File: errorModels.R

package info (click to toggle)
r-bioc-dada2 1.34.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 3,016 kB
  • sloc: cpp: 3,096; makefile: 5
file content (516 lines) | stat: -rw-r--r-- 23,165 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#' Use a loess fit to estimate error rates from transition counts.
#' 
#' This function accepts a matrix of observed transitions, with each transition
#' corresponding to a row (eg. row 2 = A->C) and each column to a quality score
#' (eg. col 31 = Q30). It returns a matrix of estimated error
#' rates of the same shape. Error rates are estimates by a \code{\link{loess}} fit
#' of the observed rates of each transition as a function of the quality score.
#' Self-transitions (i.e. A->A) are taken to be the left-over probability.
#' 
#' @param trans (Required). A matrix of the observed transition counts. Must be 16 rows,
#' with the rows named "A2A", "A2C", ...
#' 
#' @return A numeric matrix with 16 rows and the same number of columns as trans.
#'  The estimated error rates for each transition (row, eg. "A2C") and quality score
#'  (column, eg. 31), as determined by \code{\link{loess}} smoothing over the quality
#'  scores within each transition category.
#' 
#' @importFrom stats loess
#' @importFrom stats predict
#' 
#' @export
#' 
#' @examples
#' derep1 <- derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
#' dada1 <- dada(derep1, err=tperr1)
#' err.new <- loessErrfun(dada1$trans)
#' 
loessErrfun <- function(trans) {
  qq <- as.numeric(colnames(trans))
  est <- matrix(0, nrow=0, ncol=length(qq))
  for(nti in c("A","C","G","T")) {
    for(ntj in c("A","C","G","T")) {
      if(nti != ntj) {
        errs <- trans[paste0(nti,"2",ntj),]
        tot <- colSums(trans[paste0(nti,"2",c("A","C","G","T")),])
        rlogp <- log10((errs+1)/tot)  # 1 psuedocount for each err, but if tot=0 will give NA
        rlogp[is.infinite(rlogp)] <- NA
        df <- data.frame(q=qq, errs=errs, tot=tot, rlogp=rlogp)
        ###! mod.lo <- loess(rlogp ~ q, df, weights=errs) ###!
        mod.lo <- loess(rlogp ~ q, df, weights=tot) ###!
        #        mod.lo <- loess(rlogp ~ q, df)
        pred <- predict(mod.lo, qq)
        maxrli <- max(which(!is.na(pred)))
        minrli <- min(which(!is.na(pred)))
        pred[seq_along(pred)>maxrli] <- pred[[maxrli]]
        pred[seq_along(pred)<minrli] <- pred[[minrli]]
        est <- rbind(est, 10^pred)
      } # if(nti != ntj)
    } # for(ntj in c("A","C","G","T"))
  } # for(nti in c("A","C","G","T"))
  
  # HACKY
  MAX_ERROR_RATE <- 0.25
  MIN_ERROR_RATE <- 1e-7
  est[est>MAX_ERROR_RATE] <- MAX_ERROR_RATE
  est[est<MIN_ERROR_RATE] <- MIN_ERROR_RATE
  
  # Expand the err matrix with the self-transition probs
  err <- rbind(1-colSums(est[1:3,]), est[1:3,],
               est[4,], 1-colSums(est[4:6,]), est[5:6,],
               est[7:8,], 1-colSums(est[7:9,]), est[9,],
               est[10:12,], 1-colSums(est[10:12,]))
  rownames(err) <- paste0(rep(c("A","C","G","T"), each=4), "2", c("A","C","G","T"))
  colnames(err) <- colnames(trans)
  # Return
  return(err)
}

