1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
|
############
## for these functions, plotting dendrogram does not reply on the midpoint attribute in the
## dendrogram object, the positions of all nodes are calculated and stored as x attribute
subset_dendrogram = function(x, ind) {
if(is.null(ind)) {
return(x)
} else {
x[[ind]]
}
}
# == title
# Adjust the Positions of nodes/leaves in the Dendrogram
#
# == param
# -dend A `dendrogram` object.
# -leaf_pos A vector of positions of leaves. The value can also be a `grid::unit` object.
#
# == detail
# The positions of nodes stored as ``x`` attribute are recalculated based on the new positions of leaves.
#
# By default, the position of leaves are at 0.5, 1.5, ..., n-0.5.
#
# == example
# m = matrix(rnorm(100), 10)
# dend = as.dendrogram(hclust(dist(m)))
# dend = adjust_dend_by_x(dend, sort(runif(10)))
# str(dend)
# dend = adjust_dend_by_x(dend, unit(1:10, "cm"))
# str(dend)
adjust_dend_by_x = function(dend, leaf_pos = 1:nobs(dend)-0.5) {
n = nobs(dend)
if(length(leaf_pos) != n) {
stop_wrap("`leaf_pos` should be a vector with same length as `dend`.")
}
dend_order = order.dendrogram(dend)
leaves_pos = leaf_pos
od2index = NULL
od2index[dend_order] = 1:n
dend = dend_edit_node(dend, method = "bottom-top", function(d, index) {
n_node = length(d)
if(is.leaf(d)) {
i = od2index[ d[][[1]] ]
x = leaves_pos[i]
} else {
nc = length(d)
# because the traversal is bottom-up, this ensures
# the `x` of child nodes have already be adjsuted
xl = lapply(1:nc, function(i) attr(d[[i]], "x"))
if(all(sapply(xl, inherits, "unit"))) {
xl = do.call("unit.c", xl)
} else {
xl = unlist(xl)
}
x = (xl[1] + xl[length(xl)])*0.5
}
attr(d, "x") = x
d
})
return(dend)
}
# the direction of the dendrogram is facing bottom,
construct_dend_segments = function(dend, gp) {
if(is.null(attr(dend, "x"))) {
dend = adjust_dend_by_x(dend)
}
x_is_unit = inherits(attr(dend, "x"), "unit")
height_is_unit = inherits(attr(dend, "height"), "unit")
env = new.env(parent = emptyenv())
env$x0 = NULL
env$y0 = NULL
env$x1 = NULL
env$y1 = NULL
env$col = NULL
env$lty = NULL
env$lwd = NULL
env$node_x = NULL
env$node_y = NULL
env$node_col = NULL
env$node_cex = NULL
env$node_pch = NULL
env$node_size = NULL
env$node = NULL
generate_children_dendrogram_segments = function(dend, env = NULL) {
if(is.leaf(dend)) {
return(NULL)
}
height = attr(dend, "height")
if(is.unit(height)) {
height_is_zero = abs(convertHeight(height, "mm", valueOnly = TRUE) - 0) < 1e-10
} else {
height_is_zero = abs(height - 0) < 1e-10
}
nc = length(dend)
xl = lapply(seq_len(nc), function(i) attr(dend[[i]], "x"))
yl = lapply(seq_len(nc), function(i) attr(dend[[i]], "height"))
if(x_is_unit) {
xl = do.call("unit.c", xl)
} else {
xl = unlist(xl)
}
if(height_is_unit) {
yl = do.call("unit.c", yl)
} else {
yl = unlist(yl)
}
max_x = max(xl)
min_x = min(xl)
mid_x = (max_x + min_x)*0.5
# graphic parameters for current branch
edge_gp_list = lapply(seq_len(nc), function(i) as.list(attr(dend[[i]], "edgePar")))
node_gp_list = lapply(seq_len(nc), function(i) as.list(attr(dend[[i]], "nodePar")))
for(i in c(setdiff(seq_len(nc), c(1, nc)), c(1, nc))) {
for(gp_name in c("col", "lwd", "lty")) {
# gp for two segments
if(is.null(edge_gp_list[[i]][[gp_name]])) {
gpa = rep(get.gpar(gp_name)[[gp_name]], 2)
} else {
gpa = rep(edge_gp_list[[i]][[gp_name]], 2)
}
env[[gp_name]] = c(env[[gp_name]], gpa)
}
