1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/utils-profiles.R
\name{pivot_wider_profile}
\alias{pivot_wider_profile}
\title{Pivot a data frame to wider and convert it to matrix}
\usage{
pivot_wider_profile(
data,
id_cols,
names_from,
values_from,
values_fill = NA,
to_matrix = FALSE,
to_sparse = FALSE,
...
)
}
\arguments{
\item{data}{A data frame to pivot.}
\item{id_cols}{<\code{\link[tidyr:tidyr_tidy_select]{tidy-select}}> A set of columns that
uniquely identifies each observation. Defaults to all columns in \code{data}
except for the columns specified in \code{names_from} and \code{values_from}.
Typically used when you have redundant variables, i.e. variables whose
values are perfectly correlated with existing variables.}
\item{names_from}{<\code{\link[tidyr:tidyr_tidy_select]{tidy-select}}> A pair of
arguments describing which column (or columns) to get the name of the
output column (\code{names_from}), and which column (or columns) to get the
cell values from (\code{values_from}).
If \code{values_from} contains multiple values, the value will be added to the
front of the output column.}
\item{values_from}{<\code{\link[tidyr:tidyr_tidy_select]{tidy-select}}> A pair of
arguments describing which column (or columns) to get the name of the
output column (\code{names_from}), and which column (or columns) to get the
cell values from (\code{values_from}).
If \code{values_from} contains multiple values, the value will be added to the
front of the output column.}
\item{values_fill}{Optionally, a (scalar) value that specifies what each
\code{value} should be filled in with when missing.
This can be a named list if you want to apply different fill values to
different value columns.}
\item{to_matrix}{Logical value indicating if the result should be a matrix.
Parameter is ignored in case \code{sparse} is \code{TRUE}.}
\item{to_sparse}{Logical value indicating whether the resulting matrix
should be sparse or not.}
\item{...}{Additional arguments passed on to methods.}
}
\value{
"widened" data; it is increasing the number of columns and
decreasing the number of rows.
}
\description{
Generates a kind of table where the rows come from \code{id_cols},
the columns from \code{names_from} and the values from \code{values_from}.
}
\details{
In the current state of the function, to ensure its operation,
the \code{id_cols} parameter is a single selector.
}
\examples{
\dontrun{
df <- tibble::tibble(
tf = c("tf_1", "tf_1", "tf_2", "tf_2"),
gene = c("gene_1", "gene_2", "gene_1", "gene_2"),
mor = c(1, -1, 1, -1)
)
# Return a tibble
pivot_wider_profile(
data = df,
id_cols = tf,
names_from = gene,
values_from = mor
)
# Return a matrix
pivot_wider_profile(
data = df,
id_cols = tf,
names_from = gene,
values_from = mor,
to_matrix = TRUE
)
# Return a sparse Matrix of class "dgCMatrix"
pivot_wider_profile(
data = df,
id_cols = tf,
names_from = gene,
values_from = mor,
to_sparse = TRUE
)
}
}
\keyword{internal}
|