#' Estimate error rates from transition counts in PacBio CCS data.
#' 
#' This function accepts a matrix of observed transitions from PacBio CCS amplicon
#' sequencing data, with each transition
#' corresponding to a row (eg. row 2 = A->C) and each column to a quality score
#' (eg. col 31 = Q30). It returns a matrix of estimated error
#' rates of the same shape. Error rates are estimates by \code{\link{loessErrfun}}
#' for quality scores 0-92, and individually by the maximum likelihood estimate
#' for the maximum quality score of 93.
#' 
#' @param trans (Required). A matrix of the observed transition counts. Must be 16 rows,
#' with the rows named "A2A", "A2C", ...
#' 
#' @return A numeric matrix with 16 rows and the same number of columns as trans.
#'  The estimated error rates for each transition (row, eg. "A2C") and quality score
#'  (column, eg. 31), as determined by \code{\link{loess}} smoothing over the quality
#'  scores within each transition category.
#' 
#' @export
#' 
#' @examples
#' derep.PB <- derepFastq(system.file("extdata", "samPB.fastq.gz", package="dada2"))
#' dada.PB <- dada(derep.PB, errorEstimationFunction=PacBioErrfun, BAND_SIZE=32, selfConsist=TRUE)
#' err.PB <- PacBioErrfun(dada.PB$trans)
#' 
PacBioErrfun <- function(trans) {
  if("93" %in% colnames(trans)) {
    i.93 <- which(colnames(trans) %in% "93")
    if(i.93 != ncol(trans)) stop("Max qual score of 93 not the last column as expected.")
    err <- loessErrfun(trans[,1:(i.93-1)])
    tot93 <- rep(c(sum(trans[1:4,"93"]), sum(trans[5:8,"93"]), sum(trans[9:12,"93"]), sum(trans[13:16,"93"])), each=4)
    err93 <- (trans[,"93"] + 1)/(tot93 + 4)
    err <- cbind(err, "93"=err93)
  } else {
    message("The max qual score of 93 was not detected. Using standard error fitting.")
    err <- loessErrfun(trans)
  }
  return(err)
}

#' Estimate error rates for each type of transition while ignoring quality scores.
#' 
#' This function accepts a matrix of observed transitions, groups together all observed
#' transitions regardless of quality scores, and estimates the error rate for that transition
#' as the observed fraction of those transitions. This can be used in place of the default
#' \code{\link{loessErrfun}} when calling \code{\link{learnErrors}} or \code{link{dada}}
#' with the effect that quality scores will be effectively ignored.
#' 
#' @param trans (Required). A matrix of the observed transition counts. Must be 16 rows,
#' with the rows named "A2A", "A2C", ...
#' 
#' @param pseudocount (Optional). Default 1. 
#'  Added to each type of transition.
#' 
#' @return A numeric matrix with 16 rows and the same number of columns as trans.
#'  The estimated error rates for each transition (row, eg. "A2C") are identical across
#'  all columns (which correspond to quality scores).
#' 
#' @export
#' 
#' @examples
#' fl1 <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
#' err.noqual <- learnErrors(fl1, errorEstimationFunction=noqualErrfun)
#' 
noqualErrfun <- function(trans, pseudocount=1) {
  # Init matrix to record the estimated transition probabilities
  est <- matrix(0, nrow=0, ncol=ncol(trans))
  obs <- rowSums(trans) + pseudocount
  for(nti in c("A","C","G","T")) {
    for(ntj in c("A","C","G","T")) {
      if(nti != ntj) {
        row.name <- paste0(nti,"2",ntj)
        # Estimate transition rate by aggregating across all quality scores
        #        tot.trans <- sum(trans[row.name,])
        #        tot.init.nt <- sum(trans[paste0(nti,"2",c("A","C","G","T")),])
        tot.trans <- obs[row.name]
        tot.init.nt <- sum(obs[paste0(nti,"2",c("A","C","G","T"))])
        est <- rbind(est, rep(tot.trans/tot.init.nt, ncol(trans)))
      } # if(nti != ntj)
    } # for(ntj in c("A","C","G","T"))
  } # for(nti in c("A","C","G","T"))
  
  # Expand the err matrix with the self-transition probs
  err <- rbind(1-colSums(est[1:3,]), est[1:3,],
               est[4,], 1-colSums(est[4:6,]), est[5:6,],
               est[7:8,], 1-colSums(est[7:9,]), est[9,],
               est[10:12,], 1-colSums(est[10:12,]))
  rownames(err) <- paste0(rep(c("A","C","G","T"), each=4), "2", c("A","C","G","T"))
  colnames(err) <- colnames(trans)
  # Return
  return(err)
}