for(gp_name in c("col", "fill", "cex")) {
if(is.null(node_gp_list[[i]][[gp_name]])) {
gpa = get.gpar(gp_name)[[gp_name]]
} else {
gpa = node_gp_list[[i]][[gp_name]]
}
env[[paste0("node_", gp_name)]] = c(env[[paste0("node_", gp_name)]], gpa)
}
if(is.null(node_gp_list[[i]][["pch"]])) {
env[["node_pch"]] = c(env[["node_pch"]], 1)
} else {
env[["node_pch"]] = c(env[["node_pch"]], node_gp_list[[i]][["pch"]])
}
if(is.null(node_gp_list[[i]][["size"]])) {
env[["node_size"]] = unit.c(env[["node_size"]], unit(1, "char"))
} else {
env[["node_size"]] = unit.c(env[["node_size"]], node_gp_list[[i]][["size"]])
}
if(any(names(node_gp_list[[i]]) %in% c("col", "fill", "pch", "cex", "size"))) {
env[["node"]] = c(env[["node"]], TRUE)
} else {
env[["node"]] = c(env[["node"]], FALSE)
}
if(height_is_zero) {
if(x_is_unit) {
env$x0 = unit.c(env$x0, xl[i])
env$x1 = unit.c(env$x1, mid_x)
env$node_x = unit.c(env$node_x, xl[i])
} else {
env$x0 = c(env$x0, xl[i])
env$x1 = c(env$x1, mid_x)
env$node_x = c(env$node_x, xl[i])
}
if(height_is_unit) {
env$y0 = unit.c(env$y0, height)
env$y1 = unit.c(env$y1, height)
env$node_y = unit.c(env$node_y, height)
} else {
env$y0 = c(env$y0, height)
env$y1 = c(env$y1, height)
env$node_y = c(env$node_y, height)
}
} else {
if(x_is_unit) {
env$x0 = unit.c(env$x0, xl[i], xl[i])
env$x1 = unit.c(env$x1, xl[i], mid_x)
env$node_x = unit.c(env$node_x, xl[i])
} else {
env$x0 = c(env$x0, xl[i], xl[i])
env$x1 = c(env$x1, xl[i], mid_x)
env$node_x = c(env$node_x, xl[i])
}
if(height_is_unit) {
env$y0 = unit.c(env$y0, yl[i], height)
env$y1 = unit.c(env$y1, height, height)
env$node_y = unit.c(env$node_y, yl[i])
} else {
env$y0 = c(env$y0, yl[i], height)
env$y1 = c(env$y1, height, height)
env$node_y = c(env$node_y, yl[i])
}
}
node_is_assigned = TRUE
}
}
# per depth
if(is.leaf(dend)) {
return(list())
}
dend_list = list(dend)
# top node
node_gp = attr(dend, "nodePar")
if(is.null(node_gp)) node_gp = list()
for(gp_name in c("col", "fill", "cex")) {
if(is.null(node_gp[[gp_name]])) {
gpa = get.gpar(gp_name)[[gp_name]]
} else {
gpa = node_gp[[gp_name]]
}
env[[paste0("node_", gp_name)]] = c(env[[paste0("node_", gp_name)]], gpa)
}
if(is.null(node_gp[["pch"]])) {
env[["node_pch"]] = c(env[["node_pch"]], 1)
} else {
env[["node_pch"]] = c(env[["node_pch"]], node_gp[["pch"]])
}
if(is.null(node_gp[["size"]])) {
env[["node_size"]] = unit.c(env[["node_size"]], unit(1, "char"))
} else {
env[["node_size"]] = unit.c(env[["node_size"]], node_gp[["size"]])
}
if(any(names(node_gp) %in% c("col", "fill", "pch", "cex", "size"))) {
env[["node"]] = c(env[["node"]], TRUE)
} else {
env[["node"]] = c(env[["node"]], FALSE)
}
if(x_is_unit) {
env$node_x = unit.c(env$node_x, attr(dend, "x"))
} else {
env$node_x = c(env$node_x, attr(dend, "x"))
}
if(height_is_unit) {
env$node_y = unit.c(env$node_y, attr(dend, "height"))
} else {
env$node_y = c(env$node_y, attr(dend, "height"))
}
while(1) {
if(length(dend_list) == 0) break
for(i in seq_along(dend_list)) {
generate_children_dendrogram_segments(dend_list[[i]], env)
}
# on their children nodes for non-leaf nodes
dend_list = dend_list[ !sapply(dend_list, is.leaf) ]
dend_list2 = list()
for(i in seq_along(dend_list)) {
dend_list2 = append(dend_list2, dend_list[[i]])
}
dend_list = dend_list2
}
lt = as.list(env)
if("col" %in% names(gp)) {
lt$col = gp$col
}
if("lwd" %in% names(gp)) {
lt$lwd = gp$lwd
}
if("lty" %in% names(gp)) {
lt$lty = gp$lty
}
return(lt)
