1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
<!--
%\VignetteEngine{knitr}
%\VignetteIndexEntry{Interactive ComplexHeatmap}
-->
Interactive ComplexHeatmap
----------------------------
```{r, echo = FALSE}
library(knitr)
knitr::opts_chunk$set(
error = FALSE,
tidy = FALSE,
message = FALSE,
warning = FALSE,
fig.align = "center"
)
```
<div style="width:80%;border:1px dotted #EEEEEE;padding:6px 10px 0px 10px;background-color:#F8F8F8;margin:0 auto;">
<p style="text-align:center;">Key message: heatmaps can be exported into a Shiny app by <code>ht_shiny(ht)</code>.</p>
</div>
Heatmaps are mainly for visualizing common patterns that are shared by groups
of rows and columns. After the patterns have been seen, the next step is to
extract the corresponding rows and columns from the heatmap, which requires
interactivity on the heatmaps. **ComplexHeatmap** package is used for
generating static heatmaps. **From version 2.5.3, it is now possible to make
complex heatmaps interactive!** The new functionalities allow users
to capture sub-heatmaps by clicking or selecting areas from heatmaps.
To demonstrate this new functionality, I first generate two heatmaps and apply
_k_-means clustering on the numeric one.
```{r}
library(ComplexHeatmap)
set.seed(123)
mat1 = matrix(rnorm(100), 10)
rownames(mat1) = colnames(mat1) = paste0("a", 1:10)
mat2 = matrix(sample(letters[1:10], 100, replace = TRUE), 10)
rownames(mat2) = colnames(mat2) = paste0("b", 1:10)
ht_list = Heatmap(mat1, name = "mat_a", row_km = 2, column_km = 2) +
Heatmap(mat2, name = "mat_b")
```
**ComplexHeatmap** package allows two types of interactivity: 1. on the
interactive graphics device and 2. on a Shiny app.
## On the interactive graphics device
Here the "interactive graphics device" is the window that is opened for generating
plots in your R session, or the figure panel in Rstudio IDE.
In the following parts of this post, I will explain how the correspondance
between the points user selected and the values in the heatmap/matrix is done
in **ComplexHeatmap** package.
When user clicks on the device, the physical locations relative in the device
are captured by `grid::grid.locator()`. The physical locations of the heatmaps
(more precisely, the heatmap slices) are also captured via the new
`ht_pos_on_device()` function (thanks to `grid::deviceLoc()`).
Before executing `ht_pos_on_device()`, the heatmap should be drawn on the
device and the layout of heatmaps should have been done, thus, the heatmap object
`ht_list` should be updated explictly by the `draw()` function.
```{r, fig.width = 6, fig.height = 4}
ht_list = draw(ht_list)
pos = ht_pos_on_device(ht_list)
```
The returned object `pos` is a `DataFrame` object that contains the positions
of all heatmap slices. A `DataFrame` object (the `DataFrame` class is defined
in **S4Vectors** package from
[Bioconductor](https://bioconductor.org/packages/release/bioc/html/S4Vectors.html))
is bacially very similar as a data frame, but it can store more complex data
types, such as the `simpleUnit` (generated by `grid::unit()`) vectors as in `pos`
(click the "show/hide output" button to see the output).
```{r}
pos
```
We can confirm whether the positions are correctly captured by the following
code. In the next figure, black rectangles correspond to the heatmap slices
and the dashed rectangle corresponds to the border of the whole image.
```{r, fig.width = 6, fig.height = 4}
# If you try the code in your interactive R session, you need the following
# two lines to open a new device with the same size as the current one.
# ds = dev.size()
# dev.new(width = ds[1], height = ds[2])
grid.newpage()
grid.rect(gp = gpar(lty = 2))
for(i in seq_len(nrow(pos))) {
x_min = pos[i, "x_min"]
x_max = pos[i, "x_max"]
y_min = pos[i, "y_min"]
y_max = pos[i, "y_max"]
pushViewport(viewport(x = x_min, y = y_min, name = pos[i, "slice"],
width = x_max - x_min, height = y_max - y_min,
just = c("left", "bottom")))
grid.rect()
upViewport()
}
```
Since now we know the location of the point that user clicked and the positions
of all heatmap slices, it is possible to calculate which row and which column in
the original matrix user's point corresponds to.
In the next figure, the blue point with the coordinate $(a, b)$ is
clicked by user. The heatmap slice where user clicked into has range $(x_1,x_2)$
on x direction and range $(y_1, y_2)$ on y direction. There are $n_r$
rows ($n_r =8$) and $n_c$ columns ($n_c = 5$) in this heatmap slice and they are marked
by dashed lines.
