges::findOverlaps(window, gr2))
intersect2 = GenomicRanges::pintersect(window[mtch2[, 1]], gr2[mtch2[, 2]])
width_intersect = tapply(GenomicRanges::width(intersect2), mtch2[, 1], sum)
ind = unique(mtch2[, 1])
width_setdiff = GenomicRanges::width(window[ind]) - width_intersect
w2 = GenomicRanges::width(window[ind])
for(i in seq_along(ind_list)) {
ind = ind_list[[i]]
x = colSums(value[ind, , drop = FALSE]*w[ind])/sum(w[ind])
u[window_index[i], ] = (x*width_intersect[i] + empty_value*width_setdiff[i])/w2[i]
}
} else if(method == "absolute") {
for(i in seq_along(ind_list)) {
u[window_index[i], ] = colMeans(value[ind_list[[i]], , drop = FALSE])
}
} else if(method == "weighted") {
for(i in seq_along(ind_list)) {
ind = ind_list[[i]]
u[window_index[i], ] = colSums(value[ind, , drop = FALSE]*w[ind])/sum(w[ind])
}
} else {
if(is.function(method)) {
for(i in seq_along(ind_list)) {
ind = ind_list[[i]]
u[window_index[i], ] = method(value[ind], w[ind], window_w[i])
}
} else {
stop_wrap("Wrong method.")
}
}
}
return(u)
}
|