1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
################################################################################
#' Get the uniques-vector from the input object.
#'
#' This function extracts the \code{\link{uniques-vector}} from several different data objects,
#' including \code{\link{dada-class}} and \code{\link{derep-class}} objects, as well as
#' \code{data.frame} objects that have both $sequence and $abundance columns.
#' The return value is an integer vector named by sequence and valued by abundance. If the input is
#' already in \code{\link{uniques-vector}} format, that same vector will be returned.
#'
#' @param object (Required). The object from which to extract the \code{\link{uniques-vector}}.
#'
#' @param collapse (Optional). Default TRUE.
#' Should duplicate sequences detected in \code{object} be collapsed together, thereby
#' imposing uniqueness on non-unique input.
#'
#' @param silence (Optional). Default FALSE.
#' Suppress reporting of the detection and merger of duplicated input sequences.
#'
#' @return \code{integer}.
#' An integer vector named by unique sequence and valued by abundance.
#'
#' @importFrom methods is
#'
#' @export
#'
#' @examples
#' derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
#' dada1 <- dada(derep1, err=tperr1)
#' getUniques(derep1)[1:3]
#' getUniques(dada1)[1:3]
#' getUniques(dada1$clustering)[1:3]
#'
getUniques <- function(object, collapse=TRUE, silence=FALSE) {
if(is.character(object) && length(object)==1 && file.exists(object)) {
unqs <- derepFastq(object)$uniques
} else if(is.vector(object, "integer") && length(names(object)) != 0 && !any(is.na(names(object)))) { # Named integer vector already
unqs <- object
} else if(is(object, "dada")) { # dada return
unqs <- object$denoised
} else if(is(object, "derep")) {
unqs <- object$uniques
} else if(is.data.frame(object) && all(c("sequence", "abundance") %in% colnames(object))) {
unqs <- as.integer(object$abundance)
names(unqs) <- object$sequence
} else if(is.matrix(object) && is.numeric(object) && !any(is.na(colnames(object)))) { # Tabled sequences
unqs <- as.integer(colSums(object))
names(unqs) <- colnames(object)
}
else {
stop("Unrecognized format: Requires named integer vector, fastq filename, dada-class, derep-class, sequence matrix, or a data.frame with $sequence and $abundance columns.")
}
#### ENFORCE UNIQUENESS HERE!!!
if(any(duplicated(names(unqs)))) {
if(collapse) {
unqs <- tapply(unqs, names(unqs), sum)
if(!silence) message("Duplicate sequences detected and merged.")
} else if(!silence) {
message("Duplicate sequences detected.")
}
}
return(unqs)
}
################################################################################
#' Get vector of sequences from input object.
#'
#' This function extracts the sequences from several different data objects, including
#' including \code{\link{dada-class}} and \code{\link{derep-class}} objects, as well as
#' \code{data.frame} objects that have both $sequence and $abundance columns. This function
#' wraps the \code{\link{getUniques}} function, but return only the names (i.e. the sequences).
#' Can also be provided the file path to a fasta or fastq file, a taxonomy table, or a
#' DNAStringSet object. Sequences are coerced to upper-case characters.
#'
#' @param object (Required). The object from which to extract the sequences.
#'
#' @param collapse (Optional). Default FALSE.
#' Should duplicate sequences detected in \code{object} be collapsed together, thereby
#' imposing uniqueness on non-unique input.
#'
#' @param silence (Optional). Default TRUE.
#' Suppress reporting of the detection and merger of duplicated input sequences.
#'
#' @return \code{character}. A character vector of the sequences.
#'
#' @importFrom methods is
#' @importFrom methods as
#' @importFrom ShortRead readFasta
#' @importFrom ShortRead readFastq
#' @importFrom ShortRead sread
#' @importFrom ShortRead id
#'
#' @export
#'
#' @examples
#' derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
#' dada1 <- dada(derep1, err=tperr1)
#' getSequences(derep1)[1:5]
#' getSequences(dada1)[1:5]
#' getSequences(dada1$clustering)[1:5]
#'
getSequences <- function(object, collapse=FALSE, silence=TRUE) {
if(is(object, "character")) {
if(length(object)==1 && file.exists(object)) {
sr <- tryCatch(readFasta(object), error=function(err) { readFastq(object) })
seqs <- toupper(as.character(sread(sr)))
names(seqs) <- id(sr)
rval <- seqs
} else if(collapse) {
if(any(duplicated(object)) && !silence) message("Duplicate sequences detected and merged.")
rval <- unique(object)
} else {
rval <- object
}
} else if(is(object, "DNAStringSet")) {
rval <- as.character(object)
} else if(is.matrix(object) && is.character(object) && !any(is.na(rownames(object)))) { # Taxonomy table
seqs <- rownames(object)
if(any(duplicated(seqs))) {
if(collapse) seqs <- unique(seqs)
if(collapse && !silence) message("Duplicate sequences detected and merged.")
if(!collapse && !silence) message("Duplicate sequences detected.")