#' Learns the error rates from an input list, or vector, of file names or a list of \code{\link{derep-class}} objects.
#' 
#' Error rates are learned by alternating between sample inference and error rate estimation 
#'  until convergence. Sample inferences is performed by the \code{\link{dada}} function.
#'  Error rate estimation is performed by \code{errorEstimationFunction}.
#'  The output of this function serves as input to the dada function call as the \code{err} parameter.
#'   
#' @param fls (Required). \code{character}.
#'  The file path(s) to the fastq file(s), or a directory containing fastq file(s).
#'  Compressed file formats such as .fastq.gz and .fastq.bz2 are supported.
#'  A list of \code{\link{derep-class}} ojects can also be provided.
#'  
#' @param nbases (Optional). Default 1e8.
#'  The minimum number of total bases to use for error rate learning. Samples are read into memory
#'  until at least this number of total bases has been reached, or all provided samples have been
#'  read in.
#'    
#' @param nreads (Optional). Default NULL. DEPRECATED.
#'  Please update your code to use the nbases parameter.
#'  
#' @param errorEstimationFunction (Optional). Function. Default \code{\link{loessErrfun}}.
#' 
#'  \code{errorEstimationFunction} is computed on the matrix of observed transitions
#'  after each sample inference step in order to generate the new matrix of estimated error rates.
#'    
#' @param multithread (Optional). Default is FALSE.
#'  If TRUE, multithreading is enabled and the number of available threads is automatically determined.   
#'  If an integer is provided, the number of threads to use is set by passing the argument on to
#'  \code{\link{setThreadOptions}}.
#'   
#' @param randomize (Optional). Default FALSE.
#'  If FALSE, samples are read in the provided order until enough reads are obtained.
#'  If TRUE, samples are picked at random from those provided.
#'  
#' @param MAX_CONSIST (Optional). Default 10.
#'  The maximum number of times to step through the self-consistency loop. If convergence was not
#'  reached in MAX_CONSIST steps, the estimated error rates in the last step are returned.
#'  
#' @param OMEGA_C (Optional). Default 0.
#' The threshold at which unique sequences inferred to contain errors are corrected in the final output,
#'  and used to estimate the error rates (see more at \code{\link{setDadaOpt}}). For reasons of convergence,
#'  and because it is more conservative, it is recommended to set this value to 0, which means that all
#'  reads are counted and contribute to estimating the error rates. 
#'  
#' @param qualityType (Optional). \code{character(1)}.
#'  The quality encoding of the fastq file(s). "Auto" (the default) means to
#'  attempt to auto-detect the encoding. This may fail for PacBio files with
#'  uniformly high quality scores, in which case use "FastqQuality". This
#'  parameter is passed on to \code{\link[ShortRead]{readFastq}}; see
#'  information there for details.
#'  
#' @param verbose (Optional). Default TRUE 
#'  Print verbose text output. More fine-grained control is available by providing an integer argument.
#' \itemize{ 
#'  \item{0: Silence. No text output (same as FALSE).}
#'  \item{1: Basic text output (same as TRUE). }
#'  \item{2: Detailed text output, mostly intended for debugging. }
#' }
#'  
#' @param ... (Optional). Additional arguments will be passed on to the \code{\link{dada}} function.
#'  
#' @return A named list with three entries:
#'  $err_out: A numeric matrix with the learned error rates.
#'  $err_in: The initialization error rates (unimportant).
#'  $trans: A feature table of observed transitions for each type (eg. A->C) and quality score.
#'  
#' @importFrom methods is
#' 
#' @export
#' 
#' @seealso 
#'  \code{\link{derepFastq}}, \code{\link{plotErrors}}, \code{\link{loessErrfun}}, \code{\link{dada}}
#'
#' @examples
#'  fl1 <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
#'  fl2 <- system.file("extdata", "sam2F.fastq.gz", package="dada2")
#'  err <- learnErrors(c(fl1, fl2))
#'  err <- learnErrors(c(fl1, fl2), nbases=5000000, randomize=TRUE)
#'  # Using a list of derep-class objects
#'  dereps <- derepFastq(c(fl1, fl2))
#'  err <- learnErrors(dereps, multithread=TRUE, randomize=TRUE, MAX_CONSIST=20)
#' 
learnErrors <- function(fls, nbases=1e8, nreads=NULL, errorEstimationFunction = loessErrfun, multithread=FALSE, 
                        randomize=FALSE, MAX_CONSIST=10, OMEGA_C=0, qualityType = "Auto", verbose=FALSE, ...) {
  if(!is.null(nreads)) {
    warning("The nreads parameter is DEPRECATED. Please update your code with the nbases parameter.")
  }
  NBASES <- 0
  NREADS <- 0
  if(is(fls, "derep")) { fls <- list(fls) } # A single derep-class object
  if(is.character(fls) && length(fls) == 1 && dir.exists(fls)) { fls <- parseFastqDirectory(fls) }
  drps <- vector("list", length(fls))
  if(randomize) { fls <- sample(fls) }
  for(i in seq_along(fls)) {
    if (is.list.of(fls, "derep")){
        drps[[i]] <- fls[[i]]
    } else {
        drps[[i]] <- derepFastq(fls[[i]], qualityType = qualityType)
    }
    NREADS <- NREADS + sum(drps[[i]]$uniques)
    NBASES <- NBASES + sum(drps[[i]]$uniques * nchar(names(drps[[i]]$uniques)))
    if(is.null(nreads) && NBASES > nbases) { break }
    if(!is.null(nreads) && NREADS > nreads) { break }
  }
  drps <- drps[1:i]
  if(is.logical(verbose) || verbose > 0) {
    cat(NBASES, "total bases in", NREADS, "reads from", i, "samples will be used for learning the error rates.\n")
  }
  # Run dada in self-consist mode on those samples
  dds <- dada(drps, err=NULL, errorEstimationFunction=errorEstimationFunction, selfConsist=TRUE, 
              multithread=multithread, verbose=verbose, MAX_CONSIST=MAX_CONSIST, OMEGA_C=OMEGA_C, ...)
  return(getErrors(dds, detailed=TRUE))
}