```{r, echo = FALSE, fig.width = 6, fig.height = 4}
grid.newpage()
grid.rect(gp = gpar(lty = 2))
for(i in seq_len(nrow(pos))) {
x_min = pos[i, "x_min"]
x_max = pos[i, "x_max"]
y_min = pos[i, "y_min"]
y_max = pos[i, "y_max"]
pushViewport(viewport(x = x_min, y = y_min, name = pos[i, "slice"],
width = x_max - x_min, height = y_max - y_min,
just = c("left", "bottom")))
grid.rect()
upViewport()
}
seekViewport("mat_a_heatmap_body_1_2")
ht = ht_list@ht_list[["mat_a"]]
m = ht@matrix
i = 1
j = 2
row_order = ht@row_order_list[[i]]
column_order = ht@column_order_list[[j]]
nr = length(row_order)
nc = length(column_order)
grid.segments(1:nc/nc, rep(0, nc), 1:nc/nc, rep(1, nc), default.units = "npc",
gp = gpar(col = "#888888", lty = 2))
grid.segments(rep(0, nr), 1:nr/nr, rep(1, nr), 1:nr/nr, default.units = "npc",
gp = gpar(col = "#888888", lty = 2))
grid.rect(gp = gpar(fill = NA))
grid.points(0.3, 0.8, pch = 16, size = unit(2, "mm"), gp = gpar(col = "blue"))
ComplexHeatmap:::grid.text(gt_render("(a, b)", box_gp = gpar(fill = "white", col = NA)),
x = unit(0.3, "npc") + unit(2, "mm"), y = unit(0.8, "npc"),
just = "left")
grid.points(0, 0, pch = 16, size = unit(2, "mm"), gp = gpar(col = "red"))
ComplexHeatmap:::grid.text(gt_render("(x<sub>1</sub>, y<sub>1</sub>)", box_gp = gpar(fill = "white", col = NA)),
x = unit(0, "npc") + unit(2, "mm"), y = unit(0, "npc"),
just = "left")
grid.points(1, 1, pch = 16, size = unit(2, "mm"), gp = gpar(col = "red"))
ComplexHeatmap:::grid.text(gt_render("(x<sub>2</sub>, y<sub>2</sub>)", box_gp = gpar(fill = "white", col = NA)),
x = unit(1, "npc"), y = unit(1, "npc") - unit(2, "mm"),
just = "top")
ComplexHeatmap:::grid.text(gt_render("n<sub>r</sub> = 8", box_gp = gpar(fill = "white", col = NA)),
x = unit(1, "npc") + unit(1, "mm"), y = unit(0.5, "npc"),
just = "left")
ComplexHeatmap:::grid.text(gt_render("n<sub>c</sub> = 5", box_gp = gpar(fill = "white", col = NA)),
x = unit(0.5, "npc"), y = unit(1, "npc") + unit(1, "mm"),
just = "bottom")
```
Relative in this heatmap slice, the row index $i_r$ and column index $i_c$ of
the cell where the point is in can be calculated as:
$$ i_c = \lceil \frac{a - x_1}{x_2 - x_1} \cdot n_c \rceil $$
$$ i_r = \lceil \frac{b - y_1}{y_2 - y_1} \cdot n_r \rceil $$
where the symbol $\lceil x \rceil$ means the ceiling of the numeric value $x$.
If the row on the top has the index of 1, then $i_r$ should be calculated as:
$$ i_r = n_r - \lceil \frac{b - y_1}{y_2 - y_1} \cdot n_r \rceil + 1 $$
The subset of row and column indices of the original matrix that belongs to
the selected heatmap slice is already stored in `ht_list` object, thus, we can
obtain the row and column index of the original matrix that corresponds to
user's point easily with $i_r$ and $i_c$.
**ComplexHeatmap** package now has two new functions `selectPosition()` and
`selectArea()` which allows users to pick single positions or select areas
from the heatmaps. Under the interactive graphics device, users do not need to
run `ht_pos_on_device()` explicitly. The positions of heatmaps are
automatically calculated, cached and reused if the heatmaps are the same and
the device has not changed its size.
The next image shows an example of using `selectPosition()`. Interactively,
the function asks user to click one position on the heatmap. The function
returns a `DataFrame` which contains the heatmap name, slice name and the
row/column index of the matrix in that heatmap. An example output can be found
by clicking the button below.
```
## DataFrame with 1 row and 6 columns
## heatmap slice row_slice column_slice row_index
## <character> <character> <numeric> <numeric> <integer>
## 1 mat_a mat_a_heatmap_body_1_2 1 2 9
## column_index
## <integer>
## 1 1
```
If the position clicked is not in any of the heatmap slices, the function
returns `NULL`.