}
rval <- seqs
} else {
rval <- names(getUniques(object, collapse=collapse, silence=silence))
}
return(toupper(rval))
}
getAbund <- function(object) {
return(sum(getUniques(object)))
}
getNseq <- function(object) {
return(length(getUniques(object)))
}
################################################################################
#' Needleman-Wunsch alignment.
#'
#' This function performs a Needleman-Wunsch alignment between two sequences.
#'
#' @param s1 (Required). \code{character(1)}. The first sequence to align. A/C/G/T only.
#'
#' @param s2 (Required). \code{character(1)}. The second sequence to align. A/C/G/T only.
#'
#' @param match (Optional). \code{numeric(1)}. Default is getDadaOpt("MATCH").
#' The score of a match in the alignment.
#'
#' @param mismatch (Optional). \code{numeric(1)}. Default is getDadaOpt("MISMATCH").
#' The score of a mismatch in the alignment.
#'
#' @param gap (Optional). \code{numeric(1)}. Default is getDadaOpt("GAP_PENALTY").
#' The alignment gap penalty. Should be negative.
#'
#' @param homo_gap (Optional). \code{numeric(1)}. Default NULL (no special homopolymer penalty).
#' The alignment gap penalty within homopolymer regions. Should be negative.
#'
#' @param band (Optional). \code{numeric(1)}. Default -1 (no banding).
#' The Needleman-Wunsch alignment can be banded. This value specifies the radius of that band.
#' Set \code{band = -1} to turn off banding.
#'
#' @param endsfree (Optional). \code{logical(1)}. Default TRUE.
#' Allow unpenalized gaps at the ends of the alignment.
#'
#' @param vec (Optional). \code{logical(1)}. Default FALSE.
#' Use DADA2's vectorized aligner instead of standard DP matrix. Not intended for long sequences (>1kb).
#'
#' @return \code{character(2)}. The aligned sequences.
#'
#' @export
#'
#' @examples
#' sq1 <- "CTAATACATGCAAGTCGAGCGAGTCTGCCTTGAAGATCGGAGTGCTTGCACTCTGTGAAACAAGATA"
#' sq2 <- "TTAACACATGCAAGTCGAACGGAAAGGCCAGTGCTTGCACTGGTACTCGAGTGGCGAACGGGTGAGT"
#' nwalign(sq1, sq2)
#' nwalign(sq1, sq2, band=16)
#'
nwalign <- function(s1, s2, match=getDadaOpt("MATCH"), mismatch=getDadaOpt("MISMATCH"), gap=getDadaOpt("GAP_PENALTY"), homo_gap=NULL, band=-1, endsfree=TRUE, vec=FALSE) {
if(!is.character(s1) || !is.character(s2)) stop("Can only align character sequences.")
if(is.null(homo_gap)) { homo_gap <- gap }
if(vec) {
if(homo_gap != gap) stop("Homopolymer gap penalties are not implemented in the vectorized aligner.")
return(C_nwvec(s1, s2, match, mismatch, gap, band, endsfree))
} else {
if(!C_isACGT(s1) || !C_isACGT(s2)) {
stop("Sequences must contain only A/C/G/T characters.")
}
return(C_nwalign(s1, s2, match, mismatch, gap, homo_gap, band, endsfree))
}
}
################################################################################
#' Hamming distance after Needlman-Wunsch alignment.
#'
#' This function performs a Needleman-Wunsch alignment between two sequences, and then counts
#' the number of mismatches and indels in that alignment. End gaps are not included in this count.
#'
#' @param s1 (Required). \code{character(1)}. The first sequence to align. A/C/G/T only.
#'
#' @param s2 (Required). \code{character(1)}. The second sequence to align. A/C/G/T only.
#'
#' @param ... (Optional). Further arguments to pass on to \code{\link{nwalign}}.
#'
#' @return \code{integer(1)}. The total number of mismatches and gaps, excluding gaps at the beginning
#' and end of the alignment.
#'
#' @export
#'
#' @examples
#' sq1 <- "CTAATACATGCAAGTCGAGCGAGTCTGCCTTGAAGATCGGAGTGCTTGCACTCTGTGAAACAAGATA"
#' sq2 <- "TTAACACATGCAAGTCGAACGGAAAGGCCAGTGCTTGCACTGGTACTCGAGTGGCGAACGGGTGAGT"
#' nwhamming(sq1, sq2)
#' nwhamming(sq1, sq2, band=16)
#'
nwhamming <- Vectorize(function(s1, s2, ...) {
al <- nwalign(s1, s2, ...)
out <- C_eval_pair(al[1], al[2])
return(unname(out["mismatch"]+out["indel"]))
}, USE.NAMES=FALSE)
nweval <- Vectorize(function(s1, s2, ...) {
al <- nwalign(s1, s2, ...)