}
# == title
# Grob for Dendrogram
#
# == param
# -dend A `dendrogram` object.
# -facing Facing of the dendrogram.
# -order If it is set to ``reverse``, the first leaf is put on the right if the dendrogram
# is horizontal and it is put on the top if the dendrogram is vertical.
# -gp Graphic parameters for the dendrogram segments. If any of ``col``, ``lwd`` or ``lty`` is set
# in the ``edgePar`` attribute of a node, the corresponding value defined in ``gp`` will be
# overwritten for this node, so ``gp`` is like global graphic parameters for dendrogram segments.
#
# == details
# If ``dend`` has not been processed by `adjust_dend_by_x`, internally `adjust_dend_by_x` is called
# to add ``x`` attributes to each node/leaf.
#
# == value
# A `grob` object which is contructed by `grid::segmentsGrob`.
#
dendrogramGrob = function(dend, facing = c("bottom", "top", "left", "right"),
order = c("normal", "reverse"), gp = gpar()) {
facing = match.arg(facing)[1]
order = match.arg(order)[1]
lt = construct_dend_segments(dend, gp)
is_x_unit = inherits(lt$x0[1], "unit")
if(is_x_unit) {
if(order == "reverse") {
lt$x0 = unit(1, "npc") - lt$x0
lt$x1 = unit(1, "npc") - lt$x1
lt$node_x = unit(1, "npc") - lt$node_x
}
} else {
xlim = range(lt[c("x0", "x1")])
if(order == "reverse") {
lt$x0 = unit(1, "npc") - unit(lt$x0, "native")
lt$x1 = unit(1, "npc") - unit(lt$x1, "native")
lt$node_x = unit(1, "npc") - unit(lt$node_x, "native")
}
}
if(facing %in% c("top", "right")) {
lt$y0 = unit(1, "npc") - unit(lt$y0, "native")
lt$y1 = unit(1, "npc") - unit(lt$y1, "native")
lt$node_y = unit(1, "npc") - unit(lt$node_y, "native")
}
if(facing %in% c("bottom", "top")) {
cl = list(segmentsGrob(lt$x0, lt$y0, lt$x1, lt$y1,
gp = gpar(lwd = lt$lwd, lty = lt$lty, col = lt$col),
default.units = "native"))
if(any(lt$node)) {
l = lt$node
cl[[2]] = pointsGrob(lt$node_x[l], lt$node_y[l], pch = lt$node_pch[l], size = lt$node_size[l],
gp = gpar(col = lt$node_col[l], fill = lt$node_fill[l], cex = lt$node_cex[l]),
default.units = "native")
}
} else if(facing %in% c("left", "right")) {
cl = list(segmentsGrob(lt$y0, lt$x0, lt$y1, lt$x1,
gp = gpar(lwd = lt$lwd, lty = lt$lty, col = lt$col),
default.units = "native"))
if(any(lt$node)) {
l = lt$node
cl[[2]] = pointsGrob(lt$node_y[l], lt$node_x[l], pch = lt$node_pch[l], size = lt$node_size[l],
gp = gpar(col = lt$node_col[l], fill = lt$node_fill[l], cex = lt$node_cex[l]),
default.units = "native")
}
}
gb = gTree(children = do.call(gList, cl))
gb$facing = facing
return(gb)