<p><img width='100%' style='border:1px solid grey;padding: 4px;' src='https://user-images.githubusercontent.com/449218/82155004-29035780-9872-11ea-849d-20b15014c451.gif' /></p>
Similarly, the `selectArea()` function asks user to click two positions on the
heatmap which defines an area. Note since the selected area may overlap over
multiple heatmaps and slices, the function returns a `DataFrame` with multiple
rows which contains the heatmap names, slice names and the row/column indices
in that heatmap. An example output can be found by clicking the button below.
```
## DataFrame with 4 rows and 6 columns
## heatmap slice row_slice column_slice row_index
## <character> <character> <numeric> <numeric> <IntegerList>
## 1 mat_a mat_a_heatmap_body_1_2 1 2 7,5,2,...
## 2 mat_a mat_a_heatmap_body_2_2 2 2 6,3
## 3 mat_b mat_b_heatmap_body_1_1 1 1 7,5,2,...
## 4 mat_b mat_b_heatmap_body_2_1 2 1 6,3
## column_index
## <IntegerList>
## 1 2,4,1,...
## 2 2,4,1,...
## 3 1,2,3,...
## 4 1,2,3,...
```
The columns `row_index` and `column_index` are stored in `IntegerList` format.
To get the row indices in _e.g._ `mat_a_heatmap_body_1_2` (in the first row), user should use one
of the following code (assume the `DataFrame` object is called `df`):
```{r, eval = FALSE}
df[1, "row_index"][[1]]
unlist(df[1, "row_index"])
df$row_index[[1]]
```
The rectangle and the points that mark the area can be turned off by setting
`mark` argument to `FALSE`.
<p><img width='100%' style='border:1px solid grey;padding: 4px;' src='https://user-images.githubusercontent.com/449218/82155001-23a60d00-9872-11ea-8e28-4c956e40a5e9.gif' /></p>
## On other devices
It is also possible to use on other non-interactive graphics devices, such as
`pdf()` or `png()`. Now you cannot select the positions interactively, but
instead you should specify `pos` argument in `selectPosition()` and
`pos1`/`pos2` in `selectArea()`. The values for `pos`, `pos1` and `pos2`
all should be a `unit` object of length two which correspond to the x and y
coordinate of the positions.
```{r, fig.width = 6, fig.height = 4}
# pdf(...) or png(...) or other graphics devices
ht_list = draw(ht_list)
pos = selectPosition(ht_list, pos = unit(c(3, 3), "cm"))
pos
# remember to dev.off()
```
```{r, fig.width = 6, fig.height = 4}
# pdf(...) or png(...) or other graphics devices
ht_list = draw(ht_list)
pos = selectArea(ht_list, pos1 = unit(c(3, 3), "cm"), pos2 = unit(c(5, 5), "cm"))
pos
# remember to dev.off()
```
Normally, users do not need to use it directly, however, it is very useful
when developing a Shiny app where the plot is actually under a non-interactive
graphics device. I will explain in the next section.
## Shiny app
With the three functions `ht_pos_on_device()`, `selectPosition()` and `selectArea()`,
it is possible to implement Shiny apps for interactively working with heatmaps.
**ComplexHeatmap now has a `ht_shiny()` function which directly exports a heatmap
(or a heatmap list) into a Shiny app.**
To use `ht_shiny()`, the `Heatmap`/`HeatmapList` object is not necessary to be
updated with `draw()`, however, updating by `draw()` will speed up the loading
of the Shiny app because `draw()` applies clustering saves it into the heatmap object.
To export the `ht_list` that is already generated into a Shiny app, simply
execute `ht_shiny()` as following. Please visit
https://jokergoo.shinyapps.io/interactive_complexheatmap/ for a live demo.
```{r, eval = FALSE}
ht_shiny(ht_list)
```
The following code demostrates two vertically concatenated heatmaps. Check
https://jokergoo.shinyapps.io/interactive_complexheatmap_vertical/ for a live demo.
```{r, eval = FALSE}
ht_list = Heatmap(mat1, name = "mat_a", row_km = 2, column_km = 2) %v%
Heatmap(mat2, name = "mat_b")
ht_shiny(ht_list)
```
`densityHeatmap()` returns a `Heatmap` object, thus it can also be exported into a Shiny app.
Check https://jokergoo.shinyapps.io/interactive_densityheatmap/ for a live demo.