#' Extract already computed error rates.
#' 
#' @param obj (Required). An R object with error rates.
#'  Supported objects: dada-class; list of dada-class; numeric matrix; named list with $err_out, $err_in, $trans.
#' 
#' @param detailed (Optional). Default FALSE.
#'  If FALSE, an error rate matrix corresponding to $err_out is returned.
#'  If TRUE, a named list with $err_out, $err_in and $trans. $err_in and $trans can be NULL.
#'  
#' @param enforce (Optional). Default TRUE.
#'  If TRUE, will check validity of $err_out and error if invalid or NULL.
#'  
#' @return A numeric matrix of error rates.
#'  Or, if detailed=TRUE, a named list with $err_out, $err_in and $trans.
#'  
#' @importFrom methods is
#' 
#' @export
#' 
#' @examples
#'  fl1 <- system.file("extdata", "sam1F.fastq.gz", package="dada2")
#'  drp <- derepFastq(fl1)
#'  dd <- dada(drp, err=NULL, selfConsist=TRUE)
#'  err <- getErrors(dd)
#' 
getErrors <- function(obj, detailed=FALSE, enforce=TRUE) {
  rval <- list(err_out=NULL, err_in=NULL, trans=NULL)
  if(is(obj, "matrix") && is.numeric(obj)) {
    rval$err_out <- obj
  } else if(is(obj, "dada")) {
    if(!is.null(obj$err_out)) rval$err_out <- obj$err_out
    rval$err_in <- obj$err_in
    rval$trans <- obj$trans
  } else if(is.list.of(obj, "dada")) {
    if(!all(sapply(obj, function(x) identical(x$err_out, obj[[1]]$err_out)))) {
      stop("If list of dada-class objects provided, all must have the same output error rates.")
    }
    if(!is.null(obj[[1]]$err_out)) rval$err_out <- obj[[1]]$err_out
    rval$err_in <- obj[[1]]$err_in
    rval$trans <- accumulateTrans(lapply(obj, function(x) x$trans))
  } else if(is.list(obj) && "err_out" %in% names(obj) && "err_in" %in% names(obj) && "trans" %in% names(obj)) {
    rval <- obj
  }
  
  if(enforce) {
    if(is.null(rval$err_out)) stop("Error matrix is NULL.")
    if(!is.numeric(rval$err_out)) stop("Error matrix must be numeric.")
    if(!(nrow(rval$err_out)==16)) stop("Error matrix must have 16 rows (A2A, A2C, ...).")
    if(!all(rval$err_out>=0)) stop("All error matrix entries must be >= 0.")
    if(!all(rval$err_out<=1)) stop("All error matrix entries must be <=1.")
    if(any(rval$err_out==0)) warning("Zero in error matrix.")
  }
  
