1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
#' Weighted Sum (WSUM)
#'
#' @description
#' Calculates regulatory activities using WSUM.
#'
#' @details
#' WSUM infers regulator activities by first multiplying each target feature by
#' its associated weight which then are summed to an enrichment score
#' `wsum`. Furthermore, permutations of random target features can be
#' performed to obtain a null distribution that can be used to compute a z-score
#' `norm_wsum`, or a corrected estimate `corr_wsum` by multiplying
#' `wsum` by the minus log10 of the obtained empirical p-value.
#'
#' @inheritParams .decoupler_mat_format
#' @inheritParams .decoupler_network_format
#' @param times How many permutations to do?
#' @param seed A single value, interpreted as an integer, or NULL for random
#' number generation.
#' @param sparse Should the matrices used for the calculation be sparse?
#' @param randomize_type How to randomize the expression matrix.
#' @param minsize Integer indicating the minimum number of targets per source.
#'
#' @return A long format tibble of the enrichment scores for each source
#' across the samples. Resulting tibble contains the following columns:
#' 1. `statistic`: Indicates which method is associated with which score.
#' 2. `source`: Source nodes of `network`.
#' 3. `condition`: Condition representing each column of `mat`.
#' 4. `score`: Regulatory activity (enrichment score).
#' 5. `p_value`: p-value for the score of the method.
#' @family decoupleR statistics
#' @export
#' @import dplyr
#' @import purrr
#' @import tibble
#' @import tidyr
#' @importFrom stats sd
#' @examples
#' inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
#'
#' mat <- readRDS(file.path(inputs_dir, "mat.rds"))
#' net <- readRDS(file.path(inputs_dir, "net.rds"))
#'
#' run_wsum(mat, net, minsize=0)
run_wsum <- function(mat,
network,
.source = source,
.target = target,
.mor = mor,
.likelihood = likelihood,
times = 100,
seed = 42,
sparse = TRUE,
randomize_type = "rows",
minsize = 5
) {
# NSE vs. R CMD check workaround
c_score <- condition <- corr_wsum <- likelihood <- mor <- norm_wsum <- null_distribution <- null_mean <- null_sd <- p_value <- score <- source <- statistic <- target <- value <- weight <- wsum <- z_score <- NULL
# Before to start ---------------------------------------------------------
if (times < 2) {
rlang::abort(message = stringr::str_glue("Parameter 'times' must be greater than or equal to 2, but {times} was passed."))
}
# Check for NAs/Infs in mat
mat <- check_nas_infs(mat)
network <- network %>%
rename_net({{ .source }}, {{ .target }}, {{ .mor }}, {{ .likelihood }})
network <- filt_minsize(rownames(mat), network, minsize)
# Preprocessing -----------------------------------------------------------
# Calculate the weights that will be used for the evaluation of the model
network <- network %>%
filter(target %in% rownames(mat)) %>%
.wsum_calculate_weight()
# Extract labels that will map to the expression and profile matrices
shared_targets <- unique(network[["target"]])
targets <- rownames(mat)
conditions <- colnames(mat)
# Extract matrix of weights
weight_mat <- network %>%
pivot_wider_profile(
id_cols = source,
names_from = target,
values_from = weight,
to_matrix = TRUE,
to_sparse = sparse,
values_fill = 0
)
weight_mat <- as.matrix(weight_mat)
# Analysis ----------------------------------------------------------------
withr::with_seed(seed, {
.wsum_analysis(mat, weight_mat, shared_targets, times, randomize_type)
})
}
# Helper functions --------------------------------------------------------
#' Wrapper to execute run_wsum() logic once finished preprocessing of data
#'
#' @inherit run_wsum description
#'
#' @inheritParams run_wsum
#' @param weight_mat Matrix that corresponds to the multiplication of the mor
#' column with likelihood divided over the contribution.
#' @param shared_targets Target nodes that are shared between the
#' `mat` and `network`.
