1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
#' Rename network
#'
#' @description
#' Renames a given network to these column names: .source, .target, .mor, If
#' .mor is not provided, then the function sets them to default values.
#'
#' @inheritParams .decoupler_network_format
#' @param def_mor Default value for .mor when not provided.
#'
#' @export
#' @examples
#' inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
#' mat <- readRDS(file.path(inputs_dir, "mat.rds"))
#' net <- readRDS(file.path(inputs_dir, "net.rds"))
#' rename_net(net, source, target, mor)
rename_net <- function(network,
.source,
.target,
.mor = NULL,
.likelihood = NULL,
def_mor = 1) {
.check_quos_status({{ .source }}, {{ .target }},
.dots_names = c(".source", ".target"))
if (!'likelihood' %in% colnames(network)){
network <- network %>% mutate(likelihood=1)
}
network <- network %>%
convert_f_defaults(
source = {{ .source }},
target = {{ .target }},
mor = {{ .mor }},
likelihood = {{ .likelihood }},
.def_col_val = c(mor = def_mor, likelihood=1)
)
if (any(network$likelihood != 1)) {
warning(".likelihood argument is deprecated, it will be set to 1. From now
on, weights of regulation should go into the .mor column.")
}
check_repeated_edges(network)
network <- network %>% mutate(likelihood=1)
network
}
#' Extract sets
#'
#' @description
#' Extracts feature sets from a renamed network (see [decoupleR::rename_net]).
#'
#' @inheritParams .decoupler_network_format
#'
#' @export
#'
#' @examples
#' inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
#' mat <- readRDS(file.path(inputs_dir, "mat.rds"))
#' net <- readRDS(file.path(inputs_dir, "net.rds"))
#' net <- rename_net(net, source, target, mor)
#' extract_sets(net)
extract_sets <- function(network) {
# NSE vs. R CMD check workaround
regulons <- source <- target <- NULL
network %>%
group_by(source) %>%
summarise(
regulons = set_names(list(target), source[1]),
.groups = "drop"
) %>%
pull(regulons)
}
# Helper functions --------------------------------------------------------
#' Stop if any of past quos are missing or NULL.
#'
#' @param ... Quos to evaluate if they are missing or NULL.
#' @param .labels Name corresponding to each quo.
#'
#' @keywords internal
#' @noRd
# TODO be able to use name of dots as name of quo.
.check_quos_status <- function(..., .dots_names) {
dots <- enquos(...)
walk2(.x = dots, .y = .dots_names, function(.dot, .name) {
if (quo_is_missing(.dot)) {
rlang::abort(
message = stringr::str_glue(
'Quo "{.name}" is missing, with no default.'
),
class = "quo_missing_error"
)
}
if (quo_is_null(.dot)) {
rlang::abort(
message = stringr::str_glue('Quo "{.name}" can not be NULL.'),
class = "quo_null_error"
)
}
})
}
#' Rename columns and add defaults values if column not present
#'
#' @description
#' `convert_f_defaults()` combine the [dplyr::rename()] way of
#' working and with the [tibble::add_column()] to add columns
#' with default values in case they don't exist after renaming data.
#'
#' @inheritParams dplyr::rename
#' @param .def_col_val Named vector with columns with default values
#' if none exist after rename.
#' @param .use_dots Should a dot prefix be added to renamed variables?
#' This will allow swapping of columns.
#'
#' @details
#' The objective of using .use_dots is to be able to swap columns which,
#' by default, is not allowed by the [dplyr::rename()] function.
#' The same behavior can be replicated by simply using the [dplyr::select()],
#' however, the select evaluation allows much more flexibility so that
#' unexpected results could be obtained. Despite this, a future implementation
#' will consider this form of execution to allow renaming the same
#' column to multiple ones (i.e. extend dataframe extension).
#'
#' @return
#' An object of the same type as .data. The output has the following properties:
#' - Rows are not affected.
#' - Column names are changed.
#' - Column order is the same as that of the function call.
#' @export
#' @importFrom tidyselect eval_rename
#' @examples
#'
#' df <- tibble::tibble(x = 1, y = 2, z = 3)
#'
#' # Rename columns
#' df <- tibble::tibble(x = 1, y = 2)
#' convert_f_defaults(
#' .data = df,
#' new_x = x,
#' new_y = y,
#' new_z = NULL,
#' .def_col_val = c(new_z = 3)
#' )
convert_f_defaults <- function(.data,
...,
.def_col_val = c(),
.use_dots = TRUE) {
expected_columns <- match.call(expand.dots = FALSE)$... %>%
names() %>%
unique()
.expr <- expr(c(...))
if (.use_dots) .expr <- expr(c(. = !!.expr))
# Return rename changes with dot prefix variables.
loc <- eval_rename(.expr, data = .data)
.data %>%
select(all_of(loc)) %>%
{
# Remove prefix dots generated by eval_rename()
if (.use_dots) {
rename_with(., ~ stringr::str_remove(.x, "...."))
} else {
.
}
} %>%
add_column(., !!!.def_col_val[!names(.def_col_val) %in% names(.)]) %>%
.check_expected_columns(expected_columns = expected_columns)
}
#' Check if data contains specific columns
#'
#' If `.data` present more or less columns than expected
#' then the function will abort execution, otherwise it will
#' return the same input data.
#'
#' @inheritParams convert_f_defaults
#' @param expected_columns Name of the columns that must make a total match
#' with the expected columns
#'
#' @return `.data`
#'
#' @noRd
.check_expected_columns <- function(.data, expected_columns) {
# Get data columns.
data_cols <- names(.data)
# Calculate symmetric difference
diff_cols <- setdiff(
x = union(expected_columns, data_cols),
y = intersect(expected_columns, data_cols)
)
# Abort execution if there is an inconsistency in the output results
if (!is_empty(diff_cols)) {
extra_cols <- setdiff(diff_cols, expected_columns) %>%
paste(collapse = ", ")
removed_cols <- intersect(expected_columns, diff_cols) %>%
paste(collapse = ", ")
expected_columns <- paste(expected_columns, collapse = ", ")
rlang::abort(
message = stringr::str_glue(
"Output columns are different than expected.\n",
"Expected: {expected_columns}\n",
"Extra: {extra_cols}\n",
"Removed: {removed_cols}"
),
class = "different_set_columns"
)
}
.data
}
#' Check if network contains repeated edges
#'
#' @param network Network in tibble format.
#' @noRd
check_repeated_edges <- function(network){
# NSE vs. R CMD check workaround
source <- target <- NULL
repeated <- network %>%
group_by(source, target) %>%
filter(n()>1)
if (nrow(repeated) > 1){
stop('Network contains repeated edges, please remove them.')
}
}
#' Check if mat contains Nans or Infs
#'
#' @param mat Matrix in matrix format.
#' @noRd
check_nas_infs <- function(mat){
mat <- as.matrix(mat)
if (any(is.infinite(mat) | is.na(mat))){
stop('Mat contains NAs or Infs, please remove them.')
}
mat
}
|