  if(detailed) {
    return(rval)
  } else {
    return(rval$err_out)
  }
}

#' Inflates an error rate matrix by a specified factor, while accounting for saturation.
#' 
#' Error rates are "inflated" by the specified factor, while appropriately saturating so that rates
#' cannot exceed 1. The formula is:
#'   new_err_rate <- err_rate * inflate / (1 + (inflate-1) * err_rate)
#'   
#' @param err (Required). A numeric matrix of transition rates (16 rows, named "A2A", "A2C", ...).
#' 
#' @param inflation (Required). The fold-factor by which to inflate the transition rates.
#' 
#' @param inflateSelfTransitions (Optional). Default FALSE.
#'  If True, self-transitions (eg. A->A) are also inflated.
#'  
#' @return An error rate matrix of the same dimensions as the input error rate matrix.
#'  
#' @export
#' 
#' @examples
#'  tperr2 <- inflateErr(tperr1, 2)
#'  tperr3.all <- inflateErr(tperr1, 3, inflateSelfTransitions=TRUE)
#' 
inflateErr <- function(err, inflation, inflateSelfTransitions = FALSE) {
  err <- getErrors(err)
  t_errs <- c("A2C", "A2G", "A2T", "C2A", "C2G", "C2T", "G2A", "G2C", "G2T", "T2A", "T2C", "T2G")
  err[t_errs,] <- (err[t_errs,] * inflation)/(1 + (inflation-1) * err[t_errs,])
  if(inflateSelfTransitions) { # Also inflate the non-substitution probabilities
    t_nonsubs <- c("A2A", "C2C", "G2G", "T2T")
    err[t_nonsubs,] <- (err[t_nonsubs,] * inflation)/(1 + (inflation-1) * err[t_nonsubs,])
  }
  return(err)
}

## Sum matrices of transition counts together, accounting for the possibility
## of variation in the number of columns present in each.
## 
## @param trans (Required). A list of matrices recording the counts of transitions in each sample.
## 
accumulateTrans <- function(trans) {
  maxcol <- max(sapply(trans, ncol))
  rval <- matrix(0L, nrow=16, ncol=maxcol)
  rownames(rval) <- c("A2A", "A2C", "A2G", "A2T", "C2A", "C2C", "C2G", "C2T", "G2A", "G2C", "G2G", "G2T", "T2A", "T2C", "T2G", "T2T")
  colnames(rval) <- seq(0, maxcol-1)  # One col for each integer starting at 0
  for(tt in trans) {
    rval[,1:ncol(tt)] <- rval[,1:ncol(tt)] + tt
  }
  rval
}
  
################################################################################
#  --------------------- REQUIRES FURTHER TESTING --------------------------
# Identify False Positive inferred sequences due to bad bases.
# 
# Illumina sequencing sometimes produces "bad bases", positions at which 
# error rates are significantly higher than expected by the assigned quality
# score. This function identifies the inferred sequences that are likely to
# have been driven by those bad bases.
# 
# @param clust (Required). The $clustering data frame from the dada() output.
#   May be subsetted from the original prior to using this function.
# 
# @param birth_subs (Required). The $birth_subs data frame from the dada() output.
# 
# @param minFraction (Optional). A \code{numeric(1)}. Default is 0.51.
#  The minimum fraction of bad bases among the base positions used to infer the
#  sequence required to call the inferred sequence a false positive.
#   
# @param omegaB (Optional). A \code{numeric(1)}. Default is 1e-10.
#  The p-value threshold below which a base is assigned as "bad".
#  The p-value is calculated by the number of repeated occurrences of a particular
#    base position individually driving the formation of a new cluster. Bad bases 
#    drive many new "1-away" clusters.
#  The null hypothesis being tested is that real differences are distributed
#    uniformly along the sequence. This is not true, biological differences are
#    non-uniform, so this pvalue threshold should be set conservatively.
# 
# @param minOccurence (Optional). A \code{numeric(1)}. Default is 4.
#  The minimum times a single base position must drive the formation of a new cluster
#    before it can be considered a "bad base".
#
# @param verbose (Optional). \code{logical(1)} indicating verbose text output. Default FALSE.
#
# @return Logical vector of length the number of inferred sequences. 
#  TRUE if inferred sequence a false positive.
#  FALSE otherwise.
#
# @seealso \code{\link{getBadBases}}
#
isBadBaseFP <- function(clust, birth_subs, minFraction = 0.51, omegaB = 1e-10, minOccurence = 4, verbose=FALSE) {
  bb <- getBadBases(clust, birth_subs, omegaB, minOccurence, verbose=verbose)
  fps <- tapply(birth_subs$pos, birth_subs$clust, function(x) mean(x %in% bb) >= minFraction)
  fps <- names(fps)[fps]
  rval <- rownames(clust) %in% fps
  if(verbose) {
    cat(sum(rval), "false positives caused by bad bases identified from", nrow(clust), "input sequences.\n")
  }
  rval
}