}
# == title
# Draw the Dendrogram
#
# == param
# -dend A `dendrogram` object.
# -... Pass to `dendrogramGrob`.
# -test Is it in test mode? If it is in test mode, a viewport is created by calculating proper xlim and ylim.
#
# == detail
# `grid.dendrogram` supports drawing dendrograms with self-defind leaf positions. The positions
# of leaves can be defined by `adjust_dend_by_x`. Also the dendrogram can be customized by setting
# the ``edgePar`` attribute for each node (basically for controlling the style of segments), e.g.
# by `dendextend::color_branches`.
#
# To draw the dendrogram, a viewport should be firstly created. `dend_xy` can be used to get the
# positions of leaves and height of the dendrogram.
#
# == example
# m = matrix(rnorm(100), 10)
# dend = as.dendrogram(hclust(dist(m)))
# grid.newpage()
# pushViewport(viewport(xscale = c(0, 10.5), yscale = c(0, dend_heights(dend)),
# width = 0.9, height = 0.9))
# grid.dendrogram(dend)
# popViewport()
#
# grid.dendrogram(dend, test = TRUE)
#
# require(dendextend)
# dend = color_branches(dend, k = 2)
# dend = adjust_dend_by_x(dend, unit(sort(runif(10)*10), "cm"))
# grid.dendrogram(dend, test = TRUE)
grid.dendrogram = function(dend, ..., test = FALSE) {
gb = dendrogramGrob(dend, ...)
if(test) {
h = dend_heights(dend)
if(h == 0) h = 1
n = nobs(dend)
grid.newpage()
if(gb$facing %in% c("top", "bottom")) {
pushViewport(viewport(xscale = c(-0.5, n + 0.5), yscale = c(-h*0.05, h*1.05),
width = unit(1, "npc") - unit(4, "cm"),
height = unit(1, "npc") - unit(4, "cm")))
} else {
pushViewport(viewport(yscale = c(-0.5, n + 0.5), xscale = c(-h*0.05, h*1.05),
width = unit(1, "npc") - unit(4, "cm"),
height = unit(1, "npc") - unit(4, "cm")))
}
}
grid.draw(gb)
if(test) {
grid::grid.xaxis()
grid::grid.yaxis()
grid.rect()
popViewport()
}
}
# == title
# Merge Dendrograms
#
# == param
# -x The parent dendrogram.
# -y The children dendrograms. They are connected to the leaves of the parent dendrogram.
# So the length of ``y`` should be as same as the number of leaves of the parent dendrogram.
# -only_parent Whether only returns the parent dendrogram where the height and node positions have
# been adjusted by children dendrograms.
# -... Other arguments.
#
# == details
# Do not retrieve the order of the merged dendrogram. It is not reliable.
#
# == example
# m1 = matrix(rnorm(100), nr = 10)
# m2 = matrix(rnorm(80), nr = 8)
# m3 = matrix(rnorm(50), nr = 5)
# dend1 = as.dendrogram(hclust(dist(m1)))
# dend2 = as.dendrogram(hclust(dist(m2)))
# dend3 = as.dendrogram(hclust(dist(m3)))
# dend_p = as.dendrogram(hclust(dist(rbind(colMeans(m1), colMeans(m2), colMeans(m3)))))
# dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3))
# grid.dendrogram(dend_m, test = TRUE)
#
# dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3), only_parent = TRUE)
# grid.dendrogram(dend_m, test = TRUE)
#
# require(dendextend)
# dend1 = color_branches(dend1, k = 1, col = "red")
# dend2 = color_branches(dend2, k = 1, col = "blue")
# dend3 = color_branches(dend3, k = 1, col = "green")
# dend_p = color_branches(dend_p, k = 1, col = "orange")
# dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3))
# grid.dendrogram(dend_m, test = TRUE)
merge_dendrogram = function(x, y, only_parent = FALSE, ...) {
parent = x
children = y
n = nobs(parent)
if(n != length(children)) {
stop_wrap("Number of children dendrograms should be same as leaves in parent.")