```{r, eval = FALSE}
ht = densityHeatmap(mat1)
ht_shiny(ht)
```
[**EnrichedHeatmap**](https://www.bioconductor.org/packages/release/bioc/html/EnrichedHeatmap.html) also outputs `Heatmap` objects, thus, an "enriched heatmap" can be exported
into a Shiny app as well. Check https://jokergoo.shinyapps.io/interactive_enrichedheatmap/ for a live demo.
```{r, eval = FALSE}
library(EnrichedHeatmap)
load(system.file("extdata", "chr21_test_data.RData", package = "EnrichedHeatmap"))
mat_meth = normalizeToMatrix(meth, cgi, value_column = "meth",
mean_mode = "absolute", extend = 5000, w = 50, smooth = TRUE)
ht = EnrichedHeatmap(mat_meth, name = "methylation",
column_title = "methylation near CGI")
ht_shiny(ht)
```
Since **ComplexHeatmap** can [seamlessly integrate **pheatmap**](http://127.0.0.1:6058/2020/05/06/translate-from-pheatmap-to-complexheatmap/), this means your pheatmap can be interactive!
```{r, eval = FALSE}
ht = pheatmap(mat1)
ht_shiny(ht)
```
Following screenshot demonstrates the Shiny app on rather complex heatmaps. The data is from [here](http://jokergoo.github.io/supplementary/ComplexHeatmap-supplementary1-4/supplS2_scRNASeq/supplS2_scRNAseq.html) with slightly changing
the original code for making heatmaps.
In this Shiny app, users can click on the orignal heatmap or select an area
from it. The information of the area selected by users can be found in the
text below the heatmaps. If an area is selected, the row and column indices
for all selected heatmaps can be obtained from a automatically generated
sourcable code, which can also be found below the heatmap. Both heatmaps can
be resized by dragging from the bottom right.
<p><img width='100%' style='border:1px solid grey;padding: 4px;' src='https://user-images.githubusercontent.com/449218/82199376-e5eec600-98fd-11ea-9fca-ad95d405dc20.gif' /></p>
Please note, if the heatmap is too huge or you resize the heatmap too
frequently, the heatmap might not be correctly updated. You can just slightly
resize the heatmap again and wait for several seconds (you might have already observed
from the previous screenshot that the right heatmap was not properly drawn when I first
resized it).
The sub-heatmap visualized on the right side in the Shiny app will not contain
anything drawn from `cell_fun`/`layer_fun` or `decorate_*()` functions, which
means you cannot export an
[oncoPrint](https://jokergoo.github.io/ComplexHeatmap-reference/book/oncoprint.html)
or a [UpSet plot](https://jokergoo.github.io/ComplexHeatmap-reference/book/upset-plot.html) into a Shiny app.
## Implement a Shiny app from scratch
Next I will demonstrate how to build a Shiny app from scratch with
`ht_pos_on_device()`, `selectPosition()` and `selectArea()`. First I provide
a runnable example, and later I explain it step by step. In this example, I
only use a single heatmap for simplicity.
```{r, eval = FALSE}
# you can copy the following code and paste into your R session, the app runs.
library(shiny)
library(glue)
library(ComplexHeatmap)
set.seed(123)
mat = matrix(rnorm(100), 10)
rownames(mat) = colnames(mat) = paste0("a", 1:10)
ht = Heatmap(mat, name = "mat")
ui = fluidPage(
fluidRow(
column(width = 3,
plotOutput("main_heatmap", height = 300, width = 300,
brush = "ht_brush", click = "ht_click")
),
column(width = 3,
plotOutput("sub_heatmap", height = 300, width = 300)
)
),
verbatimTextOutput("ht_click_content")
)
shiny_env = new.env()
server = function(input, output) {
output$main_heatmap = renderPlot({
shiny_env$ht = draw(ht)
shiny_env$ht_pos = ht_pos_on_device(shiny_env$ht)
})
output$sub_heatmap = renderPlot({
if(is.null(input$ht_brush)) {
grid.newpage()
grid.text("No region is selected.", 0.5, 0.5)
} else {
lt = ComplexHeatmap:::get_pos_from_brush(input$ht_brush)
pos1 = lt[[1]]
pos2 = lt[[2]]
ht = shiny_env$ht
pos = selectArea(ht, mark = FALSE, pos1 = pos1, pos2 = pos2,
verbose = FALSE, ht_pos = shiny_env$ht_pos)
row_index = unlist(pos[1, "row_index"])
column_index = unlist(pos[1, "column_index"])
m = ht@ht_list[[1]]@matrix
ht_select = Heatmap(m[row_index, column_index, drop = FALSE],
col = ht@ht_list[[1]]@matrix_color_mapping@col_fun,
show_heatmap_legend = FALSE,
cluster_rows = FALSE, cluster_columns = FALSE)
draw(ht_select)
}
})
output$ht_click_content = renderText({
if(is.null(input$ht_click)) {
"Not selected."