C_eval_pair(al[1], al[2])
}, USE.NAMES=FALSE)
nwextract <- function(query, ref, ...) {
al <- nwalign(query, ref, ...)
ntq <- gregexpr("[ACGT]", al[[1]])
rval <- substr(al[[2]], min(ntq[[1]]), max(ntq[[1]]))
rval <- gsub("-", "", rval)
rval
}
strdiff <- function(s1, s2) {
xx = unlist(strsplit(s1,""))
yy = unlist(strsplit(s2,""))
dd <- which(xx != yy)
data.frame(pos=dd,nt0=xx[dd],nt1=yy[dd])
}
################################################################################
#' Reverse complement DNA sequences.
#'
#' This function reverse complements DNA sequence(s) provided.
#' This function is nothing more than a concisely-named convenience wrapper for
#' \code{\link[Biostrings]{reverseComplement}} that handles the \code{character} vector
#' DNA sequences generated in the the dada2 package.
#'
#' @param sq (Required). \code{character}. The DNA sequence(s) to reverse-complement.
#' \code{\link[Biostrings]{DNAString}}, or \code{\link[Biostrings]{DNAStringSet}} formats
#' are also accepted.
#'
#' @return \code{character}. The reverse-complemented DNA sequence(s).
#'
#' @seealso
#' \code{\link[Biostrings]{reverseComplement}}
#'
#' @importFrom Biostrings DNAString
#' @importFrom Biostrings DNAStringSet
#' @importFrom Biostrings reverseComplement
#' @importFrom methods as
#'
#' @export
#'
#' @examples
#' R1492 <- "RGYTACCTTGTTACGACTT"
#' rc(R1492)
#' sqs <- getSequences(system.file("extdata", "example_seqs.fa", package="dada2"))
#' rc(sqs)
#'
rc <- function(sq) {
if(length(sq) < 1) {
return(character(0))
} else if(length(sq) == 1) {
as(reverseComplement(DNAString(sq)), "character")
} else {
as(reverseComplement(DNAStringSet(sq)), "character")
}
}
checkConvergence <- function(dadaO) {
sapply(dadaO$err_in, function(x) sum(abs(dadaO$err_out-x)))
}
pfasta <- function(seqs, ids=seq(length(seqs))) {
seqs <- getSequences(seqs, collapse=FALSE)
cat(paste(">", ids, "\n", seqs, sep="", collapse="\n"))
}
#' @importFrom methods is
#' @keywords internal
is.list.of <- function(x, ctype) {
if(!is.list(x)) return(FALSE)
else return(all(sapply(x, is, ctype)))
}
#' @importFrom utils write.table
#' @keywords internal
seqtab_to_qiime <- function(st, fout) {
st <- t(st) # QIIME has OTUs as rows
col.names <- colnames(st)
col.names[[1]] <- paste0("#OTU ID\t", col.names[[1]])
write.table(st, fout, sep="\t",
row.names=TRUE, col.names=col.names, quote=FALSE)
}
#' @importFrom utils write.table
#' @keywords internal
seqtab_to_mothur <- function(st, fout) {
# mothur has OTUs as columns, and a couple required columns
df.shared <- data.frame(label=rep("DADA2", nrow(st)), Group=rownames(st), numOtus=ncol(st))
df.shared <- cbind(df.shared, st)
write.table(df.shared, fout, row.names=FALSE, col.names=TRUE, quote=FALSE)
}
#' @importFrom utils write.table
#' @keywords internal
samdf_to_qiime2 <- function(df, fout) {
col.names <- colnames(df)
col.names[[1]] <- paste0("#SampleID\t", col.names[[1]])
write.table(df, fout, sep="\t",
row.names=TRUE, col.names=col.names, quote=FALSE)
}
#' @keywords internal
bs1ham <- function(dd, ham=1) {
is.1ham <- which(dd$clustering$birth_ham %in% ham)
dd$birth_subs[dd$birth_subs$clust %in% is.1ham,]
}
#' @keywords internal
getSRR <- Vectorize(function(run, outdir="sra", verbose=TRUE, ...) {
if(!grepl("^SRR[0-9]{6,}$", run)) stop("Requires SRA Run accessions in format: SRR1234567")
if(!dir.exists(outdir)) dir.create(outdir)
loc <- paste0("ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByRun/sra/SRR/",
substr(run, 1, 6), "/", run, "/")
loc <- paste0(loc, run, ".sra")
download.file(loc, file.path(outdir, paste0(run, ".sra")), ...)
if(verbose) cat(run, "\n")
})
|