}
# adjust height of parent dendrogram
children_height = sapply(children, function(x) attr(x, "height"))
children_height_max = max(children_height)
parent_height = attr(parent, "height")
parent_height_min = get_branches_heights(parent)
h_line = children_height_max + parent_height_min*0.1
od2index = NULL
od2index[order.dendrogram(parent)] = 1:n
env = new.env(parent = emptyenv())
env$dend = parent
update_dend_height_in_parent = function(ind = NULL) {
if(is.null(ind)) {
dend = env$dend
if(is.leaf(dend)) {
attr(env$dend, "height") = children_height[ od2index[dend[][[1]]] ]
} else {
attr(env$dend, "height") = attr(dend, "height") + children_height_max
}
} else {
dend = env$dend[[ind]]
if(is.leaf(dend)) {
attr(env$dend[[ind]], "height") = children_height[ od2index[dend[][[1]]] ]
} else {
attr(env$dend[[ind]], "height") = attr(dend, "height") + children_height_max
}
}
if(is.leaf(dend)) {
return(NULL)
}
nc = length(dend)
for(i in seq_len(nc)) {
update_dend_height_in_parent(c(ind, i))
}
}
update_dend_height_in_parent(NULL)
if(only_parent) {
return(env$dend)
}
# merge with children
merge_with_children = function(ind) {
if(is.null(ind)) {
dend = env$dend
} else {
dend = env$dend[[ind]]
}
if(is.leaf(dend)) {
i = dend[][[1]]
dend = children[[i]]
if(is.null(ind)) {
env$dend = dend
} else {
env$dend[[ind]] = dend
}
return(NULL)
} else {
nc = length(dend)
for(i in seq_len(nc)) {
merge_with_children(c(ind, i))
}
}
}
merge_with_children(NULL)
dend = env$dend
children_members = sapply(children, function(x) attr(x, "members"))
attr(dend, "members") = sum(children_members)
# adjust order of leaves
od_parent = order.dendrogram(parent)
od_children = lapply(children, function(x) rank(order.dendrogram(x)))
s = 0
for(i in seq_along(od_parent)) {
od_children[[ od_parent[i] ]] = od_children[[ od_parent[i] ]] + s
s = s + length(od_children[[ od_parent[i] ]])
}
order.dendrogram(dend) = unlist(od_children)
attr(dend, "children_height") = children_height
attr(dend, "parent_height") = parent_height
attr(dend, "h_line") = h_line
return(dend)
}
get_branches_heights = function(dend) {
if(is.leaf(dend)) {
return(NULL)
} else {
c(attr(dend, "height"), unlist(sapply(dend, get_branches_heights)))
}
}
"order.dendrogram<-" = function(x, value) {
env = new.env(parent = emptyenv())
env$i = 0
dendrapply(x, function(node) {
if(is.leaf(node)) {
env$i = env$i + 1
node[[1]] = value[ env$i ]
}
return(node)
})
}
print.dendrogram = function(x) {
str(x)
}
# can only cut dendrogram for which branches at every node are two
cut_dendrogram = function(dend, k) {
h = sort(dend_branches_heights(dend), decreasing = TRUE)
if(k > length(h)) {
trees = cut(dend, h = 0)
} else {
height = (h[k-1] + h[k])/2
trees = cut(dend, h = height)
}
trees
}
dend_branches_heights = function(d, v = NULL) {
if(!is.leaf(d)) {
v = c(v, attr(d, "height"))
for(i in seq_along(d)) {
v = dend_branches_heights(d[[i]], v)
}
}
return(v)
}
# == title
# Height of the Dendrograms
#
# == param
# -x a `dendrogram` object or a list of `dendrogram` objects.
#
dend_heights = function(x) {
if(is.null(x)) return(0)
if(inherits(x, "dendrogram")) {
attr(x, "height")
} else {
sapply(x, function(y) attr(y, "height"))
}
}
# == title
# Coordinates of the Dendrogram
#
# == param
# -dend a `dendrogram` object.
#
# == detail
# ``dend`` will be processed by `adjust_dend_by_x` if it is processed yet.
#
# == value
# A list of leave positions (``x``) and dendrogram height (``y``).
#
# == example
# m = matrix(rnorm(100), 10)
# dend1 = as.dendrogram(hclust(dist(m)))
# dend_xy(dend1)
#
# dend1 = adjust_dend_by_x(dend1, sort(runif(10)))
# dend_xy(dend1)
#
# dend1 = adjust_dend_by_x(dend1, unit(1:10, "cm"))
# dend_xy(dend1)
dend_xy = function(dend) {
if(is.null(attr(dend, "x"))) {
dend = adjust_dend_by_x(dend)
}
env = new.env(parent = emptyenv())
env$lt = list()
dendrapply(dend, function(d) {
if(is.leaf(d))
env$lt = c(env$lt, list(attr(d, "x")))
})
x = env$lt
if(inherits(x[[1]], "unit")) {
x = do.call("unit.c", x)
} else {
x = unlist(x)
}
return(list(x = x,
y = c(0, dend_heights(dend))))