} else {
pos1 = ComplexHeatmap:::get_pos_from_click(input$ht_click)
ht = shiny_env$ht
pos = selectPosition(ht, mark = FALSE, pos = pos1,
verbose = FALSE, ht_pos = shiny_env$ht_pos)
row_index = pos[1, "row_index"]
column_index = pos[1, "column_index"]
m = ht@ht_list[[1]]@matrix
v = m[row_index, column_index]
glue("row index: {row_index}",
"column index: {column_index}",
"value: {v}", .sep = "\n")
}
})
}
shinyApp(ui, server)
```
The UI of the app is simple. The left is the original heatmap which allows
clicking and brushing, and the right is the heatmap for the sub-matrix
selected. Below the heatmap is a text area which provides information for the
selected area.
```{r, eval = FALSE}
ui = fluidPage(
fluidRow(
column(width = 3,
plotOutput("main_heatmap", height = 300, width = 300,
brush = "ht_brush", click = "ht_click")
),
column(width = 3,
plotOutput("sub_heatmap", height = 300, width = 300)
)
),
verbatimTextOutput("ht_click_content")
)
```
Here we have an environment to put global variables in, that can be shared
between different Shiny components.
```{r, eval = FALSE}
shiny_env = new.env()
```
Once the app is lanched, the heatmap is drawn. Here if `ht` has not been
previously updated by `draw()`, the `draw()` inside `renderPlot()` will also
perform clustering, or else it only redraws the heatmap.
Once the heatmap is drawn, the heatmap will not change, thus, we save the
heatmap object (returned by `draw()` where clustering is done and layout is
initialized) as well as the positions of heatmap in the image (`ht_opt`) as
global variables.
```{r, eval = FALSE}
output$main_heatmap = renderPlot({
shiny_env$ht = draw(ht)
shiny_env$ht_pos = ht_pos_on_device(shiny_env$ht)
})
```
The next following code defines the action when user selects an area from the
original heatmap. The variable `input$ht_brush` contains the position of the
selected area in the heatmap image. Here the `ComplexHeatmap:::get_pos_from_brush()`
is a simple function which retrieves the positions and saves them as
`grid::unit` objects.
In the code, `lt[[1]]` and `lt[[2]]` contain coordinates of the two
diagonal points that user selected. The two coordinates are sent to
`selectArea()` where `ht_pos` is also specified so that the heatmap positions
are not repeatedly calculated. Finally the row and column indicies can be
retrieved and the sub-heatmap is made.
```{r, eval = FALSE}
output$sub_heatmap = renderPlot({
if(is.null(input$ht_brush)) {
grid.newpage()
grid.text("No region is selected.", 0.5, 0.5)
} else {
lt = ComplexHeatmap:::get_pos_from_brush(input$ht_brush)
pos1 = lt[[1]]
pos2 = lt[[2]]
ht = shiny_env$ht
pos = selectArea(ht, mark = FALSE, pos1 = pos1, pos2 = pos2,
verbose = FALSE, ht_pos = shiny_env$ht_pos)
row_index = unlist(pos[1, "row_index"])
column_index = unlist(pos[1, "column_index"])
m = ht@ht_list[[1]]@matrix
ht_select = Heatmap(m[row_index, column_index, drop = FALSE],
col = ht@ht_list[[1]]@matrix_color_mapping@col_fun,
show_heatmap_legend = FALSE,
cluster_rows = FALSE, cluster_columns = FALSE)
draw(ht_select)
}
})
```
The following code defines the action when user click a position on the
original heatmap. Similar as `ComplexHeatmap:::get_pos_from_brush()`,
`ComplexHeatmap:::get_pos_from_click()` returns the clicked position in the
image.
Similarly, the position is sent to `selectPosition()`, and the row and column
index that correspond to the clicked position can be retrieved.
```{r, eval = FALSE}
output$ht_click_content = renderText({
if(is.null(input$ht_click)) {
"Not selected."
} else {
pos1 = ComplexHeatmap:::get_pos_from_click(input$ht_click)
ht = shiny_env$ht
pos = selectPosition(ht, mark = FALSE, pos = pos1,
verbose = FALSE, ht_pos = shiny_env$ht_pos)
row_index = pos[1, "row_index"]
column_index = pos[1, "column_index"]
m = ht@ht_list[[1]]@matrix
v = m[row_index, column_index]
glue("row index: {row_index}",
"column index: {column_index}",
"value: {v}", .sep = "\n")
}
})
```
|