1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
% -*- mode: noweb; noweb-default-code-mode: R-mode; -*-
% building this document: (in R) Sweave ("ctc.Rnw")
\documentclass[a4paper]{article}
\title{Ctc Package}
\author{Antoine Lucas}
\SweaveOpts{echo=FALSE}
%\usepackage{a4wide}
%\VignetteIndexEntry{Introduction to ctc}
%\VignettePackage{ctc}
\usepackage{url}
\begin{document}
\maketitle
\tableofcontents
\section{Overview}
{\tt Ctc} package provides several functions for
conversion. Specially to export and import data from
Xcluster\footnote{\url{http://genome-www.stanford.edu/~sherlock/cluster.html}}
or Cluster\footnote{http://rana.lbl.gov/EisenSoftware.htm}
software (very used for Gene's expression
analysis), and to export clusters to TreeView or Freeview visualization
software.
\section{Aim}
\begin{itemize}
\item To explore clusters made by Xcluster and Cluster .
\item To cluster data with Xcluster (it requires very low memory usage)
and analyze the results with R. Warning: results are not exactly the same
as hclust results with R.
\end{itemize}
\section{Usage}
Standard way of building a hierarchical clustering with R
is with this command:
%<<echo=TRUE,fig=TRUE>>=
<<echo=TRUE>>=
data(USArrests)
h = hclust(dist(USArrests))
plot(h)
@
Or for the ``heatmap'':
<<echo=TRUE,fig=TRUE>>=
heatmap(as.matrix(USArrests))
@
\subsection{Building hierarchical clustering with another software}
We made these tools
\begin{description}
\item[r2xcluster] Write data table to Xcluster file format
<<echo=TRUE>>=
library(ctc)
r2xcluster(USArrests,file='USArrests_xcluster.txt')
@
\item[r2cluster] Write data table to Cluster file format
<<echo=TRUE>>=
r2cluster(USArrests,file='USArrests_xcluster.txt')
@
\item[xcluster] Hierarchical clustering (need Xcluster tool by Gavin Sherlock)
\begin{verbatim}
> h.xcl=xcluster(USArrests)
> plot(h.xcl)
\end{verbatim}
It is roughtly the same as
\begin{verbatim}
> r2xcluster(USArrests,file='USArrests_xcluster.txt')
> system('Xcluster -f USArrests_xcluster.txt -e 0 -p 0 -s 0 -l 0')
> h.xcl=xcluster2r('USArrests_xcluster.gtr',labels=TRUE)
\end{verbatim}
\item[xcluster2r] Importing Xcluster/Cluster output
\end{description}
\subsection{Using other visualization softwares}
We now consider that we have an object of the type produced by 'hclust'
(or a hierarchical cluster imported with previous functions) like:
<<echo=TRUE>>=
hr = hclust(dist(USArrests))
hc = hclust(dist(t(USArrests)))
@
\begin{description}
\item[hc2Newick] Export hclust objects to Newick format files
<<echo=TRUE>>=
write(hc2Newick(hr),file='hclust.newick')
@
\item[r2gtr,r2atr,r2cdt] Export hclust objects to Freeview or Treeview
visualization softwares
<<echo=TRUE>>=
r2atr(hc,file="cluster.atr")
r2gtr(hr,file="cluster.gtr")
r2cdt(hr,hc,USArrests ,file="cluster.cdt")
@
\item[hclust2treeview] Clustering and Export hclust objects to Freeview or Treeview
visualization softwares
<<echo=TRUE>>=
hclust2treeview(USArrests,file="cluster.cdt")
@
\end{description}
\section{See Also}
Theses examples can be tested with command
{\tt demo(ctc)}.\\
\noindent
All functions has got man pages, try
{\tt help.start()}.\\
\noindent
Ctc aims to interact with other softwares, some of them:
\begin{description}
\item[xcluster]
made by Gavin Scherlock, http://genome-www.stanford.edu/\~\/sherlock/cluster.html
\item[Cluster, Treeview]
made by Michael Eisen, http://rana.lbl.gov/EisenSoftware.htm
\item[Freeview]
made by Marco Kavcic and Blaz Zupan,
http://magix.fri.uni-lj.si/freeview
\end{description}
\noindent
If you want to cite amap or ctc in a publication, use~:
Antoine Lucas and Sylvain Jasson, \emph{Using amap and ctc Packages
for Huge Clustering}, R News, 2006, vol 6, issue 5 pages 58-60.
\end{document}
|