}
# == title
# Cluster within and between Groups
#
# == param
# -mat A matrix where clustering is applied on columns.
# -factor A categorical vector.
#
# == details
# The clustering is firstly applied in each group, then clustering is applied
# to group means. The within-group dendrograms and between-group dendrogram
# are finally connected by `merge_dendrogram`.
#
# In the final dendrogram, the within group dendrograms are enforced to be
# flat lines to emphasize that the within group dendrograms have no sense to
# compare to between-group dendrogram.
#
# == value
# A `dendrogram` object. The order of columns can be retrieved by `stats::order.dendrogram`.
#
# == example
# m = matrix(rnorm(120), nc = 12)
# colnames(m) = letters[1:12]
# fa = rep(c("a", "b", "c"), times = c(2, 4, 6))
# dend = cluster_within_group(m, fa)
# grid.dendrogram(dend, test = TRUE)
cluster_within_group = function(mat, factor) {
if (!is.factor(factor)) {
factor = factor(factor, levels = unique(factor))
}
dend_list = list()
order_list = list()
for(le in unique(levels(factor))) {
m = mat[, factor == le, drop = FALSE]
if (ncol(m) == 1) {
order_list[[le]] = which(factor == le)
dend_list[[le]] = structure(which(factor == le), class = "dendrogram", leaf = TRUE,
height = 0, label = 1, members = 1)
} else if(ncol(m) > 1) {
hc1 = hclust(dist(t(m)))
dend_list[[le]] = as.dendrogram(hc1)
order_list[[le]] = which(factor == le)[order.dendrogram(dend_list[[le]])]
order.dendrogram(dend_list[[le]]) = order_list[[le]]
}
attr(dend_list[[le]], ".class_label") = le
}
parent = as.dendrogram(hclust(dist(t(sapply(order_list, function(x) rowMeans(mat[, x, drop = FALSE]))))))
dend_list = lapply(dend_list, function(dend) dendrapply(dend, function(node) {
attr(node, "height") = 0
node
}))
dend = merge_dendrogram(parent, dend_list)
order.dendrogram(dend) = unlist(order_list[order.dendrogram(parent)])
return(dend)
}
# == title
# Cluster only between Groups
#
# == param
# -mat A matrix where clustering is applied on columns.
# -factor A categorical vector.
#
# == details
# The clustering is only applied between groups and inside a group, the order is unchanged.
#
# == value
# A `dendrogram` object.
#
# == example
# m = matrix(rnorm(120), nc = 12)
# colnames(m) = letters[1:12]
# fa = rep(c("a", "b", "c"), times = c(2, 4, 6))
# dend = cluster_between_groups(m, fa)
# grid.dendrogram(dend, test = TRUE)
cluster_between_groups = function(mat, factor) {
if (!is.factor(factor)) {
factor = factor(factor, levels = unique(factor))
}
dend_list = list()
order_list = list()
for(le in unique(levels(factor))) {
m = mat[, factor == le, drop = FALSE]
if (ncol(m) == 1) {
order_list[[le]] = which(factor == le)
dend_list[[le]] = structure(which(factor == le), class = "dendrogram", leaf = TRUE,
height = 0, label = 1, members = 1)
} else if(ncol(m) > 1) {
hc1 = hclust(dist(1:ncol(m)))
dend_list[[le]] = reorder(as.dendrogram(hc1), wts = 1:ncol(m), agglo.FUN = mean)
order_list[[le]] = which(factor == le)[order.dendrogram(dend_list[[le]])]
order.dendrogram(dend_list[[le]]) = order_list[[le]]
}
attr(dend_list[[le]], ".class_label") = le
}
parent = as.dendrogram(hclust(dist(t(sapply(order_list, function(x) rowMeans(mat[, x, drop = FALSE]))))))
dend_list = lapply(dend_list, function(dend) dendrapply(dend, function(node) {
attr(node, "height") = 0
node
}))
dend = merge_dendrogram(parent, dend_list)