#'
#' @inherit run_wsum return
#'
#' @keywords internal
#' @noRd
.wsum_analysis <- function(mat, weight_mat, shared_targets, times, randomize_type) {
# Thus, it is only necessary to define if we want
# to evaluate a random model or not.
wsum_run <- partial(
.wsum_run,
mat = mat,
weight_mat = weight_mat,
shared_targets = shared_targets,
randomize_type = randomize_type
)
# NSE vs. R CMD check workaround
corr_wsum <- wsum <- value <- source <- condition <- p_value <-
null_mean <- null_distribution <- null_sd <- z_score <- norm_wsum <-
statistic <- score <- NULL
# Run model for random data
map_dfr(seq_len(times), ~ wsum_run(random = TRUE)) %>%
group_by(source, condition) %>%
summarise(
null_distribution = list(value),
null_mean = mean(value),
null_sd = stats::sd(value),
.groups = "drop"
) %>%
# Run the true model and joined to random.
left_join(y = wsum_run(random = FALSE), by = c("source", "condition")) %>%
# Calculate scores
mutate(
z_score = (value - null_mean) / null_sd,
z_score = replace_na(z_score, 0),
p_value = map2_dbl(
.x = null_distribution,
.y = value,
.f = ~ sum(abs(.x) > abs(.y)) / length(.x)
),
# Limit empirical p-value to lower bound 1/times and upper bound
# (times-1)/times
p_value = if_else(p_value == 0, 1/times, p_value),
p_value = if_else(p_value == 1, (times-1)/times, p_value),
p_value = if_else(p_value >= 0.5, 1-p_value, p_value),
p_value = p_value * 2,
c_score = value * (-log10(p_value))
) %>%
# Reformat results
select(-contains("null")) %>%
rename(corr_wsum = c_score, wsum = value, norm_wsum = z_score) %>%
pivot_longer(
cols = c(corr_wsum, wsum, norm_wsum),
names_to = "statistic",
values_to = "score"
) %>%
arrange(statistic, source, condition) %>%
select(statistic, source, condition, score, p_value)
}
#' Wrapper to run wsum one time
#'
#' @inheritParams .wsum_analysis
#' @inherit .wsum_evaluate_model return
#' @keywords internal
#' @noRd
.wsum_run <- function(mat, weight_mat, shared_targets, random, randomize_type) {
.wsum_map_model_data(mat, shared_targets, random, randomize_type) %>%
.wsum_evaluate_model(weight_mat)
}
#' Calculate sum weight
#'
#' @inheritParams .wsum_analysis
#' @keywords internal
#' @noRd
.wsum_calculate_weight <- function(network) {
network %>%
add_count(source, name = "contribution") %>%
transmute(
source,
target,
weight = mor * likelihood
)
}
#' Collect a subset of data: random or not.
#'
#' If random is true, then it permutes the rows of the matrix
#' (i.e preserves the column relationships), otherwise it maintains
#' the original order of the data. Then it takes only those rows with
#' the values provided in `shared_targets`.
#'
#' @return Matrix with rows that match `shared_targets`.
#'
#' @inheritParams .wsum_analysis
#' @keywords internal
#' @noRd
.wsum_map_model_data <- function(mat, shared_targets, random, randomize_type) {
if (random) {
randomize_matrix(mat, randomize_type = randomize_type)[shared_targets, , drop = FALSE]
} else {
mat[shared_targets, , drop = FALSE]
}
}
#' Evaluate model
#'
#' The evaluation model consists of evaluating the multiplication of the
#' weights by the factor of interest and comparing it against results
#' from permutations of the matrix of values of interest.
#'
#' @inheritParams .wsum_analysis
#'
#' @return A dataframe with three columns:
#' source (source nodes), condition (colnames of mat) and value (score).
#'
#' @keywords internal
#' @noRd
.wsum_evaluate_model <- function(mat, weight_mat) {
(weight_mat %*% mat) %>%
as.matrix() %>%
as.data.frame() %>%
rownames_to_column("source") %>%
pivot_longer(-source, names_to = "condition")
}
|