1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
#' Over Representation Analysis (ORA)
#'
#' @description
#' Calculates regulatory activities using ORA.
#'
#' @details
#' ORA measures the overlap between the target feature set and a list of most
#' altered molecular features in mat. The most altered molecular features can
#' be selected from the top and or bottom of the molecular readout distribution,
#' by default it is the top 5% positive values. With these, a contingency table
#' is build and a one-tailed Fisher’s exact test is computed to determine if a
#' regulator’s set of features are over-represented in the selected features
#' from the data. The resulting score, `ora`, is the minus log10 of the
#' obtained p-value.
#'
#' @inheritParams .decoupler_mat_format
#' @inheritParams .decoupler_network_format
#' @param n_up Integer indicating the number of top targets to slice from mat.
#' @param n_bottom Integer indicating the number of bottom targets to slice from
#' mat.
#' @param n_background Integer indicating the background size of the sliced
#' targets. If not specified the number of background targets is determined by
#' the total number of unique targets in the union of `mat` and `network`.
#' @param with_ties Should ties be kept together? The default, `TRUE`,
#' may return more rows than you request. Use `FALSE` to ignore ties,
#' and return the first `n` rows.
#' @param seed A single value, interpreted as an integer, or NULL for random
#' number generation.
#' @param minsize Integer indicating the minimum number of targets per source.
#' @inheritDotParams stats::fisher.test -x -y
#'
#' @return A long format tibble of the enrichment scores for each source
#' across the samples. Resulting tibble contains the following columns:
#' 1. `statistic`: Indicates which method is associated with which score.
#' 2. `source`: Source nodes of `network`.
#' 3. `condition`: Condition representing each column of `mat`.
#' 4. `score`: Regulatory activity (enrichment score).
#' @family decoupleR statistics
#' @export
#' @examples
#' inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
#'
#' mat <- readRDS(file.path(inputs_dir, "mat.rds"))
#' net <- readRDS(file.path(inputs_dir, "net.rds"))
#'
#' run_ora(mat, net, minsize=0)
run_ora <- function(mat,
network,
.source = source,
.target = target,
n_up = ceiling(0.05 * nrow(mat)),
n_bottom = 0,
n_background = 20000,
with_ties = TRUE,
seed = 42,
minsize = 5,
...) {
# NSE vs. R CMD check workaround
condition <- p <- p_value <- rand <- score <- source <- statistic <- target <- targets <- value <- NULL
# Check for NAs/Infs in mat
mat <- check_nas_infs(mat)
# Before to start ---------------------------------------------------------
network <- network %>%
rename_net({{ .source }}, {{ .target }})
network <- filt_minsize(rownames(mat), network, minsize)
regulons <- extract_sets(network)
ns <- .ora_check_ns(n_up, n_bottom, n_background, network, mat)
n_up <- ns[1]
n_bottom <- ns[2]
n_background <- ns[3]
withr::with_seed(seed, {
targets <- .ora_slice_targets(mat, n_up, n_bottom, with_ties)
})
# Run analysis ------------------------------------------------------------
.ora_analysis(regulons, targets, n_background, ...)
}
# Helper functions --------------------------------------------------------
#' Wrapper to execute `run_ora()` logic one finished preprocessing of data
#'
#' @inheritParams run_ora
#' @param regulons Named list; names from `source` and values
#' from `target`.
#' @param targets Named list; names from columns of `mat` and
#' values from sliced data of `mat`.
#'
#' @inherit run_scira return
#' @keywords internal
#' @noRd
.ora_analysis <- function(regulons, targets, n_background, ...) {
# NSE vs. R CMD check workaround
p.value <- NULL
expand_grid(source = names(regulons), condition = names(targets)) %>%
rowwise(source, condition) %>%
summarise(.ora_fisher_exact_test(
expected = regulons[[source]],
observed = targets[[condition]],
n_background = n_background,
...
),
.groups = "drop"
) %>%
select(source, condition,
p_value = p.value, everything()
) %>%
mutate(score = -log10(p_value)) %>%
add_column(statistic = "ora", .before = 1) %>%
select(statistic, source, condition, score, p_value)
}
#' Fisher Exact Test
#'
#' @inheritParams run_ora
#' @inheritParams .ora_contigency_table
#'
#' @return Single row summary "glance" of a object of class `htest`.
#' @keywords internal
#' @noRd
.ora_fisher_exact_test <- function(expected, observed, n_background, ...) {
exec(
.fn = stats::fisher.test,
x = .ora_contingency_table(expected, observed, n_background),
y = NULL,
alternative='greater',
!!!list(...)
) %>%
broom::glance()
}
#' Create contingency table
#'
#' @inheritParams run_ora
#' @param expected Vector with expected targets
#' @param observed Vector with observed targets
#'
#' @return 2 x 2 matrix
#' @keywords internal
#' @noRd
.ora_contingency_table <- function(expected, observed, n_background) {
true_positive <- intersect(observed, expected) %>% length()
false_positive <- setdiff(expected, observed) %>% length()
false_negative <- setdiff(observed, expected) %>% length()
true_negative <- (n_background -
true_positive - false_positive - false_negative)
c(true_positive, false_positive, false_negative, true_negative) %>%
matrix(nrow = 2, ncol = 2, byrow = FALSE)
}
#' Slice targets per condition
#'
#' @inheritParams run_ora
#' @return Named list with sliced targets per condition.
#'
#' @keywords internal
#' @noRd
.ora_slice_targets <- function(mat, n_up, n_bottom, with_ties) {
# NSE vs. R CMD check workaround
rand <- targets <- target <- condition <- value <- NULL
mat %>%
as_tibble(rownames = "target") %>%
tidyr::pivot_longer(
cols = -target,
names_to = "condition",
values_to = "value"
) %>%
mutate(rand=stats::rnorm(n())) %>%
arrange(condition, value, rand) %>%
group_by(condition) %>%
dplyr::do(bind_rows(utils::head(., n = n_bottom), utils::tail(., n = n_up))) %>%
arrange(condition) %>%
summarise(
targets = rlang::set_names(list(target), condition[1]),
.groups = "drop"
) %>%
pull(targets)
}
#' Check values of variables with n_prefix
#'
#' Set convenient default values for the ns so that downstream
#' functions work fine.
#'
#' @inheritParams run_ora
#'
#' @return ns modified if necessary.
#'
#' @keywords internal
#' @noRd
.ora_check_ns <- function(n_up, n_bottom, n_background, network, mat) {
if (is.null(n_background)) {
n_background <- network %>%
pull(target) %>%
unique() %>%
union(rownames(mat)) %>%
length()
} else if (n_background < 0) {
abort("`n` must be a non-missing positive number.")
}
if (n_up + n_bottom >= nrow(mat)) {
n_up <- nrow(mat)
n_bottom <- 0
}
c(n_up, n_bottom, n_background)
}
|