order.dendrogram(dend) = unlist(order_list[order.dendrogram(parent)])
return(dend)
}
#######################
dend_node_apply = function(dend, fun) {
next_k = local({
k = 0
function(reset = FALSE) {
if(reset) {
k <<- 0
} else {
k <<- k + 1
}
k
}
})
next_k(reset = TRUE)
assign_to = function(env, k, v) {
n = length(env$var)
if(n == 0) {
env$var = list()
}
env$var[[k]] = v
}
if(length(as.list(formals(fun))) == 1) {
fun2 = fun
fun = function(d, index) fun2(d)
}
env = new.env(parent = emptyenv())
dend_list = list(dend)
index_list = list(NULL)
while(1) {
if(length(dend_list) == 0) break
for(i in seq_along(dend_list)) {
class(dend_list[[i]]) = "dendrogram"
if(is.null(index_list[[i]])) {
assign_to(env, next_k(), fun(dend_list[[i]], NULL))
} else {
assign_to(env, next_k(), fun(dend_list[[i]], index_list[[i]]))
}
}
# on their children nodes for non-leaf nodes
l = !sapply(dend_list, is.leaf)
dend_list = dend_list[l]
index_list = index_list[l]
dend_list2 = list()
index_list2 = list()
for(i in seq_along(dend_list)) {
dend_list2 = c(dend_list2, dend_list[[i]])
index_list2 = c(index_list2, lapply(seq_along(dend_list[[i]]), function(k) c(index_list[[i]], k)))
}
dend_list = dend_list2
index_list = index_list2
}
var = env$var
if(all(vapply(var, is.atomic, TRUE))) {
if(all(vapply(var, length, 0) == 1)) {
var = unlist(var)
}
}
return(var)
}
dend_edit_node = function(dend, fun = function(d, index) d,
method = c("top-bottom", "bottom-top")) {
env = new.env(parent = emptyenv())
env$dend = dend
method = match.arg(method)
fun2 = fun
if(length(as.list(formals(fun))) == 1) {
fun = function(d, index) {
d = fun2(d)
if(!inherits(d, "dendrogram")) {
stop_wrap("`fun` should return a dendrogram object.")
}
d
}
} else {
fun = function(d, index) {
d = fun2(d, index)
if(!inherits(d, "dendrogram")) {
stop_wrap("`fun` should return a dendrogram object.")
}
d
}
}
if(method == "top-bottom") {
dend_list = list(dend)
index_list = list(NULL)
while(1) {
if(length(dend_list) == 0) break
for(i in seq_along(dend_list)) {
class(dend_list[[i]]) = "dendrogram"
if(is.null(index_list[[i]])) {
env$dend = fun(dend_list[[i]], NULL)
} else {
env$dend[[ index_list[[i]] ]] = fun(dend_list[[i]], index_list[[i]])
}
}
# on their children nodes for non-leaf nodes
l = !sapply(dend_list, is.leaf)
dend_list = dend_list[l]
index_list = index_list[l]
dend_list2 = list()
index_list2 = list()
for(i in seq_along(dend_list)) {
dend_list2 = c(dend_list2, dend_list[[i]])
index_list2 = c(index_list2, lapply(seq_along(dend_list[[i]]), function(k) c(index_list[[i]], k)))
}
dend_list = dend_list2
index_list = index_list2
}
} else {
# first get all dend_index for all leaf nodes, and then go up
index_list = dend_node_apply(dend, function(d, index) {
if(is.leaf(d)) {
return(index)
} else {
return(NULL)
}
})
index_list = unique(index_list)
index_list = index_list[ sapply(index_list, length) > 0 ]
while(length(index_list)) {
# go from the longest index
len = sapply(index_list, length)
index_list2 = index_list[ len == max(len) ]
for(i in seq_along(index_list2)) {
env$dend[[ index_list2[[i]] ]] = fun(env$dend[[ index_list2[[i]] ]], index_list2[[i]])
}
# only reduce the longest index
index_list2 = lapply(index_list2, function(ind) ind[-length(ind)])
index_list = unique(c(index_list[ len < max(len) ], index_list2))
index_list = index_list[ sapply(index_list, length) > 0 ]
}
# the top node with no index
env$dend = fun(env$dend, NULL)
}
return(env$dend)
}
|