################################################################################
#  --------------------- REQUIRES FURTHER TESTING --------------------------
# Identify bad base positions.
# 
# Illumina sequencing sometimes produces "bad bases", positions at which 
# error rates are significantly higher than expected by the assigned quality
# score. This function identifies those bad bases.
# 
# @param clust (Required). The $clustering data frame from the dada() output.
#   May be subsetted from the original prior to using this function.
#   
# @param birth_subs (Required). The $birth_subs data frame from the dada() output.
# 
# @param omegaB (Optional). A \code{numeric(1)}. Default is 1e-10.
#  The p-value threshold below which a base is assigned as "bad".
#  The p-value is calculated by the number of repeated occurrences of a particular
#    base position individually driving the formation of a new cluster. Bad bases 
#    drive many new "1-away" clusters.
#  The null hypothesis being tested is that real differences are distributed
#    uniformly along the sequence. This is not true, biological differences are
#    non-uniform, so this pvalue threshold should be set conservatively.
# 
# @param minOccurence (Optional). A \code{numeric(1)}. Default is 4.
#  The minimum times a single base position must drive the formation of a new cluster
#    before it can be considered a "bad base".
#
# @param verbose (Optional). \code{logical(1)} indicating verbose text output. Defaults FALSE.
#
# @return Integer vector of the bad base positions. 
#
# @seealso \code{\link{isBadBaseFP}}
#
#' @importFrom stats ppois
#' @keywords internal
getBadBases <- function(clust, birth_subs, omegaB = 1e-20, minOccurence = 4, verbose=FALSE) {
  oos <- which(clust$birth_ham == 1)
  oopos <- birth_subs[birth_subs$clust %in% oos,]
  tab <- table(oopos$pos)
  if(length(unique(nchar(clust$sequence)))>1) stop("Requires same length sequences.")
  seqlen <- nchar(clust$sequence[[1]])
  posp <- ppois(tab, length(oos)/seqlen, lower.tail=FALSE) * seqlen
  bad_bases <- as.integer(names(posp)[posp<omegaB & tab>=minOccurence])
  if(verbose) {
    cat(length(bad_bases), "bad bases identified.\n")
  }
  return(bad_bases)
}

#' An empirical error matrix.
#'
#' A dataset containing the error matrix estimated by fitting a piecewise linear model to
#' the errors observed in the mock community featured in Schirmer 2015 (metaID 35).
#'
#' @format A numerical matrix with 16 rows and 41 columns.
#'  Rows correspond to the 16 transition (eg. A2A, A2C, ...)
#'  Columns correspond to consensus quality scores 0 to 40.
#'  
#' @name tperr1
NULL

#' An empirical error matrix.
#'
#' A dataset containing the error matrix estimated by DADA2 from the forward reads of the
#' Illumina Miseq 2x250 sequenced Balanced mock community (see manuscript).
#'
#' @format A numerical matrix with 16 rows and 41 columns.
#'  Rows correspond to the 16 transition (eg. A2A, A2C, ...)
#'  Columns correspond to consensus quality scores 0 to 40.
#'  
#' @name errBalancedF
NULL

#' An empirical error matrix.
#'
#' A dataset containing the error matrix estimated by DADA2 from the reverse reads of the
#' Illumina Miseq 2x250 sequenced Balanced mock community (see manuscript).
#'
#' @format A numerical matrix with 16 rows and 41 columns.
#'  Rows correspond to the 16 transition (eg. A2A, A2C, ...)
#'  Columns correspond to consensus quality scores 0 to 40.
#'  
#' @name errBalancedR
NULL